1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
|
\section{Number Printing}
\label{pgfmath-numberprinting}%
{\emph{An extension by Christian Feuers\"anger}}
\medskip
\noindent
\pgfname\ supports number printing in different styles and rounds to arbitrary precision.
\begin{command}{\pgfmathprintnumber\marg{x}}
Generates pretty-printed output for the (real) number \meta{x}. The
input number \meta{x} is parsed using |\pgfmathfloatparsenumber|
which allows arbitrary precision.
Numbers are typeset in math mode using the current set of number
printing options, see below. Optional arguments can also be provided
using |\pgfmathprintnumber[|\meta{options}|]|\meta{x}.
\end{command}
\begin{command}{\pgfmathprintnumberto\marg{x}\marg{macro}}
Returns the resulting number into \meta{macro}
instead of typesetting it directly.
\end{command}
\begin{key}{/pgf/number format/fixed}
Configures |\pgfmathprintnumber| to round the number to a fixed
number of digits after the period, discarding any trailing zeros.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,fixed,precision=2}
\pgfmathprintnumber{4.568}\hspace{1em}
\pgfmathprintnumber{5e-04}\hspace{1em}
\pgfmathprintnumber{0.1}\hspace{1em}
\pgfmathprintnumber{24415.98123}\hspace{1em}
\pgfmathprintnumber{123456.12345}
\end{codeexample}
See section~\ref{sec:number:styles} for how to change the
appearance.
\end{key}
\begin{key}{/pgf/number format/fixed zerofill=\marg{boolean} (default true)}
Enables or disables zero filling for any number drawn in fixed point
format.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,fixed,fixed zerofill,precision=2}
\pgfmathprintnumber{4.568}\hspace{1em}
\pgfmathprintnumber{5e-04}\hspace{1em}
\pgfmathprintnumber{0.1}\hspace{1em}
\pgfmathprintnumber{24415.98123}\hspace{1em}
\pgfmathprintnumber{123456.12345}
\end{codeexample}
This key affects numbers drawn with |fixed| or |std| styles (the
latter only if no scientific format is chosen).
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,std,fixed zerofill,precision=2}
\pgfmathprintnumber{4.568}\hspace{1em}
\pgfmathprintnumber{5e-05}\hspace{1em}
\pgfmathprintnumber{1}\hspace{1em}
\pgfmathprintnumber{123456.12345}
\end{codeexample}
See section~\ref{sec:number:styles} for how to change the
appearance.
\end{key}
\begin{key}{/pgf/number format/sci}
Configures |\pgfmathprintnumber| to display numbers in scientific
format, that means sign, mantissa and exponent (basis~$10$). The
mantissa is rounded to the desired |precision| (or |sci precision|,
see below).
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,sci,precision=2}
\pgfmathprintnumber{4.568}\hspace{1em}
\pgfmathprintnumber{5e-04}\hspace{1em}
\pgfmathprintnumber{0.1}\hspace{1em}
\pgfmathprintnumber{24415.98123}\hspace{1em}
\pgfmathprintnumber{123456.12345}
\end{codeexample}
See section~\ref{sec:number:styles} for how to change the exponential
display style.
\end{key}
\begin{key}{/pgf/number format/sci zerofill=\marg{boolean} (default true)}
Enables or disables zero filling for any number drawn in scientific
format.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,sci,sci zerofill,precision=2}
\pgfmathprintnumber{4.568}\hspace{1em}
\pgfmathprintnumber{5e-04}\hspace{1em}
\pgfmathprintnumber{0.1}\hspace{1em}
\pgfmathprintnumber{24415.98123}\hspace{1em}
\pgfmathprintnumber{123456.12345}
\end{codeexample}
As with |fixed zerofill|, this option does only affect numbers drawn
in |sci| format (or |std| if the scientific format is chosen).
See section~\ref{sec:number:styles} for how to change the
exponential display style.
\end{key}
\begin{stylekey}{/pgf/number format/zerofill=\marg{boolean} (default true)}
Sets both |fixed zerofill| and |sci zerofill| at once.
\end{stylekey}
\begin{keylist}{/pgf/number format/std,%
/pgf/number format/std=\meta{lower e},
/pgf/number format/std=\meta{lower e}:\meta{upper e}}
Configures |\pgfmathprintnumber| to a standard algorithm. It chooses
either |fixed| or |sci|, depending on the order of magnitude. Let
$n=s \cdot m \cdot 10^e$ be the input number and $p$ the current
precision. If $-p/2 \le e \le 4$, the number is displayed using
|fixed| format. Otherwise, it is displayed using |sci| format.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,std,precision=2}
\pgfmathprintnumber{4.568}\hspace{1em}
\pgfmathprintnumber{5e-04}\hspace{1em}
\pgfmathprintnumber{0.1}\hspace{1em}
\pgfmathprintnumber{24415.98123}\hspace{1em}
\pgfmathprintnumber{123456.12345}
\end{codeexample}
The parameters can be customized using the optional integer
argument(s): if $\text{\meta{lower e}} \le e \le \text{\meta{upper
e}}$, the number is displayed in |fixed| format, otherwise in
|sci| format. Note that \meta{lower e} should be negative for useful
results. The precision used for the scientific format can be
adjusted with |sci precision| if necessary.
\end{keylist}
\begin{keylist}{/pgf/number format/relative*=\meta{exponent base 10}}
Configures |\pgfmathprintnumber| to format numbers relative to an
order of magnitude, $10^r$, where $r$ is an integer number.
This key addresses different use-cases.
\paragraph{First use-case:} provide a unified format for a
\emph{sequence} of numbers. Consider the following test:
\begin{codeexample}[]
\pgfkeys{/pgf/number format/relative*={1}}
\pgfmathprintnumber{6.42e-16}\hspace{1em}
\pgfmathprintnumber{1.2}\hspace{1em}
\pgfmathprintnumber{6}\hspace{1em}
\pgfmathprintnumber{20.6}\hspace{1em}
\pgfmathprintnumber{87}
\end{codeexample}
\noindent With any other style, the |6.42e-16| would have been
formatted as an isolated number. Here, it is rounded to |0| because
when viewed relative to $10^1$ (the exponent $1$ is the argument for
|relative|), it has no significant digits.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/relative*={2}}
\pgfmathprintnumber{123.345}\hspace{1em}
\pgfmathprintnumber{0.0012}\hspace{1em}
\pgfmathprintnumber{0.0014}\hspace{1em}
\end{codeexample}
\noindent The example above applies the initial |precision=2| to
|123.345| -- relative to $100$. Two significant digits of |123.345|
relative to $100$ are |123|. Note that the ``$2$ significant digits
of |123.345|'' translates to ``round |1.2345| to $2$ digits'', which
would yield |1.2300|. Similarly, the other two numbers are |0|
compared to $100$ using the given |precision|.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/relative*={-3}}
\pgfmathprintnumber{123.345}\hspace{1em}
\pgfmathprintnumber{0.0012}\hspace{1em}
\pgfmathprintnumber{0.0014}\hspace{1em}
\end{codeexample}
\paragraph{Second use-case:} improve rounding in the presence of
\emph{inaccurate} numbers. Let us suppose that some
limited-precision arithmetics resulted in the result |123456999|
(like the |fpu| of \pgfname). You know that its precision is about
five or six significant digits. And you want to provide a fixed
point output. In this case, the trailing digits |....999| are a
numerical artifact due to the limited precision. Use
|relative*=3,precision=0| to eliminate the artifacts:
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,relative*={3},precision=0}
\pgfmathprintnumber{123456999}\hspace{1em}
\pgfmathprintnumber{123456999.12}
\end{codeexample}
\noindent Here, |precision=0| means that we inspect |123456.999| and
round that number to $0$ digits. Finally, we move the period back to
its initial position. Adding |relative style=fixed| results in fixed
point output format:
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,relative*={3},precision=0,relative style=fixed}
\pgfmathprintnumber{123456999}\hspace{1em}
\pgfmathprintnumber{123456999.12}
\end{codeexample}
\noindent Note that there is another alternative for this use-case
which is discussed later: the |fixed relative| style.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,fixed relative,precision=6}
\pgfmathprintnumber{123456999}\hspace{1em}
\pgfmathprintnumber{123456999.12}
\end{codeexample}
You might wonder why there is an asterisk in the key's name. The
short answer is: there is also a \declareandlabel{/pgf/number
format/relative} number printer which does unexpected things. The
key |relative*| repairs this. Existing code will still use the old
behavior.
Technically, the key works as follows: as already explained above,
|relative*=3| key applied to |123456999.12| moves the period by
three positions and analyzes |123456.99912|. Mathematically
speaking, we are given a number $x = \pm m \cdot 10^e$ and we
attempt to apply |relative*=|$r$. The method then rounds $x / 10^r$
to |precision| digits. Afterwards, it multiplies the result by
$10^r$ and typesets it.
\end{keylist}
\begin{stylekey}{/pgf/number format/every relative}
A style which configures how the |relative| method finally displays
its results.
The initial configuration is
\begin{codeexample}[code only]
\pgfkeys{/pgf/number format/every relative/.style=std}
\end{codeexample}
Note that rounding is turned off when the resulting style is being
evaluated (since |relative| already rounded the number).
Although supported, I discourage from using |fixed zerofill| or
|sci zerofill| in this context -- it may lead to a suggestion of higher
precision than is actually used (because |fixed zerofill| might
simply add |.00| although there was a different information before
|relative| rounded the result).
\end{stylekey}
\begin{key}{/pgf/number format/relative style=\marg{options}}
The same as |every relative/.append style=|\marg{options}.
\end{key}
\begin{keylist}{/pgf/number format/fixed relative}
Configures |\pgfmathprintnumber| to format numbers in a similar way
to the |fixed| style, but the |precision| is interpreted relatively
to the number's exponent.
The motivation is to get the same rounding effect as for |sci|, but
to display the number in the |fixed| style:
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,fixed relative,precision=3}
\pgfmathprintnumber{1000.0123}\hspace{1em}
\pgfmathprintnumber{100.0567}\hspace{1em}
\pgfmathprintnumber{0.000010003452}\hspace{1em}
\pgfmathprintnumber{0.010073452}\hspace{1em}
\pgfmathprintnumber{1.23567}\hspace{1em}
\pgfmathprintnumber{1003.75}\hspace{1em}
\pgfmathprintnumber{1006.75}\hspace{1em}
\end{codeexample}
The effect of |fixed relative| is that the number is rounded to
\emph{exactly} the first \meta{precision} non-zero digits, no matter
how many leading zeros the number might have.
Use |fixed relative| if you want |fixed| and if you know that only
the first $n$ digits are correct. Use |sci| if you need a scientific
display style and only the first $n$ digits are correct.
Note that |fixed relative| ignores the |fixed zerofill| flag.
See also the |relative*| key. Note that the
|relative=|\marg{exponent} key explicitly moves the period to some
designated position before it attempts to round the
number. Afterwards, it ``rounds from the right'', i.e.\ it rounds to
that explicitly chosen digit position. In contrast to that,
|fixed relative| ``rounds from the left'': it takes the \emph{first}
non-zero digit, temporarily places the period after this digit, and
rounds that number. The rounding style |fixed| leaves the period
where it is, and rounds everything behind that digit. The |sci|
style is similar to |fixed relative|.
\end{keylist}
\begin{key}{/pgf/number format/int detect}
Configures |\pgfmathprintnumber| to detect integers
automatically. If the input number is an integer, no period is
displayed at all. If not, the scientific format is chosen.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,int detect,precision=2}
\pgfmathprintnumber{15}\hspace{1em}
\pgfmathprintnumber{20}\hspace{1em}
\pgfmathprintnumber{20.4}\hspace{1em}
\pgfmathprintnumber{0.01}\hspace{1em}
\pgfmathprintnumber{0}
\end{codeexample}
\end{key}
\begin{command}{\pgfmathifisint\marg{number constant}\marg{true code}\marg{false code}}
A command which does the same check as |int detect|, but it invokes
\meta{true code} if the \meta{number constant} actually is an
integer and the \meta{false code} if not.
As a side-effect, |\pgfretval| will contain the parsed number,
either in integer format or as parsed floating point number.
The argument \meta{number constant} will be parsed with
|\pgfmathfloatparsenumber|.
\begin{codeexample}[]
15 \pgfmathifisint{15}{is an int: \pgfretval.}{is no int}\hspace{1em}
15.5 \pgfmathifisint{15.5}{is an int: \pgfretval.}{is no int}
\end{codeexample}
\end{command}
\begin{key}{/pgf/number format/int trunc}
Truncates every number to integers (discards any digit after the
period).
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,int trunc}
\pgfmathprintnumber{4.568}\hspace{1em}
\pgfmathprintnumber{5e-04}\hspace{1em}
\pgfmathprintnumber{0.1}\hspace{1em}
\pgfmathprintnumber{24415.98123}\hspace{1em}
\pgfmathprintnumber{123456.12345}
\end{codeexample}
\end{key}
\begin{key}{/pgf/number format/frac}
Displays numbers as fractionals.
\begin{codeexample}[width=3cm]
\pgfkeys{/pgf/number format/frac}
\pgfmathprintnumber{0.333333333333333}\hspace{1em}
\pgfmathprintnumber{0.5}\hspace{1em}
\pgfmathprintnumber{2.133333333333325e-01}\hspace{1em}
\pgfmathprintnumber{0.12}\hspace{1em}
\pgfmathprintnumber{2.666666666666646e-02}\hspace{1em}
\pgfmathprintnumber{-1.333333333333334e-02}\hspace{1em}
\pgfmathprintnumber{7.200000000000000e-01}\hspace{1em}
\pgfmathprintnumber{6.666666666666667e-02}\hspace{1em}
\pgfmathprintnumber{1.333333333333333e-01}\hspace{1em}
\pgfmathprintnumber{-1.333333333333333e-02}\hspace{1em}
\pgfmathprintnumber{3.3333333}\hspace{1em}
\pgfmathprintnumber{1.2345}\hspace{1em}
\pgfmathprintnumber{1}\hspace{1em}
\pgfmathprintnumber{-6}
\end{codeexample}
\begin{key}{/pgf/number format/frac TeX=\marg{\textbackslash macro} (initially \texttt{\textbackslash frac})}
Allows to use a different implementation for |\frac| inside of the
|frac| display type.
\end{key}
\begin{key}{/pgf/number format/frac denom=\meta{int} (initially empty)}
Allows to provide a custom denominator for |frac|.
\begin{codeexample}[width=3cm]
\pgfkeys{/pgf/number format/.cd,frac, frac denom=10}
\pgfmathprintnumber{0.1}\hspace{1em}
\pgfmathprintnumber{0.5}\hspace{1em}
\pgfmathprintnumber{1.2}\hspace{1em}
\pgfmathprintnumber{-0.6}\hspace{1em}
\pgfmathprintnumber{-1.4}\hspace{1em}
\end{codeexample}
\end{key}
\begin{key}{/pgf/number format/frac whole=\mchoice{true,false} (initially true)}
Configures whether complete integer parts shall be placed in front
of the fractional part. In this case, the fractional part will be
less then $1$. Use |frac whole=false| to avoid whole number parts.
\begin{codeexample}[width=3cm]
\pgfkeys{/pgf/number format/.cd,frac, frac whole=false}
\pgfmathprintnumber{20.1}\hspace{1em}
\pgfmathprintnumber{5.5}\hspace{1em}
\pgfmathprintnumber{1.2}\hspace{1em}
\pgfmathprintnumber{-5.6}\hspace{1em}
\pgfmathprintnumber{-1.4}\hspace{1em}
\end{codeexample}
\end{key}
\begin{key}{/pgf/number format/frac shift=\marg{integer} (initially 4)}
In case you experience problems because of stability problems, try
experimenting with a different |frac shift|. Higher shift values $k$
yield higher sensitivity to inaccurate data or inaccurate
arithmetics.
Technically, the following happens. If $r < 1$ is the fractional
part of the mantissa, then a scale $i = 1/r \cdot 10^k$ is computed
where $k$ is the shift; fractional parts of $i$ are neglected. The
value $1/r$ is computed internally, its error is amplified.
If you still experience stability problems, use |\usepackage{fp}| in
your preamble. The |frac| style will then automatically employ the
higher absolute precision of |fp| for the computation of $1/r$.
\end{key}
\end{key}
\begin{key}{/pgf/number format/precision=\marg{number}}
Sets the desired rounding precision for any display operation. For
scientific format, this affects the mantissa.
\end{key}
\begin{key}{/pgf/number format/sci precision=\meta{number or empty} (initially empty)}
Sets the desired rounding precision only for |sci| styles.
Use |sci precision={}| to restore the initial configuration (which
uses the argument provided to |precision| for all number styles).
\end{key}
\begin{key}{/pgf/number format/read comma as period=\mchoice{true,false} (initially false)}
This is one of the few keys which allows to customize the number parser. If this switch is turned on, a comma is read just as a period.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/read comma as period}
\pgfmathprintnumber{1234,56}
\end{codeexample}
This is typically undesired as it can cause side--effects with math parsing instructions. However, it is supported to format input numbers or input tables. Consider |use comma| to typeset the result with a comma as well.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
read comma as period,
use comma}
\pgfmathprintnumber{1234,56}
\end{codeexample}
\end{key}
\subsection{Changing display styles}%
\label{sec:number:styles}%
You can change the way how numbers are displayed. For example, if you
use the `\texttt{fixed}' style, the input number is rounded to the
desired precision and the current fixed point display style is used to
typeset the number. The same is applied to any other format: first,
rounding routines are used to get the correct digits, afterwards a
display style generates proper \TeX-code.
\begin{key}{/pgf/number format/set decimal separator=\marg{text}}
Assigns \marg{text} as decimal separator for any fixed point numbers
(including the mantissa in sci format).
Use |\pgfkeysgetvalue{/pgf/number format/set decimal separator}\value|
to get the current separator into |\value|.
\end{key}
\begin{stylekey}{/pgf/number format/dec sep=\marg{text}}
Just another name for |set decimal separator|.
\end{stylekey}
\begin{key}{/pgf/number format/set thousands separator=\marg{text}}
Assigns \marg{text} as thousands separator for any fixed point
numbers (including the mantissa in sci format).
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=2,
set thousands separator={}}
\pgfmathprintnumber{1234.56}
\end{codeexample}
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=2,
set thousands separator={}}
\pgfmathprintnumber{1234567890}
\end{codeexample}
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=2,
set thousands separator={.}}
\pgfmathprintnumber{1234567890}
\end{codeexample}
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=2,
set thousands separator={,}}
\pgfmathprintnumber{1234567890}
\end{codeexample}
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=2,
set thousands separator={{{,}}}}
\pgfmathprintnumber{1234567890}
\end{codeexample}
The last example employs commas and disables the default
comma-spacing.
Use |\pgfkeysgetvalue{/pgf/number format/set thousands separator}\value|
to get the current separator into |\value|.
\end{key}
\begin{stylekey}{/pgf/number format/1000 sep=\marg{text}}
Just another name for |set thousands separator|.
\end{stylekey}
\begin{key}{/pgf/number format/1000 sep in fractionals=\marg{boolean} (initially false)}
Configures whether the fractional part should also be grouped into
groups of three digits.
The value |true| will active the |1000 sep| for both, integer and
fractional parts. The value |false| will active |1000 sep| only for the integer part.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
fixed,
precision=999,
set thousands separator={\,},
1000 sep in fractionals,
}
\pgfmathprintnumber{1234.1234567}
\end{codeexample}
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
fixed,fixed zerofill,
precision=9,
set thousands separator={\,},
1000 sep in fractionals,
}
\pgfmathprintnumber{1234.1234567}
\end{codeexample}
\end{key}
\begin{key}{/pgf/number format/min exponent for 1000 sep=\marg{number} (initially 0)}
Defines the smallest exponent in scientific notation which is
required to draw thousand separators. The exponent is the number of
digits minus one, so $\meta{number}=4$ will use thousand separators
starting with $1e4 = 10000$.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
int detect,
1000 sep={\,},
min exponent for 1000 sep=0}
\pgfmathprintnumber{5000}; \pgfmathprintnumber{1000000}
\end{codeexample}
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
int detect,
1000 sep={\,},
min exponent for 1000 sep=4}
\pgfmathprintnumber{1000}; \pgfmathprintnumber{5000}
\end{codeexample}
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
int detect,
1000 sep={\,},
min exponent for 1000 sep=4}
\pgfmathprintnumber{10000}; \pgfmathprintnumber{1000000}
\end{codeexample}
\noindent A value of |0| disables this feature (negative values are
ignored).
\end{key}
\begin{key}{/pgf/number format/use period}
A predefined style which installs periods ``\texttt{.}'' as decimal
separators and commas ``\texttt{,}'' as thousands separators. This
style is the default.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,fixed,precision=2,use period}
\pgfmathprintnumber{12.3456}
\end{codeexample}
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,fixed,precision=2,use period}
\pgfmathprintnumber{1234.56}
\end{codeexample}
\end{key}
\begin{key}{/pgf/number format/use comma}
A predefined style which installs commas ``\texttt{,}'' as decimal
separators and periods ``\texttt{.}'' as thousands separators.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,fixed,precision=2,use comma}
\pgfmathprintnumber{12.3456}
\end{codeexample}
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,fixed,precision=2,use comma}
\pgfmathprintnumber{1234.56}
\end{codeexample}
\end{key}
\begin{key}{/pgf/number format/skip 0.=\marg{boolean} (initially false)}
Configures whether numbers like $0.1$ shall be typeset as $.1$ or
not.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
fixed,
fixed zerofill,precision=2,
skip 0.}
\pgfmathprintnumber{0.56}
\end{codeexample}
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
fixed,
fixed zerofill,precision=2,
skip 0.=false}
\pgfmathprintnumber{0.56}
\end{codeexample}
\end{key}
\begin{key}{/pgf/number format/showpos=\marg{boolean} (initially false)}
Enables or disables the display of plus signs for non-negative
numbers.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/showpos}
\pgfmathprintnumber{12.345}
\end{codeexample}
\begin{codeexample}[]
\pgfkeys{/pgf/number format/showpos=false}
\pgfmathprintnumber{12.345}
\end{codeexample}
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,showpos,sci}
\pgfmathprintnumber{12.345}
\end{codeexample}
\end{key}
\begin{stylekey}{/pgf/number format/print sign=\marg{boolean}}
A style which is simply an alias for |showpos=|\marg{boolean}.
\end{stylekey}
\begin{key}{/pgf/number format/sci 10e}
Uses $m \cdot 10^e$ for any number displayed in scientific format.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,sci,sci 10e}
\pgfmathprintnumber{12.345}
\end{codeexample}
\end{key}
\begin{key}{/pgf/number format/sci 10\textasciicircum e}
The same as `|sci 10e|'.
\end{key}
\begin{key}{/pgf/number format/sci e}
Uses the `$1e{+}0$' format which is generated by common scientific
tools for any number displayed in scientific format.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,sci,sci e}
\pgfmathprintnumber{12.345}
\end{codeexample}
\end{key}
\begin{key}{/pgf/number format/sci E}
The same with an uppercase `\texttt{E}'.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,sci,sci E}
\pgfmathprintnumber{12.345}
\end{codeexample}
\end{key}
\begin{key}{/pgf/number format/sci subscript}
Typesets the exponent as subscript for any number displayed in
scientific format. This style requires very little space.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,sci,sci subscript}
\pgfmathprintnumber{12.345}
\end{codeexample}
\end{key}
\begin{key}{/pgf/number format/sci superscript}
Typesets the exponent as superscript for any number displayed in
scientific format. This style requires very little space.
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,sci,sci superscript}
\pgfmathprintnumber{12.345}
\end{codeexample}
\end{key}
\begin{key}{/pgf/number format/sci generic=\marg{keys}}
Allows to define an own number style for the scientific
format. Here, \meta{keys} can be one of the following choices (omit
the long key prefix):
\begin{key}{/pgf/number format/sci generic/mantissa sep=\marg{text} (initially empty)}
Provides the separator between a mantissa and the exponent. It might
be |\cdot|, for example,
\end{key}
\begin{key}{/pgf/number format/sci generic/exponent=\marg{text} (initially empty)}
Provides text to format the exponent. The actual exponent is
available as argument |#1| (see below).
\end{key}
\begin{codeexample}[]
\pgfkeys{
/pgf/number format/.cd,
sci,
sci generic={mantissa sep=\times,exponent={10^{#1}}}}
\pgfmathprintnumber{12.345};
\pgfmathprintnumber{0.00012345}
\end{codeexample}
The \meta{keys} can depend on three parameters, namely on |#1| which
is the exponent, |#2| containing the flags entity of the floating
point number and |#3| is the (unprocessed and unformatted)
mantissa.
Note that |sci generic| is \emph{not} suitable to modify the
appearance of fixed point numbers, nor can it be used to format the
mantissa (which is typeset like fixed point numbers). Use |dec sep|,
|1000 sep| and |print sign| to customize the mantissa.
\end{key}
\begin{key}{/pgf/number format/\protect\atmarktext dec sep mark=\marg{text}}
Will be placed right before the place where a decimal separator
belongs to. However, \marg{text} will be inserted even if there is
no decimal separator. It is intended as place-holder for auxiliary
routines to find alignment positions.
This key should never be used to change the decimal separator!
Use |dec sep| instead.
\end{key}
\begin{key}{/pgf/number format/\protect\atmarktext sci exponent mark=\marg{text}}
Will be placed right before exponents in scientific notation. It is
intended as place-holder for auxiliary routines to find alignment
positions.
This key should never be used to change the exponent!
\end{key}
\begin{key}{/pgf/number format/assume math mode=\marg{boolean} (default true)}
Set this to |true| if you don't want any checks for math mode. The
initial setting checks whether math mode is active using
|\pgfutilensuremath| for each final number.
Use |assume math mode=true| if you know that math mode is active. In
that case, the final number is typeset as-is, no further checking is
performed.
\end{key}
\begin{stylekey}{/pgf/number format/verbatim}
A style which configures the number printer to produce verbatim text
output, i.\,e., it doesn't contain \TeX\ macros.
\begin{codeexample}[]
\pgfkeys{
/pgf/fpu,
/pgf/number format/.cd,
sci,
verbatim}
\pgfmathprintnumber{12.345};
\pgfmathprintnumber{0.00012345};
\pgfmathparse{exp(15)}
\pgfmathprintnumber{\pgfmathresult}
\end{codeexample}
The style resets |1000 sep|, |dec sep|, |print sign|, |skip 0.| and
sets |assume math mode|. Furthermore, it installs a |sci generic|
format for verbatim output of scientific numbers.
However, it will still respect |precision|, |fixed zerofill|,
|sci zerofill| and the overall styles |fixed|, |sci|, |int detect|
(and their variants). It might be useful if you intend to write
output files.
\end{stylekey}
%--------------------------------------------------
% \subsubsection{Defining own display styles}
% You can define own display styles, although this may require some insight into \TeX-programming. Here are two examples:
% \begin{enumerate}
% \item A new fixed point display style: The following code defines a new style named `\texttt{my own fixed point style}' which uses $1{\cdot}00$ instead of $1.00$.
% \begin{lstlisting}
% \def\myfixedpointstyleimpl#1.#2\relax{%
% #1{\cdot}#2%
% }%
% \def\myfixedpointstyle#1{%
% \pgfutilensuremath{%
% \ifpgfmathfloatroundhasperiod
% \expandafter\myfixedpointstyleimpl#1\relax
% \else
% #1%
% \fi
% }%
% }
% \pgfkeys{/my own fixed point style/.code={%
% \let\pgfmathprintnumber@fixed@style=\myfixedpointstyle}
% }%
% \end{lstlisting}
% You only need to overwrite the macro \lstinline!\pgfmathprintnumber@fixed@style!. This macro takes one argument (the result of any numerical computations). The \TeX-boolean \lstinline!\ifpgfmathfloatroundhasperiod! is true if and only if the input number contains a period.
%
% \item An example for a new scientific display style:
% \begin{lstlisting}
% % #1:
% % 0 == '0' (the number is +- 0.0),
% % 1 == '+',
% % 2 == '-',
% % 3 == 'not a number'
% % 4 == '+ infinity'
% % 5 == '- infinity'
% % #2: the mantissa
% % #3: the exponent
% \def\myscistyle#1#2e#3\relax{%
% ...
% }
% \pgfkeys{/my own sci style/.code={%
% \let\pgfmathfloatrounddisplaystyle=\myscistyle},
% }%
% \end{lstlisting}
% \end{enumerate}
%--------------------------------------------------
|