1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
|
% Copyright 2006 by Till Tantau
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Free Documentation License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.
\section{Specifying Coordinates}
\label{section-points}
\subsection{Overview}
Most \pgfname\ commands expect you to provide the coordinates of a \emph{point}
(also called \emph{coordinate}) inside your picture. Points are always
``local'' to your picture, that is, they never refer to an absolute position on
the page, but to a position inside the current |{pgfpicture}| environment. To
specify a coordinate you can use commands that start with |\pgfpoint|.
\subsection{Basic Coordinate Commands}
The following commands are the most basic for specifying a coordinate.
\begin{command}{\pgfpoint\marg{x coordinate}\marg{y coordinate}}
Yields a point location. The coordinates are given as \TeX\ dimensions.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathcircle{\pgfpoint{1cm}{1cm}} {2pt}
\pgfpathcircle{\pgfpoint{2cm}{5pt}} {2pt}
\pgfpathcircle{\pgfpoint{0pt}{.5in}}{2pt}
\pgfusepath{fill}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfpointorigin}
Yields the origin. Same as |\pgfpoint{0pt}{0pt}|.
\end{command}
\begin{command}{\pgfpointpolar\marg{degree}{\ttfamily\char`\{}\meta{radius}\opt{|/|\meta{y-radius}}{\ttfamily\char`\}}}
Yields a point location given in polar coordinates. You can specify the
angle only in degrees, radians are not supported, currently.
If the optional \meta{y-radius} is given, the polar coordinate is actually
a coordinate on an ellipse whose $x$-radius is given by \meta{radius} and
whose $y$-radius is given by \meta{y-radius}.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\foreach \angle in {0,10,...,90}
{\pgfpathcircle{\pgfpointpolar{\angle}{1cm}}{2pt}}
\pgfusepath{fill}
\end{tikzpicture}
\end{codeexample}
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\foreach \angle in {0,10,...,90}
{\pgfpathcircle{\pgfpointpolar{\angle}{1cm/2cm}}{2pt}}
\pgfusepath{fill}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\subsection{Coordinates in the XY-Coordinate System}
Coordinates can also be specified as multiples of an $x$-vector and a
$y$-vector. Normally, the $x$-vector points one centimeter in the $x$-direction
and the $y$-vector points one centimeter in the $y$-direction, but using the
commands |\pgfsetxvec| and |\pgfsetyvec| they can be changed. Note that the
$x$- and $y$-vector do not necessarily point ``horizontally'' and
``vertically''.
\begin{command}{\pgfpointxy\marg{$s_x$}\marg{$s_y$}}
Yields a point that is situated at $s_x$ times the $x$-vector plus $s_y$
times the $y$-vector.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathmoveto{\pgfpointxy{1}{0}}
\pgfpathlineto{\pgfpointxy{2}{2}}
\pgfusepath{stroke}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfsetxvec\marg{point}}
Sets that current $x$-vector for usage in the $xyz$-coordinate system.
\example
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathmoveto{\pgfpointxy{1}{0}}
\pgfpathlineto{\pgfpointxy{2}{2}}
\pgfusepath{stroke}
\color{red}
\pgfsetxvec{\pgfpoint{0.75cm}{0cm}}
\pgfpathmoveto{\pgfpointxy{1}{0}}
\pgfpathlineto{\pgfpointxy{2}{2}}
\pgfusepath{stroke}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfsetyvec\marg{point}}
Works like |\pgfsetxvec|.
\end{command}
\begin{command}{\pgfpointpolarxy\marg{degree}{\ttfamily\char`\{}\meta{radius}\opt{|/|\meta{y-radius}}{\ttfamily\char`\}}}
This command is similar to the |\pgfpointpolar| command, but the
\meta{radius} is now a factor to be interpreted in the $xy$-coordinate
system. This means that a degree of |0| is the same as the $x$-vector of
the $xy$-coordinate system times \meta{radius} and a degree of |90| is the
$y$-vector times \meta{radius}. As for |\pgfpointpolar|, a \meta{radius}
can also be a pair separated by a slash. In this case, the $x$- and
$y$-vectors are multiplied by different factors.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\begin{scope}[x={(1cm,-5mm)},y=1.5cm]
\foreach \angle in {0,10,...,90}
{\pgfpathcircle{\pgfpointpolarxy{\angle}{1}}{2pt}}
\pgfusepath{fill}
\end{scope}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\subsection{Three Dimensional Coordinates}
It is also possible to specify a point as a multiple of three vectors, the
$x$-, $y$-, and $z$-vector. This is useful for creating simple three
dimensional graphics.
\begin{command}{\pgfpointxyz\marg{$s_x$}\marg{$s_y$}\marg{$s_z$}}
Yields a point that is situated at $s_x$ times the $x$-vector plus $s_y$
times the $y$-vector plus $s_z$ times the $z$-vector.
%
\begin{codeexample}[]
\begin{pgfpicture}
\pgfsetarrowsend{to}
\pgfpathmoveto{\pgfpointorigin}
\pgfpathlineto{\pgfpointxyz{0}{0}{1}}
\pgfusepath{stroke}
\pgfpathmoveto{\pgfpointorigin}
\pgfpathlineto{\pgfpointxyz{0}{1}{0}}
\pgfusepath{stroke}
\pgfpathmoveto{\pgfpointorigin}
\pgfpathlineto{\pgfpointxyz{1}{0}{0}}
\pgfusepath{stroke}
\end{pgfpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfsetzvec\marg{point}}
Works like |\pgfsetxvec|.
\end{command}
Inside the $xyz$-coordinate system, you can also specify points using spherical
and cylindrical coordinates.
\begin{command}{\pgfpointcylindrical\marg{degree}\marg{radius}\marg{height}}
This command yields the same as
%
\begin{verbatim}
\pgfpointadd{\pgfpointpolarxy{degree}{radius}}{\pgfpointxyz{0}{0}{height}}
\end{verbatim}
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw [->] (0,0) -- (1,0,0) node [right] {$x$};
\draw [->] (0,0) -- (0,1,0) node [above] {$y$};
\draw [->] (0,0) -- (0,0,1) node [below left] {$z$};
\pgfpathcircle{\pgfpointcylindrical{80}{1}{.5}}{2pt}
\pgfusepath{fill}
\draw[red] (0,0) -- (0,0,.5) -- +(80:1);
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfpointspherical\marg{longitude}\marg{latitude}\marg{radius}}
This command yields a point ``on the surface of the earth'' specified by
the \meta{longitude} and the \meta{latitude}. The radius of the earth is
given by \meta{radius}. The equator lies in the $xy$-plane.
%
\begin{codeexample}[]
\begin{tikzpicture}
\pgfsetfillcolor{lightgray}
\foreach \latitude in {-90,-75,...,30}
{
\foreach \longitude in {0,20,...,360}
{
\pgfpathmoveto{\pgfpointspherical{\longitude}{\latitude}{1}}
\pgfpathlineto{\pgfpointspherical{\longitude+20}{\latitude}{1}}
\pgfpathlineto{\pgfpointspherical{\longitude+20}{\latitude+15}{1}}
\pgfpathlineto{\pgfpointspherical{\longitude}{\latitude+15}{1}}
\pgfpathclose
}
\pgfusepath{fill,stroke}
}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\subsection{Building Coordinates From Other Coordinates}
Many commands allow you to construct a coordinate in terms of other
coordinates.
\subsubsection{Basic Manipulations of Coordinates}
\begin{command}{\pgfpointadd\marg{$v_1$}\marg{$v_2$}}
Returns the sum vector $\meta{$v_1$} + \meta{$v_2$}$.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathcircle{\pgfpointadd{\pgfpoint{1cm}{0cm}}{\pgfpoint{1cm}{1cm}}}{2pt}
\pgfusepath{fill}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfpointscale\marg{factor}\marg{coordinate}}
Returns the vector $\meta{factor}\meta{coordinate}$.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathcircle{\pgfpointscale{1.5}{\pgfpoint{1cm}{0cm}}}{2pt}
\pgfusepath{fill}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfpointdiff\marg{start}\marg{end}}
Returns the difference vector $\meta{end} - \meta{start}$.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathcircle{\pgfpointdiff{\pgfpoint{1cm}{0cm}}{\pgfpoint{1cm}{1cm}}}{2pt}
\pgfusepath{fill}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfpointnormalised\marg{point}}
This command returns a normalised version of \meta{point}, that is, a
vector of length 1pt pointing in the direction of \meta{point}. If
\meta{point} is the $0$-vector or extremely short, a vector of length 1pt
pointing upwards is returned.
This command is \emph{not} implemented by calculating the length of the
vector, but rather by calculating the angle of the vector and then using
(something equivalent to) the |\pgfpointpolar| command. This ensures that
the point will really have length 1pt, but it is not guaranteed that the
vector will \emph{precisely} point in the direction of \meta{point} due to
the fact that the polar tables are accurate only up to one degree.
Normally, this is not a problem.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathcircle{\pgfpoint{2cm}{1cm}}{2pt}
\pgfpathcircle{\pgfpointscale{20}
{\pgfpointnormalised{\pgfpoint{2cm}{1cm}}}}{2pt}
\pgfusepath{fill}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\subsubsection{Points Traveling along Lines and Curves}
\label{section-pointsattime}
The commands in this section allow you to specify points on a line or a curve.
Imagine a point ``traveling'' along a curve from some point $p$ to another
point $q$. At time $t=0$ the point is at $p$ and at time $t=1$ it is at $q$ and
at time, say, $t=1/2$ it is ``somewhere in the middle''. The exact location at
time $t=1/2$ will not necessarily be the ``halfway point'', that is, the point
whose distance on the curve from $p$ and $q$ is equal. Rather, the exact
location will depend on the ``speed'' at which the point is traveling, which in
turn depends on the lengths of the support vectors in a complicated manner. If
you are interested in the details, please see a good book on Bézier curves.
\begin{command}{\pgfpointlineattime\marg{time $t$}\marg{point $p$}\marg{point $q$}}
Yields a point that is the $t$th fraction between $p$ and~$q$, that is, $p
+ t(q-p)$. For $t=1/2$ this is the middle of $p$ and $q$.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathmoveto{\pgfpointorigin}
\pgfpathlineto{\pgfpoint{2cm}{2cm}}
\pgfusepath{stroke}
\foreach \t in {0,0.25,...,1.25}
{\pgftext[at=
\pgfpointlineattime{\t}{\pgfpointorigin}{\pgfpoint{2cm}{2cm}}]{\t}}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfpointlineatdistance\marg{distance}\marg{start point}\marg{end point}}
Yields a point that is located \meta{distance} many units away from the
start point in the direction of the end point. In other words, this is the
point that results if we travel \meta{distance} steps from \meta{start
point} towards \meta{end point}.
%
\example
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathmoveto{\pgfpointorigin}
\pgfpathlineto{\pgfpoint{3cm}{2cm}}
\pgfusepath{stroke}
\foreach \d in {0pt,20pt,40pt,70pt}
{\pgftext[at=
\pgfpointlineatdistance{\d}{\pgfpointorigin}{\pgfpoint{3cm}{2cm}}]{\d}}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfpointarcaxesattime\marg{time $t$}\marg{center}\marg{0-degree axis}\marg{90-degree axis}\marg{start angle}\\\marg{end angle}}
Yields a point on the arc between \meta{start angle} and \meta{end angle}
on an ellipse whose center is at \meta{center} and whose two principal axes
are \meta{0-degree axis} and \meta{90-degree axis}. For $t=0$ the point at
the \meta{start angle} is returned and for $t=1$ the point at the \meta{end
angle}.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathmoveto{\pgfpoint{2cm}{1cm}}
\pgfpatharcaxes{0}{60}{\pgfpoint{2cm}{0cm}}{\pgfpoint{0cm}{1cm}}
\pgfusepath{stroke}
\foreach \t in {0,0.25,0.5,0.75,1}
{\pgftext[at=\pgfpointarcaxesattime{\t}{\pgfpoint{0cm}{1cm}}
{\pgfpoint{2cm}{0cm}}{\pgfpoint{0cm}{1cm}}{0}{60}]{\t}}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfpointcurveattime\marg{time $t$}\marg{point $p$}\marg{point $s_1$}\marg{point $s_2$}\marg{point $q$}}
Yields a point that is on the Bézier curve from $p$ to $q$ with the support
points $s_1$ and $s_2$. The time $t$ is used to determine the location,
where $t=0$ yields $p$ and $t=1$ yields $q$.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathmoveto{\pgfpointorigin}
\pgfpathcurveto
{\pgfpoint{0cm}{2cm}}{\pgfpoint{0cm}{2cm}}{\pgfpoint{3cm}{2cm}}
\pgfusepath{stroke}
\foreach \t in {0,0.25,0.5,0.75,1}
{\pgftext[at=\pgfpointcurveattime{\t}{\pgfpointorigin}
{\pgfpoint{0cm}{2cm}}
{\pgfpoint{0cm}{2cm}}
{\pgfpoint{3cm}{2cm}}]{\t}}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\subsubsection{Points on Borders of Objects}
The following commands are useful for specifying a point that lies on the
border of special shapes. They are used, for example, by the shape mechanism to
determine border points of shapes.
\begin{command}{\pgfpointborderrectangle\marg{direction point}\marg{corner}}
This command returns a point that lies on the intersection of a line
starting at the origin and going towards the point \meta{direction point}
and a rectangle whose center is in the origin and whose upper right corner
is at \meta{corner}.
The \meta{direction point} should have length ``about 1pt'', but it will be
normalized automatically. Nevertheless, the ``nearer'' the length is to
1pt, the less rounding errors.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (2,1.5);
\pgfpathrectanglecorners{\pgfpoint{-1cm}{-1.25cm}}{\pgfpoint{1cm}{1.25cm}}
\pgfusepath{stroke}
\pgfpathcircle{\pgfpoint{5pt}{5pt}}{2pt}
\pgfpathcircle{\pgfpoint{-10pt}{5pt}}{2pt}
\pgfusepath{fill}
\color{red}
\pgfpathcircle{\pgfpointborderrectangle
{\pgfpoint{5pt}{5pt}}{\pgfpoint{1cm}{1.25cm}}}{2pt}
\pgfpathcircle{\pgfpointborderrectangle
{\pgfpoint{-10pt}{5pt}}{\pgfpoint{1cm}{1.25cm}}}{2pt}
\pgfusepath{fill}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfpointborderellipse\marg{direction point}\marg{corner}}
This command works like the corresponding command for rectangles, only this
time the \meta{corner} is the corner of the bounding rectangle of an
ellipse.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (2,1.5);
\pgfpathellipse{\pgfpointorigin}{\pgfpoint{1cm}{0cm}}{\pgfpoint{0cm}{1.25cm}}
\pgfusepath{stroke}
\pgfpathcircle{\pgfpoint{5pt}{5pt}}{2pt}
\pgfpathcircle{\pgfpoint{-10pt}{5pt}}{2pt}
\pgfusepath{fill}
\color{red}
\pgfpathcircle{\pgfpointborderellipse
{\pgfpoint{5pt}{5pt}}{\pgfpoint{1cm}{1.25cm}}}{2pt}
\pgfpathcircle{\pgfpointborderellipse
{\pgfpoint{-10pt}{5pt}}{\pgfpoint{1cm}{1.25cm}}}{2pt}
\pgfusepath{fill}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\subsubsection{Points on the Intersection of Lines}
\begin{command}{\pgfpointintersectionoflines\marg{$p$}\marg{$q$}\marg{$s$}\marg{$t$}}
This command returns the intersection of a line going through $p$ and $q$
and a line going through $s$ and $t$. If the lines do not intersection, an
arithmetic overflow will occur.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (2,2);
\draw (.5,0) -- (2,2);
\draw (1,2) -- (2,0);
\pgfpathcircle{%
\pgfpointintersectionoflines
{\pgfpointxy{.5}{0}}{\pgfpointxy{2}{2}}
{\pgfpointxy{1}{2}}{\pgfpointxy{2}{0}}}
{2pt}
\pgfusepath{stroke}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\subsubsection{Points on the Intersection of Two Circles}
\begin{command}{\pgfpointintersectionofcircles\marg{$p_1$}\marg{$p_2$}\marg{$r_1$}\marg{$r_2$}\marg{solution}}
This command returns the intersection of the two circles centered at $p_1$
and $p_2$ with radii $r_1$ and $r_2$. If \meta{solution} is |1|, the first
intersection is returned, otherwise the second one is returned.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (2,2);
\draw (0.5,0) circle (1);
\draw (1.5,1) circle (.8);
\pgfpathcircle{%
\pgfpointintersectionofcircles
{\pgfpointxy{.5}{0}}{\pgfpointxy{1.5}{1}}
{1cm}{0.8cm}{1}}
{2pt}
\pgfusepath{stroke}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\subsubsection{Points on the Intersection of Two Paths}
\begin{pgflibrary}{intersections}
This library defines the below command and allows you to calculate the
intersections of two arbitrary paths. However, due to the low accuracy of
\TeX, the paths should not be ``too complicated''. In particular, you
should not try to intersect paths consisting of lots of very small segments
such as plots or decorated paths.
\end{pgflibrary}
\begin{command}{\pgfintersectionofpaths\marg{path 1}\marg{path 2}}
This command finds the intersection points on the paths \meta{path 1} and
\meta{path 2}. The number of intersection points (``solutions'') that are
found will be stored, and each point can be accessed afterward. The code
for \meta{path 1} and \meta{path 2} is executed within a \TeX{} group and
so can contain transformations (which will be in addition to any existing
transformations). The code should not use the path in any way, unless the
path is saved first and restored afterward. \pgfname{} will regard
solutions as ``a bit special'', in that the points returned will be
``absolute'' and unaffected by any further transformations.
%
\begin{codeexample}[]
\begin{pgfpicture}
\pgfintersectionofpaths
{
\pgfpathellipse{\pgfpointxy{0}{0}}{\pgfpointxy{1}{0}}{\pgfpointxy{0}{2}}
\pgfgetpath\temppath
\pgfusepath{stroke}
\pgfsetpath\temppath
}
{
\pgftransformrotate{-30}
\pgfpathrectangle{\pgfpointorigin}{\pgfpointxy{2}{2}}
\pgfgetpath\temppath
\pgfusepath{stroke}
\pgfsetpath\temppath
}
\foreach \s in {1,...,\pgfintersectionsolutions}
{\pgfpathcircle{\pgfpointintersectionsolution{\s}}{2pt}}
\pgfusepath{stroke}
\end{pgfpicture}
\end{codeexample}
\begin{command}{\pgfintersectionsolutions}
After using the |\pgfintersectionofpaths| command, this \TeX-macro will
indicate the number of solutions found.
\end{command}
\begin{command}{\pgfpointintersectionsolution\marg{number}}
After using the |\pgfintersectionofpaths| command, this command will
return the point for solution \meta{number} or the origin if this
solution was not found. By default, the intersections are simply
returned in the order that the intersection algorithm finds them.
Unfortunately, this is not necessarily a ``helpful'' ordering. However
the following two commands can be used to order the solutions more
helpfully.
\end{command}
\let\ifpgfintersectionsortbyfirstpath=\relax
\begin{command}{\pgfintersectionsortbyfirstpath}
Using this command will mean the solutions will be sorted along
\meta{path 1}.
\end{command}
\let\ifpgfintersectionsortbysecondpath=\relax
\begin{command}{\pgfintersectionsortbysecondpath}
Using this command will mean the solutions will be sorted along
\meta{path 2}.
\end{command}
\end{command}
\subsection{Extracting Coordinates}
There are two commands that can be used to ``extract'' the $x$- or
$y$-coordinate of a coordinate.
\begin{command}{\pgfextractx\marg{dimension}\marg{point}}
Sets the \TeX-\meta{dimension} to the $x$-coordinate of the point.
%
\begin{codeexample}[code only]
\newdimen\mydim
\pgfextractx{\mydim}{\pgfpoint{2cm}{4pt}}
%% \mydim is now 2cm
\end{codeexample}
%
\end{command}
\begin{command}{\pgfextracty\marg{dimension}\marg{point}}
Like |\pgfextractx|, except for the $y$-coordinate.
\end{command}
\begin{command}{\pgfgetlastxy\marg{macro for $x$}\marg{macro for $y$}}
Stores the most recently used $(x,y)$ coordinates into two macros.
%
\begin{codeexample}[]
\pgfpoint{2cm}{4cm}
\pgfgetlastxy{\macrox}{\macroy}
Macro $x$ is `\macrox' and macro $y$ is `\macroy'.
\end{codeexample}
%
Since $(x,y)$ coordinates are usually assigned globally, it is safe to use
this command after path operations.
\end{command}
\subsection{Internals of How Point Commands Work}
\label{section-internal-pointcmds}
As a normal user of \pgfname\ you do not need to read this section. It is
relevant only if you need to understand how the point commands work internally.
When a command like |\pgfpoint{1cm}{2pt}| is called, all that happens is that
the two \TeX-dimension variables |\pgf@x| and |\pgf@y| are set to |1cm| and
|2pt|, respectively. These variables belong to the set of internal \pgfname\
registers, see section~\ref{section-internal-registers} for details. A command
like |\pgfpathmoveto| that takes a coordinate as parameter will just execute
this parameter and then use the values of |\pgf@x| and |\pgf@y| as the
coordinates to which it will move the pen on the current path.
Since commands like |\pgfpointnormalised| modify other variables besides
|\pgf@x| and |\pgf@y| during the computation of the final values of |\pgf@x|
and |\pgf@y|, it is a good idea to enclose a call of a command like |\pgfpoint|
in a \TeX-scope and then make the changes of |\pgf@x| and |\pgf@y| global as in
the following example:
%
\begin{codeexample}[code only]
...
{ % open scope
\pgfpointnormalised{\pgfpoint{1cm}{1cm}}
\global\pgf@x=\pgf@x % make the change of \pgf@x persist past the scope
\global\pgf@y=\pgf@y % make the change of \pgf@y persist past the scope
}
% \pgf@x and \pgf@y are now set correctly, all other variables are
% unchanged
\end{codeexample}
\makeatletter
Since this situation arises very often, the macro |\pgf@process| can
be used to perform the above code:
%
\begin{command}{\pgf@process\marg{code}}
Executes the \meta{code} in a scope and then makes |\pgf@x| and |\pgf@y|
global.
\end{command}
Note that this macro is used often internally. For this reason, it is not a
good idea to keep anything important in the variables |\pgf@x| and |\pgf@y|
since they will be overwritten and changed frequently. Instead, intermediate
values can ge stored in the \TeX-dimensions |\pgf@xa|, |\pgf@xb|, |\pgf@xc| and
their |y|-counterparts |\pgf@ya|, |\pgf@yb|, |pgf@yc|. For example, here is the
code of the command |\pgfpointadd|:
%
\begin{codeexample}[code only]
\def\pgfpointadd#1#2{%
\pgf@process{#1}%
\pgf@xa=\pgf@x%
\pgf@ya=\pgf@y%
\pgf@process{#2}%
\advance\pgf@x by\pgf@xa%
\advance\pgf@y by\pgf@ya}
\end{codeexample}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "pgfmanual"
%%% End:
|