1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
|
\errorcontextlines999\relax
%\def\MFPextra{}
X\input minifp.sty\relax X
X\MFPloadextra X
\def\filbreak{\vskip 12pt plus 100pt\penalty 0 \vskip 0pt plus -100pt\relax}
\def\meaningless#1>{}
\def\verbprint#1{%
\begingroup
\toks0=\expandafter{#1}\edef\x{\the\toks0}%
\edef\x{\expandafter\meaningless\meaning\x}%
\tt "\x"%
\endgroup}
{\catcode`\@=11
\gdef\y{\Y\\}
\gdef\Y{\space\verbprint\MFP@Rstack}% adds its own space
}
\def\\{\hfill\break\ignorespaces}
\def\U{\X}
\baselineskip 12.1pt plus .2pt minus 2pt
\filbreak
\startMFPprogram
{\bf Stack-only operations:}\\
Stack is empty, test the error message for popping an empty
stack:\immediate\write16{^^J*** The following tests the error for popping an
empty stack:^^J}\Rpop\X\y
Push 0.000 001:\Rpush{0.000 001}\y
Pop into {\tt\string\X}:\Rpop\X\\
\indent {\tt \string\X:}\verbprint\X\\
\indent {\tt stack:}\y
Push 1.2 then -2.3:\Rpush{1.2}\Rpush{-2.3}\y
Exchange them:\Rexch\y
Duplicate the last:\Rdup\Y
\filbreak
{\bf Unary operations:}\\
First a new stack with only one value
$21.34$:\Rpop\X\Rpop\X\Rpop\X\Rpush{21.34}\y
Unless otherwise noted, the stack will always be restored to this value
between operations.
\medskip
\noindent
Change sign:\Rchs\y
\Rpop\X\Rpush{21.34}%
Absolute value:\Rabs\y
\Rpop\X\Rpush{21.34}%
Integer part:\Rint\y
\Rpop\X\Rpush{21.34}%
Fractional part:\Rfrac\y
\Rpop\X\Rpush{21.34}%
Double:\Rdbl\y
\Rpop\X\Rpush{21.34}%
Halve:\Rhalve\y
\Rpop\X\Rpush{21.34}%
Signum:\Rsgn\y
\Rpop\X\Rpush{-21.34}%
Signum of negative:\Rsgn\y
\Rpop\X\Rpush{21.34}%
Increment:\Rincr\y
\Rpop\X\Rpush{21.34}%
Decrement:\Rdecr\y
\Rpop\X\Rpush{21.34}%
Sine:\Rsin\y
\Rpop\X\Rpush{21.34}%
Cosine:\Rcos\y
\Rpop\X\Rpush{21.34}%
Radians to degrees:\Rdeg\y
\Rpop\X\Rpush{21.34}%
Degrees to radians :\Rrad\y
\Rpop\X\Rpush{21.34}%
Common logarithm:\Rlog\y
\Rpop\X\Rpush{21.34}%
Natural logarithm:\Rln\y
Put $-1.34$ on the stack:\Rpop\X\Rpush{-1.34}\y
Exponential:\Rexp\y
Put $3.3$ on the stack:\Rpop\X\Rpush{3.3}\y
Exponential:\Rexp\y
Back to $21.34$:\Rpop\X\Rpush{21.34}\y
Square:\Rsq\y
\Rpop\X\Rpush{21.34}%
\tracingmacros1
Inversion:\Rinv\y
\tracingmacros0
\Rpop\X\Rpush{21.34}%
Floor:\Rfloor\y
\Rpop\X\Rpush{21.34}%
Ceiling:\Rceil\y
\Rpop\X\Rpush{21.34}%
Square root:\Rsqrt\y
Now put $21.34$ and $12.34$ in that order:\Rpop\X\Rpush{21.34}\Rpush{12.34}\y
Compare: \Rcmp
21.34 is\IFlt{}{ not} less than 12.34.
21.34 is\IFgt{}{ not} more than 12.34.
21.34 is\IFeq{}{ not} equal to 12.34.\\
Take difference and check:\Rsub\Rchk\y
21.34-12.34 is\IFneg {}{ not} negative.
21.34-12.34 is\IFpos {}{ not} positive.
21.34-12.34 is\IFzero{}{ not} zero.
\Rpop\X
\filbreak
{\bf Binary operations:}\\
({\it After each operation we restore the original stack.})\\
Start with empty stack and\\
push 1.2 then -2.3:\Rpush{1.2}\Rpush{-2.3}\y
Angle:\Rangle\y\Rpop\X\Rpush{1.2}\Rpush{-2.3}%
Add:\Radd\y\Rpop\X\Rpush{1.2}\Rpush{-2.3}%
Subtract:\Rsub\y\Rpop\X\Rpush{1.2}\Rpush{-2.3}%
Multiply:\Rmul\y\Rpop\X\Rpush{1.2}\Rpush{-2.3}%
Divide:\Rdiv\y
New stack:\Rpop\X\Rpush{2.3}\Rpush{0}\y
\immediate\write16{^^J*** The following tests the error for dividing by 0:^^J}
Divide by zero:\Rdiv\y
Reset stack:\Rpop\X\Rpush{2.3}\Rpush{17}\y
Raise to a power ($(2.3)^{17}$):\Rpow\y
Reset stack:\Rpop\X\Rpush{2.3}\Rpush{-17}\y
Raise to a power ($(2.3)^{-17}$):\Rpow\y
Back to $1.2$ and $-2.3$:\Rpop\X\Rpush{1.2}\Rpush{-2.3}\y
Find max:\Rmax\y
\Rpop\X\Rpush{1.2}\Rpush{-2.3}%
Find min:\Rmin\y
Exporting stack (value above).\\
Exporting \verbprint\U: \verbprint\X
\ExportStack
\Export\X
% change \X
\def\X{0}
\stopMFPprogram
\medskip
\noindent
Exported value of \verbprint\U: \verbprint\X\\
Exported value of stack:\Y
\def\w{\W\\}
\def\W{ \verbprint\Z}% adds its own space
\filbreak
{\bf Operand forms}\\
{\it All results go to {\tt\string\Z}. All operate on {\tt\string\X}
and/or {\tt\string\Y}}\\
Define ${\tt X}=1.2$ and ${\tt Y}=-2.3$:\def\X{1.2}\def\Y{-2.3}\\
\indent {\tt X}:=\verbprint\X\\
\indent {\tt Y}:=\verbprint\Y
\filbreak
{\bf Unary operations:}\\
Change sign of {\tt X}:\MFPchs\X\Z\w
Change sign of {\tt Y}:\MFPchs\Y\Z\w
Absolute value of {\tt X}:\MFPabs\X\Z\w
Absolute value of {\tt Y}:\MFPabs\Y\Z\w
Double value of {\tt X}:\MFPdbl\X\Z\w
Double value of {\tt Y}:\MFPdbl\Y\Z\w
Half of {\tt X}:\MFPhalve\X\Z\w
Half of {\tt Y}:\MFPhalve\Y\Z\w
Integer part of {\tt X}:\MFPint\X\Z\w
Integer part of {\tt Y}:\MFPint\Y\Z\w
Signum of {\tt X}:\MFPsgn\X\Z\w
Signum of {\tt Y}:\MFPsgn\Y\Z\w
Increment of {\tt X}:\MFPincr\X\Z\w
Increment of {\tt Y}:\MFPincr\Y\Z\w
Decrement of {\tt X}:\MFPdecr\X\Z\w
Decrement of {\tt Y}:\MFPdecr\Y\Z\w
Square of {\tt X}:\MFPsq\X\Z\w
Square of {\tt Y}:\MFPsq\Y\Z\w
Inverse of {\tt X}:\MFPinv\X\Z\w
Inverse of {\tt Y}:\MFPinv\Y\Z\w
Fractional part of {\tt X}:\MFPfrac\X\Z\w
Fractional part of {\tt Y}:\MFPfrac\Y\Z\w
Floor of {\tt X}:\MFPfloor\X\Z\w
Floor of {\tt Y}:\MFPfloor\Y\Z\w
Ceiling of {\tt X}:\MFPceil\X\Z\w
Ceiling of {\tt Y}:\MFPceil\Y\Z\w
Sine of {\tt 30}:\MFPsin{30}\Z\w
Sine of {\tt 420}:\MFPsin{420}\Z\w
Cosine of {\tt 60}:\MFPcos{60}\Z\w
Cosine of {\tt 390}:\MFPcos{390}\Z\w
Common logarithm of {\tt X}:\MFPlog\X\Z\w
\immediate\write16{^^J*** The following tests the warning for log of a negative
number:^^J}%
Common logarithm of {\tt Y}:\MFPlog\Y\Z\w
Natural logarithm of {\tt X}:\MFPln\X\Z\w
\immediate\write16{^^J*** The following tests the warning for ln of a negative
number:^^J}%
Natural Logarithm of {\tt Y}:\MFPln\Y\Z\w
Exponential of {\tt X}:\MFPexp\X\Z\w
Exponential of {\tt Y}:\MFPexp\Y\Z\W
\filbreak
{\bf Extra tests of sine}\\
Sine of 1:\MFPsin{1}\Z\w
Cosine of 1:\MFPcos{1}\Z\w
Sine of $-2$:\MFPsin{-2}\Z\w
Cosine of 3:\MFPcos{3}\Z\w
Sine of $-4$:\MFPsin{-4}\Z\w
Cosine of 5:\MFPcos{5}\Z\w
Sine of $-6$:\MFPsin{-6}\Z\w
Cosine of 7:\MFPcos{7}\Z\w
Sine of $-8$:\MFPsin{-8}\Z\w
Cosine of 9:\MFPcos{9}\Z\w
Sine of $-10$:\MFPsin{-10}\Z\w
Cosine of 20:\MFPcos{20}\Z\w
Sine of $-30$:\MFPsin{-30}\Z\w
Cosine of 40:\MFPcos{40}\Z\w
Sine of $-50$:\MFPsin{-50}\Z\w
Cosine of 60:\MFPcos{60}\Z\w
Sine of $-70$:\MFPsin{-70}\Z\w
Cosine of 80:\MFPcos{80}\Z\w
Sine of $-90$:\MFPsin{-90}\Z\w
Sine of $135$:\MFPsin{135}\Z\w
Sine of $180$:\MFPsin{180}\Z\w
Sine of $225$:\MFPsin{225}\Z\w
Sine of $270$:\MFPsin{270}\Z\w
Sine of $315$:\MFPsin{315}\Z\W
\medskip
\noindent
Angle of $(10,.1)$:\MFPangle{10}{.1}\Z\w
Angle of $(-11.5,.1)$:\MFPangle{-11.5}{.1}\Z\w
Angle of $(11.5,-.2)$:\MFPangle{11.5}{-.2}\Z\w
Angle of $(-11.5,.3)$:\MFPangle{-11.5}{.3}\Z\w
Angle of $(11.5,-.4)$:\MFPangle{11.5}{-.4}\Z\w
Angle of $(-11.5,.5)$:\MFPangle{-11.5}{.5}\Z\w
Angle of $(11.5,-.6)$:\MFPangle{11.5}{-.6}\Z\w
Angle of $(-11.5,.7)$:\MFPangle{-11.5}{.7}\Z\w
Angle of $(11.5,-.8)$:\MFPangle{11.5}{-.8}\Z\w
Angle of $(-11.5,.9)$:\MFPangle{-11.5}{.9}\Z\w
Angle of $(11.5,-1)$:\MFPangle{11.5}{-1}\Z\w
Angle of $(-11.5,2)$:\MFPangle{-11.5}{2}\Z\w
Angle of $(11.5,-3)$:\MFPangle{11.5}{-3}\Z\w
Angle of $(-11.5,4)$:\MFPangle{-11.5}{4}\Z\w
Angle of $(11.5,-5)$:\MFPangle{11.5}{-5}\Z\w
Angle of $(-11.5,6)$:\MFPangle{-11.5}{6}\Z\w
Angle of $(11.5,-7)$:\MFPangle{11.5}{-7}\Z\w
Angle of $(-11.5,8)$:\MFPangle{-11.5}{8}\Z\w
Angle of $(11.5,-9)$:\MFPangle{11.5}{-9}\Z\w
Angle of $(-11.5,10)$:\MFPangle{-11.5}{10}\Z\w
Angle of $(11.5,-20)$:\MFPangle{11.5}{-20}\Z\w
Angle of $(-11.5,30)$:\MFPangle{-11.5}{30}\Z\w
Angle of $(11.5,-40)$:\MFPangle{11.5}{-40}\Z\w
Angle of $(-11.5,50)$:\MFPangle{-11.5}{50}\Z\w
Angle of $(11.5,-60)$:\MFPangle{11.5}{-60}\Z\w
Angle of $(-11.5,70)$:\MFPangle{-11.5}{70}\Z\w
Angle of $(11.5,-80)$:\MFPangle{11.5}{-80}\Z\w
Angle of $(-11.5,90)$:\MFPangle{-11.5}{90}\Z\w
Angle of $(11.5,-100)$:\MFPangle{11.5}{-100}\Z\w
Angle of $(0,10)$:\MFPangle{0}{10}\Z\w
Angle of $(0,-10)$:\MFPangle{0}{-10}\Z\w
\immediate\write16{^^J*** The following tests the warning for angle of
(0,0):^^J}
Angle of $(0,0)$:\MFPangle{0}{0}\Z\W
\noindent
Testing large arguments:\\
Angle of $(85 713 000, 99 999 999)$:\MFPangle{8571 3000}{9999 9999}\Z\W
\filbreak
{\bf Extra tests of log}\\
Log of $.1$:\MFPlog{.1}\Z\w
Log of $.2$:\MFPlog{.2}\Z\w
Log of $.3$:\MFPlog{.3}\Z\w
Log of $.4$:\MFPlog{.4}\Z\w
Log of $.5$:\MFPlog{.5}\Z\w
Log of $.6$:\MFPlog{.6}\Z\w
Log of $.7$:\MFPlog{.7}\Z\w
Log of $.8$:\MFPlog{.8}\Z\w
Log of $.9$:\MFPlog{.9}\Z\w
Log of $1$:\MFPlog{1}\Z\w
Log of $1.01$:\MFPlog{1.01}\Z\w
Log of $1.02$:\MFPlog{1.02}\Z\w
Log of $1.03$:\MFPlog{1.03}\Z\w
Log of $1.04$:\MFPlog{1.04}\Z\w
Log of $1.05$:\MFPlog{1.05}\Z\w
Log of $1.06$:\MFPlog{1.06}\Z\w
Log of $1.07$:\MFPlog{1.07}\Z\w
Log of $1.08$:\MFPlog{1.08}\Z\w
Log of $1.09$:\MFPlog{1.09}\Z\w
\immediate\write16{^^J*** The following tests the error for log of 0:^^J}
Log of $0$:\MFPlog{0}\Z\W
\filbreak
{\bf Extra tests of exp}\\
Exp of $.00009990$:\MFPexp{.00009990}\Z
\w
Exp of $.00009999$:\MFPexp{.00009999}\Z\w
Exp of $.0001$:\MFPexp{.0001}\Z\w
Exp of $.0002$:\MFPexp{.0002}\Z\w
Exp of $.0003$:\MFPexp{.0003}\Z\w
Exp of $.0004$:\MFPexp{.0004}\Z\w
Exp of $.0005$:\MFPexp{.0005}\Z\w
Exp of $.0006$:\MFPexp{.0006}\Z\w
Exp of $.0007$:\MFPexp{.0007}\Z\w
Exp of $.0008$:\MFPexp{.0008}\Z\w
Exp of $.0009$:\MFPexp{.0009}\Z\w
Exp of $.001$:\MFPexp{.001}\Z\w
Exp of $.002$:\MFPexp{.002}\Z\w
Exp of $.003$:\MFPexp{.003}\Z\w
Exp of $.004$:\MFPexp{.004}\Z\w
Exp of $.005$:\MFPexp{.005}\Z\w
Exp of $.006$:\MFPexp{.006}\Z\w
Exp of $.007$:\MFPexp{.007}\Z\w
Exp of $.008$:\MFPexp{.008}\Z\w
Exp of $.009$:\MFPexp{.009}\Z\w
Exp of $.01$:\MFPexp{.01}\Z\w
Exp of $.02$:\MFPexp{.02}\Z\w
Exp of $.03$:\MFPexp{.03}\Z\w
Exp of $.04$:\MFPexp{.04}\Z\w
Exp of $.05$:\MFPexp{.05}\Z\w
Exp of $.06$:\MFPexp{.06}\Z\w
Exp of $.07$:\MFPexp{.07}\Z\w
Exp of $.08$:\MFPexp{.08}\Z\w
Exp of $.09$:\MFPexp{.09}\Z\w
Exp of $.1$:\MFPexp{.1}\Z\w
Exp of $.2$:\MFPexp{.2}\Z\w
Exp of $.3$:\MFPexp{.3}\Z\w
Exp of $.4$:\MFPexp{.4}\Z\w
Exp of $.5$:\MFPexp{.5}\Z\w
Exp of $.6$:\MFPexp{.6}\Z\w
Exp of $.7$:\MFPexp{.7}\Z\w
Exp of $.8$:\MFPexp{.8}\Z\w
Exp of $.9$:\MFPexp{.9}\Z\w
Exp of $1$:\MFPexp{1}\Z\w
Exp of $2$:\MFPexp{2}\Z\w
Exp of $3$:\MFPexp{3}\Z\w
Exp of $4$:\MFPexp{4}\Z\w
Exp of $5$:\MFPexp{5}\Z\w
Exp of $6$:\MFPexp{6}\Z\w
Exp of $7$:\MFPexp{7}\Z\w
Exp of $8$:\MFPexp{8}\Z\w
Exp of $9$:\MFPexp{9}\Z\w
Exp of $10$:\MFPexp{10}\Z\w
Exp of $-8.3254$:\MFPexp{-8.3254}\Z\w
Exp of $18.42068073$:\MFPexp{18.42068073}\Z\w
Exp of $18.42068074$:\MFPexp{18.42068074}\Z\w
\immediate\write16{^^J*** The following tests the error for a power too
large:^^J}
Exp of $18.42068075$:\MFPexp{18.42068075}\Z\W
\filbreak
{\bf Extra tests of pow}\\
$-10$ power of $3$:\MFPpow{3}{-10}\Z\w
$-9$ power of $3$:\MFPpow{3}{-9}\Z\w
$-8$ power of $3$:\MFPpow{3}{-8}\Z\w
$-7$ power of $3$:\MFPpow{3}{-7}\Z\w
$-6$ power of $3$:\MFPpow{3}{-6}\Z\w
$-5$ power of $3$:\MFPpow{3}{-5}\Z\w
$-4$ power of $3$:\MFPpow{3}{-4}\Z\w
$-3$ power of $3$:\MFPpow{3}{-3}\Z\w
$-2$ power of $3$:\MFPpow{3}{-2}\Z\w
$-1$ power of $3$:\MFPpow{3}{-1}\Z\w
$0$ power of $3$:\MFPpow{3}{0}\Z\w
$1$ power of $3$:\MFPpow{3}{1}\Z\w
$2$ power of $3$:\MFPpow{3}{2}\Z\w
$3$ power of $3$:\MFPpow{3}{3}\Z\w
$4$ power of $3$:\MFPpow{3}{4}\Z\w
$5$ power of $3$:\MFPpow{3}{5}\Z\w
$6$ power of $3$:\MFPpow{3}{6}\Z\w
$7$ power of $3$:\MFPpow{3}{7}\Z\w
$8$ power of $3$:\MFPpow{3}{8}\Z\w
$9$ power of $3$:\MFPpow{3}{9}\Z\w
$10$ power of $3$:\MFPpow{3}{10}\Z\w
\immediate\write16{^^J*** The following tests the error for a power too
large:^^J}
$10$ power of $9$:\MFPpow{9}{10}\Z\w
\immediate\write16{^^J*** The following also tests the error for a power too
large:^^J}
$10$ power of $-9$:\MFPpow{-9}{10}\Z\w
\immediate\write16{^^J*** The following also tests the error for a power too
large:^^J}
$11$ power of $-9$:\MFPpow{-9}{11}\Z\w
\immediate\write16{^^J*** The following tests the error for a negative power of
0:^^J}
$-10$ power of $0$:\MFPpow{0}{-10}\Z\w
\immediate\write16{^^J*** The following also tests the error for a power too
large:^^J}
$-10$ power of $0.1$:\MFPpow{0.1}{-10}\Z\W
\filbreak
{\bf Extra tests of sqrt}\\
\immediate\write16{^^J*** The following tests the error for a square root of a
negative:^^J}
Square root of $-1$:\MFPsqrt{-1}\Z\w
Square root of $0$:\MFPsqrt{0}\Z\w
Square root of $.0001$:\MFPsqrt{.0001}\Z\w
Square root of $.002$:\MFPsqrt{.002}\Z\w
Square root of $.03$:\MFPsqrt{.03}\Z\w
Square root of $.4$:\MFPsqrt{.4}\Z\w
Square root of $.5$:\MFPsqrt{.5}\Z\w
Square root of $.6$:\MFPsqrt{.6}\Z\w
Square root of $.7$:\MFPsqrt{.7}\Z\w
Square root of $.8$:\MFPsqrt{.8}\Z\w
Square root of $.9$:\MFPsqrt{.9}\Z\w
Square root of $1$:\MFPsqrt{1}\Z\w
Square root of $2$:\MFPsqrt{2}\Z\w
Square root of $3$:\MFPsqrt{3}\Z\w
Square root of $4$:\MFPsqrt{4}\Z\w
Square root of $5$:\MFPsqrt{5}\Z\w
Square root of $6$:\MFPsqrt{6}\Z\w
Square root of $7$:\MFPsqrt{7}\Z\w
Square root of $8$:\MFPsqrt{8}\Z\w
Square root of $9$:\MFPsqrt{9}\Z\w
Square root of $10$:\MFPsqrt{10}\Z\w
Square root of $1524157.65279684$ (should be exact):\MFPsqrt{1524157.65279684}\Z\w
Square root of $99999998.00000001$ (should be exact):\MFPsqrt{99999998.00000001}\Z\w
Square root of $9999.99$:\MFPsqrt{9999.99}\Z\w
Square root of $9999.999 999$:\MFPsqrt{9999.999999}\Z\W
\filbreak
{\bf Binary operations:}\\
Add $X+Y$:\MFPadd\X\Y\Z\w
Add $\infty+\infty$:\MFPadd{99999999.99999999}{99999999.99999999}\Z\w
Subtract $X-Y$:\MFPsub\X\Y\Z\w
Subtract $Y-X$:\MFPsub\Y\X\Z\w
Subtract $X-X$:\MFPsub\X\X\Z\w
Subtract $Y-Y$:\MFPsub\Y\Y\Z\w
Multiply:\MFPmul\X\Y\Z\w
Multiply $10^4\times10^4$:\MFPmul{10000}{10000}\Z\w
Divide $X/Y$:\MFPdiv\X\Y\Z\w
Divide $Y/X$:\MFPdiv\Y\X\Z\w
Max:\MFPmax\X\Y\Z\w
Min:\MFPmin\X\Y\Z\w
Angle $(X,Y)$:\MFPangle\X\Y\Z\w
Angle $(Y,X)$:\MFPangle\Y\X\Z\w
Power $X^5$:\MFPpow\X{5}\Z\w
Power $X^{-5}$:\MFPpow\X{-5}\Z\w
Power $Y^{5}$:\MFPpow\Y{5}\Z\w
Power $Y^{-5}$:\MFPpow\Y{-5}\Z\w
Compare: \MFPcmp\X\Y
\X\ is\IFlt{}{ not} less than \Y.
\X\ is\IFgt{}{ not} more than \Y.
\X\ is\IFeq{}{ not} equal to \Y.\\
Take difference and check:\MFPsub\X\Y\Z\w
$\X-\Y$ is\IFneg{}{ not} negative.
$\X-\Y$ is\IFpos{}{ not} positive.
$\X-\Y$ is\IFzero{}{ not} zero.
\filbreak
{\bf Print-related formating}
\def\T{333.00000000}
\def\S{1357.12345678}
\noindent This is original: $T ={}${\tt"\T"}\\
Truncate to 4 digits right of decimal:\MFPtruncate{4}\T\Z\w
Truncate to the decimal:\MFPtruncate{0}\T\Z\w
Truncate to 2 digits left of decimal:\MFPtruncate{-2}\T\Z\w
Strip trailing zeros:\MFPstrip\T\Z\w
Strip trailing zeros (star form):\MFPstrip*\T\Z\W
\noindent Original: $S = {}${\tt"\S"}\\
Round to 3 decimals:\MFPround{3}\S\Z\w
Round to 5 decimals:\MFPround{5}\S\Z\w
Round to 0 decimals:\MFPround{0}\S\Z\w
Round to 100s:\MFPround{-2}\S\Z\W
\def\T{-333.00000000}
\def\S{-1357.12345678}
\filbreak
\noindent All that again with negative numbers.
\medskip
\noindent This is original: $T ={}${\tt"\T"}\\
Truncate to 4 digits right of decimal:\MFPtruncate{4}\T\Z\w
Truncate to the decimal:\MFPtruncate{0}\T\Z\w
Truncate to 2 digits left of decimal:\MFPtruncate{-2}\T\Z\w
Strip trailing zeros:\MFPstrip\T\Z\w
Strip trailing zeros (star form):\MFPstrip*\T\Z\W
\noindent Original: $S = {}${\tt"\S"}\\
Round to 3 decimals:\MFPround{3}\S\Z\w
Round to 5 decimals:\MFPround{5}\S\Z\w
Round to 0 decimals:\MFPround{0}\S\Z\w
Round to 100s:\MFPround{-2}\S\Z\W
\end{document}
|