1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
|
% $Id: eurotex2001-pqa-article.tex,v 1.9 2001/11/12 09:53:59 pedro Exp pedro $
\documentclass{europroc}
\usepackage[dvips]{graphicx}
\usepackage{dcpic,pictex}
\usepackage{calrsfs}
\usepackage{dsfont}
\usepackage{alltt}
\begin{document}
\title[DCpic]{DCpic, Commutative Diagrams in a (La)\TeX\ Document}
\author[Pedro Quaresma]{Pedro Quaresma\thanks{This work was partially
supported by the Portuguese Ministry of Science and Technology (MCT),
under the programme PRAXIS XXI.}\\ CISUC\\ Departamento de
Matem{\'a}tica, Universidade de Coimbra\\ 3001-454 COIMBRA, PORTUGAL}
\maketitle
\begin{abstract}
DCpic is a package of \TeX\ macros for graphing Commutative Diagrams
in a (La)\TeX\ or Con\TeX t document. Its distinguishing features
are: the use of \PiCTeX\ a powerful graphical engine, and a simple
specification syntax. A commutative diagram is described in
terms of its objects and its arrows. The objects are
textual elements and the arrows can have various straight or curved
forms.
We describe the syntax and semantics of the user's commands, and
present many examples of their use.
\end{abstract}
\keywords{Commutative Diagrams, (La)\TeX, \PiCTeX}
\section{Introduction}
\initial{3}{C}{\scshape ommutative Diagrams} (Diagramas Comutativos,
in Portuguese), are a kind of graphs which are widely used in Category
Theory~\cite{Herrlich73,MacLane71,Pierce98}, not only as a concise and
convenient notation but also for ``arrow chasing'', a powerful tool
for mathematical thought. For example, the fact that in a Category we
have arrow composition is easily expressed by the following
commutative diagram.
$$
\begindc{\commdiag}[30]
\obj(10,15){$A$}
\obj(25,15){$B$}
\obj(40,15){$C$}
\mor(10,15)(25,15){$f$}
\mor(25,15)(40,15){$g$}
\cmor((10,11)(11,7)(15,6)(25,6)(35,6)(39,7)(40,11))
\pup(25,3){$g\circ f$}
\enddc
$$
The word commutative means that the result from going throught the
path $f$ plus $g$ is equal to the result from going throught the path
$g\circ f$. Most of the graphs used in Category Theory are digraphs which
we can specify in terms of its objects, and its arrows.
The (La)\TeX\ approach to typesetting can be characterized as
``logical design''~\cite{Knuth86,Lamport94,Otten99}, but commutative
diagrams are pieces of ``visual design'', and that, in our opinion is
the {\em piece de resistance} of commutative diagrams package
implementation in (La)\TeX. In a commutative diagrams package a user
seeks the simplest notation, a logical notation, with the most
powerful graphical engine possible, the visual part. The DCpic
package, along with the package by John
Reynolds~\cite{Feruglio94,Reynolds87}, has the simplest notation off
all the commutative diagrams packages described in the Feruglio
article~\cite{Feruglio94}. In terms of graphical capabilities the
\PiCTeX~\cite{Wichura87} package provides us with the best
\TeX-graphics engine, that is, without going to {\em Postscript}
specials.
The DCpic package depends only of \PiCTeX\ and \TeX,
which means that you can use it in all formats that are based on these
two. We have tested DCpic with \LaTeX, \TeX\ plain, pdf\LaTeX,
pdf\TeX~\cite{Thanh99}, and Con\TeX t~\cite{Otten99}; we are confident
that it can be used under many other formats.
The present version (3.1) of DCpic package is available in CTAN and in
the author's Web-page\footnote{http://www.mat.uc.pt/{\~{}}pedro/LaTeX/}.
\section{Constructing Commutative Diagrams}
DCpic depends on \PiCTeX, thus you must include an apropriate command
to load \PiCTeX\ and DCpic in your document,
e.g. ``{\tt $\backslash$usepackage\{dcpic,pictex\}}'', in a \LaTeX\ document.
A commutative diagram in DCpic is a ``picture'' in \PiCTeX, in which
we place our {\em objects} and {\em morphisms} (arrows). The user's
commands in DCpic are: {\tt begindc} and {\tt enddc} which establishe
the coordinate system where the objects will by placed; {\tt obj}, the
command which defines the place and the contents of each object; {\tt
mor}, and {\tt cmor}, the commands which define the morphisms, linear
and curved arrows, and its labels.
Now we will describe each of these commands in greater detail.
\subsection{The Diagram Environment}
The command {\tt begindc}, establishes a Cartesian coordinate system
with 1pt units,
\begin{alltt}
\(\backslash\)begindc[{\em<magnification factor>}] \dots \(\backslash\)enddc
\end{alltt}
such a small unit gives us a good control over the placement of the
graphical objects, but in most of the diagrams not involving curved
arrows such a ``fine grain'' is not desirable, so the optional
argument specifies a magnifying factor $m\in\mathds{N}$, with a default
value of 30. The advantage of this decision is twofold: we can define
the ``grain'' of the diagram, and we can adjust the size of the
diagram to the available space.
\begin{itemize}
\item a ``course grain'' diagram is specified almost as a table, with
the numbers giving us the lines and the columns were the objects will
be placed, the following diagram has the default magnification factor:
\begin{center}
\begin{tabular}{cc}
\begindc{\commdiag}[300]
\obj(1,1){$A$}
\obj(3,1){$B$}
\obj(3,3){$C$}
\mor(1,1)(3,1){$f$}[\atright,\solidarrow]
\mor(1,1)(3,3){$g$}
\mor(3,1)(3,3){$h$}[\atright,\solidarrow]
\enddc &\tt
\begin{tabular}[b]{l}
$\backslash$begindc\{$\backslash$commdiag\}\\
$\backslash$obj(1,1)\{\$A\$\}\\
$\backslash$obj(3,1)\{\$B\$\}\\
$\backslash$obj(3,3)\{\$C\$\}\\
$\backslash$mor(1,1)(3,1)\{\$f\$\}[$\backslash$atright,$\backslash$solidarrow]\\
$\backslash$mor(1,1)(3,3)\{\$g\$\}\\
$\backslash$mor(3,1)(3,3)\{\$h\$\}[$\backslash$atright,$\backslash$solidarrow]\\
$\backslash$enddc
\end{tabular}
\end{tabular}
\end{center}
\item a ``fine grain'' diagram is a bit harder to design but it gives
us a better control over the objects placement, the following diagram
has a magnification factor of three, this gives us the capability of
drawing the arrows $f$ and $f^\prime$ very close together:
\begin{center}
\begin{tabular}{cc}
\begindc{\commdiag}[30]
\obj(10,10){$A$}
\obj(30,10){$B$}
\obj(30,30){$C$}
\mor(10,9)(30,9){$f$}[\atright,\solidarrow]
\mor(10,11)(30,11){$f^\prime$}
\mor(10,10)(30,30){$g$}
\mor(30,10)(30,30){$h$}[\atright,\solidarrow]
\enddc &\tt
\begin{tabular}[b]{l}
$\backslash$begindc\{$\backslash$commdiag\}[30]\\
$\backslash$obj(10,10)\{\$A\$\}\\
$\backslash$obj(30,10)\{\$B\$\}\\
$\backslash$obj(30,30)\{\$C\$\}\\
$\backslash$mor(10,9)(30,9)\{\$f\$\}[$\backslash$atright,$\backslash$solidarrow]\\
$\backslash$mor(10,11)(30,11)\{\$f{\^{}}$\backslash$prime\$\}\\
$\backslash$mor(10,10)(30,30)\{\$g\$\}\\
$\backslash$mor(30,10)(30,30)\{\$h\$\}[$\backslash$atright,$\backslash$solidarrow]\\
$\backslash$enddc
\end{tabular}
\end{tabular}
\end{center}
\item the magnification factor gives us the capability of adapting the
size of the diagram to the available space, without having to
redesign the diagram, for example the specification of the
next two diagrams differs only in the magnification factor: 30 for
the first; and 25 for the second.
\begin{center}
\begin{tabular}{cc}
\begindc{\commdiag}[300]
\obj(1,1){$A$}
\obj(3,1){$B$}
\obj(3,3){$C$}
\mor(1,1)(3,1){$f$}[\atright,\solidarrow]
\mor(1,1)(3,3){$g$}
\mor(3,1)(3,3){$h$}[\atright,\solidarrow]
\enddc &
\begindc{\commdiag}[250]
\obj(1,1){$A$}
\obj(3,1){$B$}
\obj(3,3){$C$}
\mor(1,1)(3,1){$f$}[\atright,\solidarrow]
\mor(1,1)(3,3){$g$}
\mor(3,1)(3,3){$h$}[\atright,\solidarrow]
\enddc
\end{tabular}
\end{center}
\end{itemize}
Note that the magnification factor does not interfere with the size of
the objects, but only with the size of the diagram as a whole.
After establishing our ``drawing board'' we can begin placing our
``objects'' on it, we have three commands to do so, the {\tt obj},
{\tt mor}, and {\tt cmor}, for objects, morphisms, and ``curved''
morphisms respectively.
\subsection{Objects}
Each object has a place and a content
\begin{alltt}
\(\backslash\)obj({\em<x>},{\em<y>})\{{\em<contents>}\}
\end{alltt}
the $x$ and $y$, integer values, will be multiplied by the magnifying
factor. The {\em contents} will be put in the centre of an ``hbox''
expanding to both sides of $(m\times x,m\times y)$.
\subsection{Linear Arrows}
Each linear arrow will have as mandatory arguments two pairs of
coordinates, the beginning and the ending points, and a label,
{\small\begin{alltt}
\(\backslash\)mor({\em<x1>},{\em<y1>})({\em<x2>},{\em<y2>})[{\em<d1>},{\em<d2>}]\{{\em<label>}\}[{\em<label placement>},{\em<arrow type>}]
\end{alltt}}%
\noindent the other arguments are opcional. The two pairs of coordinates should
coincide with the coordinates of two objects in the diagram, but no
verification of this fact is made. The line connecting the two points
is constructed in the following way: the beginning is given by a point
10pt away from the point $(m\times x_1,m\times y_1)$, likewise the end point is
10 points away from $(m\times x_2,m\times y_2)$. If the ``arrow type'' specifies
that, a tail, and a pointer (arrow) will be added. If the arrow is
horizontal (vertical) the label is placed in a ``hbox'' with centre
point, $(x_l,y_l)$, at a distance of 10 points plus a correction
factor depending of the ``hbox'' width (height) from the middle point
of the arrow. If the arrow is obliquos the point $(x_l,y_l)$, at a
distance of 10 points from the middle point of the arrow, will be the
bottom-right corner or the top-left corner of the ``hbox'' containing
the label, depending of the angle of the arrow, and the label
placement. In all cases the position of the
``hbox'' is such that the contents of it will not interfere with the
line.
The distance from the point $(m\times x_1,m\times y_1)$ to the actual beginning of the
arrow may be modified by the user with the specification of $d_1$, the
same thing happens for the arrow actual ending in which case the
user-value will be $d_2$. The specification of $d_1$ and $d_2$ is
optional.
The placement of the label, to the left (default value), or to the
right, and the type of the arrow: a solid arrow (default value), a
dashed arrow, a line, an injection arrow, or an application arrow, are
the last optional arguments of this command.
\subsection{Quadratic Arrows}
The command that draws curved lines in DCpic uses the {\tt
setquadratic} command of \PiCTeX, this will imply a quadratic
curve specified by an odd-number of points,
{\small\begin{alltt}
\(\backslash\)cmor({\em<list of points>}){\textvisiblespace}{\em<arrow direction>}({\em<x>},{\em<y>})\{{\em<label>}\}[{\em<arrow type>}]
\end{alltt}}
\noindent the space after the list of points is mandatory. After drawing the
curved line we must put the tip of the arrow on it, at present it is
only possible to choose from: up, down, left, or right pointing arrow,
and we must explicitly specify what type we want. The next thing to
draw it is the arrow label, the placement of that label is determined
by the $x$, and $y$ values which give us the coordinates, after being
magnified, of the centre of the ``hbox'' that will contain the label
itself.
The arrow type is an optional argument, its default value is a solid
arrow, the other possible values are a dashed arrow and a line, in
this last case the arrow tip is omitted. The arrow type values are a
subset of those of the {\tt mor} command.
A rectangular curve with rounded corners is easy to specify and should
cater for most needs, with this in mind we give the following tip to
the user: to specify a rectangular, with rounded corners, curve we
choose the points which give us the {\em expanded chess-horse
movement}, that is, $(x,y)$, $(x\pm4,y\mp1)$, $(x\mp1,y\pm4)$, or
$(x,y)$,$(x\pm1,y\mp4)$, $(x\mp4,y\pm1)$, those sets of points will give us
the four corners of the rectangle; to form the whole line it is only
necessary to add an odd number of points joining the two (or more)
corners.
\section{Examples}
We now present some examples that give an idea of the DCpic package
capabilities. We will present here the diagrams, and in the appendix
the code which produced such diagrams.
\subsection{The Easy Ones}
The diagrams presented in this section are very easy to specify in the
DCpic syntax, just a couple of objects and the arrows joining them.
\begin{description}
\item[Push-out and Exponentials:]
$$
\begindc{\commdiag}[260]
\obj(1,1){$Z$}
\obj(1,3){$X$}
\obj(3,1){$Y$}
\obj(3,3){$P$}
\obj(5,5){$P^\prime$}
\mor(1,1)(1,3){$f$}
\mor(1,1)(3,1){$g$}[\atright,\solidarrow]
\mor(1,3)(3,3){$r$}[\atright,\solidarrow]
\mor(3,1)(3,3){$s$}
\mor(1,3)(5,5){$r^\prime$}
\mor(3,1)(5,5){$s^\prime$}[\atright,\solidarrow]
\mor(3,3)(5,5){$h$}[\atright,\dashArrow]
\enddc
\qquad
\begindc{\commdiag}[350]
\obj(1,3)[A]{$Z^Y\times Y$}
\obj(3,3)[B]{$Z$}
\obj(3,1)[C]{$X\times{}Y$}
\obj(4,1)[D]{$X$}
\obj(4,3)[E]{$Z^Y$}
\mor{A}{B}{$ev$}
\mor{C}{A}{$f\times{}\mathrm{id}$}
\mor{C}{B}{$\overline{f}$}[\atright,\dashArrow]
\mor{D}{E}{$f$}[\atright,\solidarrow]
\enddc
$$
\item[Function Restriction and the {\em CafeOBJ\/}
Cube~\cite{Diaconescu98}]
%\footnotetext{R. Diaconescu and K. Futatsugi, The CafeOBJ Report,
%World Scientific, 1998}
$$
\begindc{\commdiag}[280]
\obj(1,1){$X$}
\obj(1,3){$X^\prime$}
\obj(4,1){$Y$}
\obj(4,3){$Y^\prime$}
\mor(1,1)(4,1){$f$}
\mor(1,3)(1,1){}[\atright,\injectionarrow]
\mor(4,3)(4,1){}[\atright,\injectionarrow]
\mor(1,3)(4,3){$g=f|^{Y^\prime}_{X^\prime}$}
\enddc
\qquad
\begindc{\commdiag}[170]
\obj(1,1){MSA}
\obj(5,1){RWL}
\obj(3,3){OSA}
\obj(7,3){OSRWL}
\obj(1,4){HSA}
\obj(5,4){HSRWL}
\obj(3,6){HOSA}
\obj(7,6){HOSRWL}
\mor{MSA}{RWL}{}
\mor{MSA}{HSA}{}
\mor{MSA}{OSA}{}
\mor{RWL}{HSRWL}{}
\mor{RWL}{OSRWL}{}
\mor{OSA}{HOSA}{}
\mor{OSA}{OSRWL}{}
\mor{OSRWL}{HOSRWL}{}
\mor{HSA}{HSRWL}{}
\mor{HSA}{HOSA}{}
\mor{HOSA}{HOSRWL}{}
\mor{HSRWL}{HOSRWL}{}
\enddc
$$
\end{description}
\subsection{The Not so Easy}
The diagrams presented in this section are a bit harder to specify. We
have curved arrows, and also double arrows. The construction of the
former was already explained. The double arrow (and triple, and \dots)
is made with two distinct arrows drawn close to each other in a
diagram with a very ``fine grain'', that is, using a magnifying factor
of just 2 or 3.
All the diagrams were made completely within DCpic.
\begin{description}
\item[Equaliser, and a 3-Category:]
$$
\begindc{\commdiag}[20]
\obj(1,1){$Z$}
\obj(1,36){$\overline{ X}$}
\obj(36,36){$X$}
\obj(52,36){$Y$}
\mor(1,1)(1,36){$\overline{ h}$}[\atleft,\dashArrow]
\mor(1,1)(36,36){$h$}[\atright,\solidarrow]
\mor(1,36)(36,36){$e$}
\mor(36,37)(52,37)[80,80]{$f$}
\mor(36,35)(52,35)[80,80]{$g$}[\atright,\solidarrow]
\enddc
\qquad
\begindc{\commdiag}[30]
\obj(14,11){$A$}
\obj(39,11){$C$}
\obj(26,35){$B$}
\mor(14,11)(39,11){$h$}[\atright,\solidarrow]
\mor(14,11)(26,35){$f$}
\mor(26,35)(39,11){$g$}
\cmor((11,10)(10,10)(9,10)(5,11)(4,15)(5,19)(9,20)(13,19)(14,15))
\pdown(1,20){$id_A$}
\cmor((42,10)(43,10)(44,10)(48,11)(49,15)(48,19)(44,20)(40,19)(39,15))
\pdown(52,20){$id_C$}
\cmor((26,39)(27,43)(31,44)(35,43)(36,39)(35,36)(31,35))
\pleft(40,40){$id_B$}
\enddc
$$
\item[Isomorfisms:]
$$
\begindc{\commdiag}[30]
\obj(10,15){$A$}
\obj(40,15){$A$}
\obj(25,15){$B$}
\mor(10,15)(25,15){$f$}
\mor(25,15)(40,15){$g$}
\cmor((10,11)(11,7)(15,6)(25,6)(35,6)(39,7)(40,11)) \pup(25,3){$id_A$}
\obj(55,15){$B$}
\obj(85,15){$B$}
\obj(70,15){$A$}
\mor(55,15)(70,15){$g$}
\mor(70,15)(85,15){$f$}
\cmor((55,11)(56,7)(60,6)(70,6)(80,6)(84,7)(85,11)) \pup(70,3){$id_B$}
\enddc
$$
\item[Godement's ``five'' rules~\cite{Herrlich73}:]
%\footnotetext{H. Herrlich and G. Strecker, Category Theory, Allyn and
%Bacon Inc, 1973}
$$
\begindc{\commdiag}[70]
\obj(12,10)[A]{$\mathcal{A}$}
\obj(19,10)[B]{$\mathcal{B}$}
\obj(26,10)[C]{$\mathcal{C}$}
\obj(34,10)[D]{$\mathcal{D}$}
\obj(41,10)[E]{$\mathcal{E}$}
\obj(48,10)[F]{$\mathcal{F}$}
\mor(12,10)(19,10){$L$}
\mor(19,10)(26,10){$K$}
\mor(26,10)(34,10){$V\qquad\ $}
\mor(26,12)(34,12){$U$}
\mor(26,12)(34,12){$\downarrow\xi$}[\atright,\solidarrow]
\mor(26,8)(34,8){$\downarrow\eta$}
\mor(26,8)(34,8){$W$}[\atright,\solidarrow]
\mor(34,11)(41,11){$F$}
\mor(34,9)(41,9){$\downarrow\mu$}
\mor(34,9)(41,9){$H$}[\atright,\solidarrow]
\mor(41,10)(48,10){$G$}
\enddc
$$
\end{description}
\subsection{The others \dots}
It was already stated that some kinds of arrows are not supported in
DCpic, e.g., $\Rightarrow$, but we can put a \PiCTeX\ command inside a DCpic
diagram, so we can produce a diagram like the one that we will show
now. Its complete specification within DCpic is not possible, at least
for the moment.
\begin{description}
\item[Lax coproduct~\cite{Abramsky92}]
$$
\begindc{\commdiag}[30]
\obj(10,50){$A$}
\obj(50,50){$A\oplus B$}
\obj(90,50){$B$}
\obj(50,10){$C$}
\obj(50,37){$[\sigma,\tau]$}
\mor(10,50)(50,10){$f$}[\atright,\solidarrow]
\mor(10,50)(50,50)[100,160]{$inl$}
\mor(90,50)(50,50)[100,160]{$inr$}[\atright,\solidarrow]
\mor(90,50)(50,10){$g$}
\cmor((480,460)(440,300)(480,140)) \pdown(40,40){}[\solidline]
\cmor((520,460)(560,300)(520,140)) \pdown(60,42){$[f,g]$}[\solidline]
\arrow <6pt> [.2,.4] from 143 44 to 144 42
\arrow <6pt> [.2,.4] from 157 44 to 156 42
\setlinear
% primeira implica{\c c}{\~a}o (simples)
\plot 160 100 141 91 /
\plot 160 104 140 94 /
\arrow <8pt> [.4,.8] from 137 91 to 135 90
% segunda implica{\c c}{\~a}o (quebrada)
\plot 123 66 168 90 /
\plot 122 69 168 94 /
\plot 168 90 203 90 /
\plot 168 94 203 94 /
\arrow <8pt> [.4,.8] from 207 92 to 208 92
\arrow <8pt> [.4,.8] from 120 66 to 118 65
\obj(39,27)[inlfg]{\small $inl_{f,g}$}
\obj(63,34)[inrfg]{\small $inr_{f,g}$}
% terceira implica{\c c}{\~a}o (quebrada)
\plot 132 55 136 60 /
\plot 132 59 136 64 /
\plot 136 60 173 60 /
\plot 136 64 173 64 /
\arrow <8pt> [.4,.8] from 178 62 to 179 62
\arrow <8pt> [.4,.8] from 130 55 to 129 54
\obj(45,17){$\sigma$}
\obj(50,18){$\tau$}
\enddc
$$
%\footnotetext{Handbook of Logic in Computer Science, Volume 1, Clarendon
%Press, Oxford, 1992, pg. 511}
\end{description}
\section{DCpic compared}
If one took the Feruglio article~\cite{Feruglio94} about typesetting
commutative diagrams in (La)\TeX\ we can say that:
\begin{itemize}
\item the graphical capabilities of DCpic are among the
best. Excluding packages which use Postscript specials the DCpic
package is the best among available packages.
\item the specification syntax is one of the simplest, the package by
John Reynolds has a very similar syntax.
\end{itemize}
We did not try to take any measure of computational performance.
The following diagram is one of the test-diagrams used by Feruglio, as
we can see DCpic performs very well, drawing the complete diagram
based on a very simple specification.
\newcommand{\barraA}{\vrule height2em width0em depth0em}
\newcommand{\barraB}{\vrule height1.6em width0em depth0em}
\centerline{
\begindc{\commdiag}[350]
\obj(1,1){$G$}
\obj(3,1){$G_{r^*}$}
\obj(5,1){$H$}
\obj(2,2){$\Sigma^G$}
\obj(6,2){$\Sigma^H$}
\obj(1,3){$L_m$}
\obj(3,3){$K_{r,m}$}
\obj(5,3){$R_{m^*}$}
\obj(1,5){$L$}
\obj(3,5){$L_r$}
\obj(5,5){$R$}
\obj(2,6){$\Sigma^L$}
\obj(6,6){$\Sigma^R$}
\mor(1,1)(2,2){$\lambda^G$}
\mor(3,1)(1,1){$i_5$}[\atleft,\aplicationarrow]
\mor(3,1)(5,1){$r^*$}[\atright,\solidarrow]
\mor(5,1)(6,2){$\lambda^H$}[\atright,\dashArrow]
\mor(2,2)(6,2){$\varphi^{r^*}$}[\atright,\solidarrow]
\mor(1,3)(1,1){$m$}[\atright,\solidarrow]
\mor(1,3)(1,5){$i_2$}[\atleft,\aplicationarrow]
\mor(3,3)(1,3)[140,100]{$i_3\quad$}[\atright,\aplicationarrow]
\mor(3,3)(5,3)[140,100]{$r$}
\mor(3,3)(3,5){$i_4$}[\atright,\aplicationarrow]
\mor(3,3)(3,1){$\stackrel{\displaystyle m}{\barraB}$}
\mor(5,3)(5,5){$i_6$}[\atright,\aplicationarrow]
\mor(5,3)(5,1){$\stackrel{\displaystyle m^*}{\barraA}$}
\mor(1,5)(2,6){$\lambda^L$}
\mor(3,5)(1,5){$i_1\quad$}[\atright,\aplicationarrow]
\mor(3,5)(5,5){$r$}
\mor(5,5)(6,6){$\lambda^R$}[\atright,\solidarrow]
\mor(2,6)(2,2){$\varphi^m$}[\atright,\solidarrow]
\mor(2,6)(6,6){$\varphi^r$}
\mor(6,6)(6,2){$\varphi^{m^*}$}
\enddc
}
\section{Conclusions}
We think that DCpic performs well in the ``commutative diagrams
arena'', it is easy to use, with its commands we can produce
the most usual types of commutative diagrams, and if we accept the use
of \PiCTeX\ commands, we are capable of producing any kind of
diagram. It is also a (La)\TeX -only package, that is, the file
produced by DCpic does not contain any Postscript special, neither
any special font, which in terms of portability is an advantage.
The author and his colleagues in the Mathematics Department of Coimbra
University have been using the (now) old version (2.1) of DCpic for
some time with much success, some of the missing capabilities of the
older version were incorporated in the new version (3.1), and the
missing capabilities of the new version will be taken care in future
versions.
%\bibliographystyle{plain}
%\bibliography{pedro}
\newcommand{\noopsort}[1]{} \newcommand{\singleletter}[1]{#1}
\begin{thebibliography}{10}
\bibitem{Abramsky92}
S.~Abramsky, Dov Gabbay, and T.~Maibaum, editors.
\newblock {\em Handbook of Logic in Computer Science}, volume~1 of {\em Oxford
Science Publications}.
\newblock Claredon Press, Oxford, 1992.
\bibitem{Diaconescu98}
R{\~a}zvan Diaconescu and Kokichi Futatsugi.
\newblock {\em CafeOBJ Report: The Language, Proof Techniques, and
Methodologies for Object-Oriented Algebraic Specification}, volume~6 of {\em
AMAST series in Computing}.
\newblock World Scientific, 1998.
\bibitem{Feruglio94}
{Gabriel Valiente} Feruglio.
\newblock Typesetting commutative diagrams.
\newblock {\em TUGboat}, 15(4):466--484, 1994.
\bibitem{Herrlich73}
Horst Herrlich and George Strecker.
\newblock {\em Category Theory}.
\newblock Allyn and Bacon Inc., 1973.
\bibitem{Knuth86}
Donald~E. Knuth.
\newblock {\em The TeXbook}.
\newblock Addison-Wesley Publishing Company, Reading,Massachusetts, 1986.
\bibitem{Lamport94}
Leslie Lamport.
\newblock {\em {\LaTeX}: A Document Preparation System}.
\newblock Addison-Wesley Publishing Company, Reading, Massachusetts, 2nd
edition, 1994.
\bibitem{MacLane71}
S.~MacLane.
\newblock {\em Categories for the Working Mathematician}.
\newblock Springer-Verlag, New York, 1971.
\bibitem{Otten99}
Ton Otten and Hans Hagen.
\newblock {\em Con\TeX t an excursion}.
\newblock Pragma ADE, Hasselt, 1999.
\bibitem{Pierce98}
Benjamin Pierce.
\newblock {\em Basic Category Theory for Computer Scientists}.
\newblock Foundations of Computing. The MIT Press, London, England, 1998.
\bibitem{Reynolds87}
John Reynolds.
\newblock {\em User's Manual for Diagram Macros}.
\newblock http://www.cs.cmu.edu/{\~{}}jcr/, 1987.
\newblock {\tt diagmac.doc}.
\bibitem{Thanh99}
{H\`{a}n Th{$\acute{\hat{\mathrm e}}$}} Th\`{a}nh, Sebastian Rahtz, and Hans
Hagen.
\newblock {\em The pdfTeX manual}, 1999.
\bibitem{Wichura87}
Michael Wichura.
\newblock {\em The {\PiCTeX} Manual}.
\newblock M. Pfeffer \& Co., New York, 1987.
\end{thebibliography}
\section{Appendix: The DCpic Specifications}
\begin{description}
\item[Push-out:] {\ }
{\footnotesize
\begin{verbatim}
\begindc{\commdiag}[260]
\obj(1,1){$Z$}
\obj(1,3){$X$}
\obj(3,1){$Y$}
\obj(3,3){$P$}
\obj(5,5){$P^\prime$}
\mor(1,1)(1,3){$f$}
\mor(1,1)(3,1){$g$}[\atright,\solidarrow]
\mor(1,3)(3,3){$r$}[\atright,\solidarrow]
\mor(3,1)(3,3){$s$}
\mor(1,3)(5,5){$r^\prime$}
\mor(3,1)(5,5){$s^\prime$}[\atright,\solidarrow]
\mor(3,3)(5,5){$h$}[\atright,\dashArrow]
\enddc
\end{verbatim}
}
\item[Exponentials:] {\ }
{\footnotesize
\begin{verbatim}
\begindc{\commdiag}[300]
\obj(1,3){$Z^Y\times Y$}
\obj(3,3){$Z$}
\obj(3,1){$X\times{}Y$}
\obj(4,1){$X$}
\obj(4,3){$Z^Y$}
\mor(1,3)(3,3)[20,10]{$ev$}
\mor(3,1)(1,3){$f\times{}\mathrm{id}$}
\mor(3,1)(3,3){$\overline{f}$}[\atright,\dashArrow]
\mor(4,1)(4,3){$f$}[\atright,\solidarrow]
\enddc
\end{verbatim}
}
\item[Function Restriction:] {\ }
{\footnotesize
\begin{verbatim}
\begindc{\commdiag}[280]
\obj(1,1){$X$}
\obj(1,3){$X^\prime$}
\obj(3,1){$Y$}
\obj(3,3){$Y^\prime$}
\mor(1,1)(3,1){$f$}
\mor(1,3)(1,1){}[\atright,\injectionarrow]
\mor(3,3)(3,1){}[\atright,\injectionarrow]
\mor(1,3)(3,3){$g=f|^{Y^\prime}_{X^\prime}$}
\enddc
\end{verbatim}
}
\item[{\em CafeOBJ\/} Cube:] {\ }
{\footnotesize
\begin{verbatim}
\begindc{\commdiag}[170]
\obj(1,1){MSA}
\obj(5,1){RWL}
\obj(3,3){OSA}
\obj(7,3){OSRWL}
\obj(1,4){HSA}
\obj(5,4){HSRWL}
\obj(3,6){HOSA}
\obj(7,6){HOSRWL}
\mor(1,1)(5,1)[15,15]{}
\mor(1,1)(1,4){}
\mor(1,1)(3,3){}
\mor(5,1)(5,4){}
\mor(5,1)(7,3){}
\mor(3,3)(3,6){}
\mor(3,3)(7,3)[15,22]{}
\mor(7,3)(7,6){}
\mor(1,4)(5,4)[15,22]{}
\mor(1,4)(3,6){}
\mor(3,6)(7,6)[17,26]{}
\mor(5,4)(7,6){}
\enddc
\end{verbatim}
}
\item[Equaliser:] {\ }
{\footnotesize
\begin{verbatim}
\begindc{\commdiag}[20]
\obj(1,1){$Z$}
\obj(1,36){$\overline{ X}$}
\obj(36,36){$X$}
\obj(52,36){$Y$}
\mor(1,1)(1,36){$\overline{ h}$}[\atleft,\dashArrow]
\mor(1,1)(36,36){$h$}[\atright,\solidarrow]
\mor(1,36)(36,36){$e$}
\mor(36,37)(52,37)[8,8]{$f$}
\mor(36,35)(52,35)[8,8]{$g$}[\atright,\solidarrow]
\enddc
\end{verbatim}
}
\item[A 3-Category:] {\ }
{\footnotesize
\begin{verbatim}
\begindc{\commdiag}[30]
\obj(14,11){$A$}
\obj(39,11){$C$}
\obj(26,35){$B$}
\mor(14,11)(39,11){$h$}[\atright,\solidarrow]
\mor(14,11)(26,35){$f$}
\mor(26,35)(39,11){$g$}
\cmor((11,10)(10,10)(9,10)(5,11)(4,15)(5,19)(9,20)(13,19)(14,15))
\pdown(1,20){$id_A$}
\cmor((42,10)(43,10)(44,10)(48,11)(49,15)(48,19)(44,20)(40,19)(39,15))
\pdown(52,20){$id_C$}
\cmor((26,39)(27,43)(31,44)(35,43)(36,39)(35,36)(31,35)) \pleft(40,40){$id_B$}
\enddc
\end{verbatim}
}
\item[Isomorfisms:] {\ }
{\footnotesize
\begin{verbatim}
\begindc{\commdiag}[30]
\obj(10,15){$A$}
\obj(40,15){$A$}
\obj(25,15){$B$}
\mor(10,15)(25,15){$f$}
\mor(25,15)(40,15){$g$}
\cmor((10,11)(11,7)(15,6)(25,6)(35,6)(39,7)(40,11)) \pup(25,3){$id_A$}
\obj(55,15){$B$}
\obj(85,15){$B$}
\obj(70,15){$A$}
\mor(55,15)(70,15){$g$}
\mor(70,15)(85,15){$f$}
\cmor((55,11)(56,7)(60,6)(70,6)(80,6)(84,7)(85,11)) \pup(70,3){$id_B$}
\enddc
\end{verbatim}
}
\item[Godement's ``five'' rules:] {\ }
{\footnotesize
\begin{verbatim}
\begindc{\commdiag}[70]
\obj(12,10){$\mathcal{A}$}
\obj(19,10){$\mathcal{B}$}
\obj(26,10){$\mathcal{C}$}
\obj(34,10){$\mathcal{D}$}
\obj(41,10){$\mathcal{E}$}
\obj(48,10){$\mathcal{F}$}
\mor(12,10)(19,10){$L$}
\mor(19,10)(26,10){$K$}
\mor(26,10)(34,10){$V\qquad\ $}
\mor(26,12)(34,12){$U$}
\mor(26,12)(34,12){$\downarrow\xi$}[\atright,\solidarrow]
\mor(26,8)(34,8){$\downarrow\eta$}
\mor(26,8)(34,8){$W$}[\atright,\solidarrow]
\mor(34,11)(41,11){$F$}
\mor(34,9)(41,9){$\downarrow\mu$}
\mor(34,9)(41,9){$H$}[\atright,\solidarrow]
\mor(41,10)(48,10){$G$}
\enddc
\end{verbatim}
}
\item[Lax coproduct:] Guess how.
\item[DCpic and the others:] {\ }
{\footnotesize
\begin{verbatim}
\begindc{\commdiag}[350]
\obj(1,1){$G$}
\obj(3,1){$G_{r^*}$}
\obj(5,1){$H$}
\obj(2,2){$\Sigma^G$}
\obj(6,2){$\Sigma^H$}
\obj(1,3){$L_m$}
\obj(3,3){$K_{r,m}$}
\obj(5,3){$R_{m^*}$}
\obj(1,5){$L$}
\obj(3,5){$L_r$}
\obj(5,5){$R$}
\obj(2,6){$\Sigma^L$}
\obj(6,6){$\Sigma^R$}
\mor(1,1)(2,2){$\lambda^G$}
\mor(3,1)(1,1){$i_5$}[\atleft,\aplicationarrow]
\mor(3,1)(5,1){$r^*$}[\atright,\solidarrow]
\mor(5,1)(6,2){$\lambda^H$}[\atright,\dashArrow]
\mor(2,2)(6,2){$\varphi^{r^*}$}[\atright,\solidarrow]
\mor(1,3)(1,1){$m$}[\atright,\solidarrow]
\mor(1,3)(1,5){$i_2$}[\atleft,\aplicationarrow]
\mor(3,3)(1,3)[140,100]{$i_3\quad$}[\atright,\aplicationarrow]
\mor(3,3)(5,3)[140,100]{$r$}
\mor(3,3)(3,5){$i_4$}[\atright,\aplicationarrow]
\mor(3,3)(3,1){$\stackrel{\displaystyle m}{\barraB}$}
\mor(5,3)(5,5){$i_6$}[\atright,\aplicationarrow]
\mor(5,3)(5,1){$\stackrel{\displaystyle m^*}{\barraA}$}
\mor(1,5)(2,6){$\lambda^L$}
\mor(3,5)(1,5){$i_1\quad$}[\atright,\aplicationarrow]
\mor(3,5)(5,5){$r$}
\mor(5,5)(6,6){$\lambda^R$}[\atright,\solidarrow]
\mor(2,6)(2,2){$\varphi^m$}[\atright,\solidarrow]
\mor(2,6)(6,6){$\varphi^r$}
\mor(6,6)(6,2){$\varphi^{m^*}$}
\enddc
\end{verbatim}
}
\end{description}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
|