summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/fonts/epigrafica/epigrafica.tex
blob: ced8bd4a5bea1561b894d18da2b5e611a8990a77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
\documentclass{article}
\usepackage[polutonikogreek,english]{babel}
\usepackage[iso-8859-7]{inputenc}

\usepackage{epigrafica}



%%%%% Theorems and friends
\newtheorem{theorem}{Èåþñçìá}[section]         
\newtheorem{lemma}[theorem]{ËÞììá}
\newtheorem{proposition}[theorem]{Ðñüôáóç}
\newtheorem{corollary}[theorem]{Ðüñéóìá}
\newtheorem{definition}[theorem]{Ïñéóìüò}
\newtheorem{remark}[theorem]{ÐáñáôÞñçóç}
\newtheorem{axiom}[theorem]{Áîßùìá}
\newtheorem{exercise}[theorem]{¶óêçóç}


%%%%% Environment ``proof''
\newenvironment{proof}[1]{{\textit{Áðüäåéîç:}}}{\ \hfill$\Box$}
\newenvironment{hint}[1]{{\textit{Õðüäåéîç:}}}{\ \hfill$\Box$}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%






\title{The \textsc{epigrafica} font family}
\author{Antonis Tsolomitis\\
Laboratory of Digital Typography\\ and Mathematical Software\\
Department of Mathematics\\
University of the Aegean}
\date {\textsc{27} May \textsc{2006}}


\begin{document}
\maketitle



\section{Introduction}
The Epigrafica family is a derivative work of the MgOpenCosmetica
fonts which has been made available by Magenta Ltd
(\texttt{http://www.magenta.gr}) 
under the \textsc{gpl} license.

This is the initial release of Epigrafica and supports only
monotonic Greek, and the OT1 and T1 partially. Polytonic and full OT1
and T1 support is under development. However, basic latin is supported.


 The greek part is to be used with the greek option of
the Babel package.

The fonts are loaded with

\verb|\usepackage{epigrafica}|.

The package provides a true small caps font although not provided by
the source fonts from Magenta. However, the text figures are currently
under development. In addition to this there have been several
enhancements both to glyph coverage and to some buggy splines (for
example,
in O, Q and others) 


Finally, the math symbols are taken from the pxfonts package. 



\section{Installation}

Copy the contents of the subdirectory afm in
texmf/fonts/afm/source/public/Epigrafica/

\medskip

\noindent Copy the contents of the subdirectory doc in
texmf/doc/latex/Epigrafica/

\medskip

\noindent Copy the contents of the subdirectory enc in
texmf/fonts/enc/dvips/public/Epigrafica/

\medskip

\noindent Copy the contents of the subdirectory map in
texmf/fonts/map/dvips/Epigrafica/

\medskip

\noindent Copy the contents of the subdirectory tex in
texmf/tex/latex/Epigrafica/

\medskip

\noindent Copy the contents of the subdirectory tfm in
texmf/fonts/tfm/public/Epigrafica/

\medskip

\noindent Copy the contents of the subdirectory type1 in
texmf/fonts/type1/public/Epigrafica/

\medskip

\noindent Copy the contents of the subdirectory vf in
texmf/fonts/vf/public/Epigrafica/

\medskip

\noindent In your installations updmap.cfg file add the line

\medskip

\noindent Map epigrafica.map

\medskip

Refresh your filename database and the map file database (for example, on Unix systems
run mktexlsr and then run the updmap script as root).

You are now ready to use the fonts provided that you have a relatively
modern installation that includes pxfonts.

\section{Usage}

As said in the introduction the package covers both english and
greek. Greek covers only monotonic for the moment. 

For example, the preample

\begin{verbatim}
\documentclass{article}
\usepackage[english,greek]{babel}
\usepackage[iso-8859-7]{inputenc}
\usepackage{epigrafica}
\end{verbatim}

will be the correct setup for articles in Greek.

\bigskip

\subsection{Transformations by \texttt{dvips}}

Other than the shapes provided by the fonts themselves, this package
provides a slanted shape
using the standard mechanism provided by dvips. 



\subsection{Euro}

Euro is also available in LGR enconding. \verb|\textgreek{\euro}|
gives \textgreek{\euro}. 


\section{Samples}

The next two pages provide samples in english and greek with math.


\newpage

Adding up these inequalities with respect to $i$, we get
\begin{equation} \sum c_i d_i \leq \frac1{p} +\frac1{q} =1\label{10}\end{equation}
since $\sum c_i^p =\sum d_i^q =1$.\hfill$\Box$

In the case $p=q=2$
the above inequality is also called the 
\textit{Cauchy-Schwartz inequality}.

Notice, also, that by formally defining $\left( \sum |b_k|^q\right)^{1/q}$ to be
$\sup |b_k|$ for $q=\infty$, we give sense to (9) for all 
$1\leq p\leq\infty$.


A similar inequality is true for functions instead of sequences with the sums 
being substituted by integrals.

\medskip

\textbf{Theorem} {\itshape Let $1<p<\infty$ and let $q$ be such that $1/p +1/q =1$. Then, 
for all functions $f,g$ on an interval $[a,b]$ 
such that the integrals $\int_a^b |f(t)|^p\,dt$, $\int_a^b |g(t)|^q\,dt$ and
$\int_a^b |f(t)g(t)|\,dt$ exist \textup{(}as Riemann integrals\textup{)},
we have 
\begin{equation}
\int_a^b |f(t)g(t)|\,dt\leq 
\biggl(\int_a^b |f(t)|^p\,dt\biggr)^{1/p}
\biggl(\int_a^b |g(t)|^q\,dt\biggr)^{1/q} .
\end{equation}
}

Notice that if the Riemann integral $\int_a^b f(t)g(t)\,dt$ also exists, then 
from the inequality $\left|\int_a^b f(t)g(t)\,dt\right|\leq 
\int_a^b |f(t)g(t)|\,dt$ follows that
\begin{equation}
\left|\int_a^b f(t)g(t)\,dt\right|\leq 
\biggl(\int_a^b |f(t)|^p\,dt\biggr)^{1/p}
\biggl(\int_a^b |g(t)|^q\,dt\biggr)^{1/q} .
\end{equation}

  

\textit{Proof:} Consider a partition of the interval $[a,b]$ in $n$ equal 
subintervals with endpoints
$a=x_0<x_1<\cdots<x_n=b$. Let $\Delta x=(b-a)/n$.
We have
\begin{eqnarray}
\sum_{i=1}^n |f(x_i)g(x_i)|\Delta x &\leq& 
\sum_{i=1}^n |f(x_i)g(x_i)|(\Delta x)^{\frac1{p}+\frac1{q}}\nonumber\\
&=&\sum_{i=1}^n \left(|f(x_i)|^p \Delta x\right)^{1/p} \left(|g(x_i)|^q 
\Delta x\right)^{1/q}.\label{functionalHolder1}\\ \nonumber
\end{eqnarray}

\newpage\greektext


% $\bullet$ ÌÞêïò ôüîïõ êáìðýëçò 

% \begin{proposition}\label{chap2:sec1:prop 23}
% ¸óôù $\gamma$ êáìðýëç ìå ðáñáìåôñéêÞ åîßóùóç $x=g(t)$, $y=f(t)$,
% $t\in [a,\,b]$ áí $g'$, $f'$ óõíå÷åßò óôï $[a,\,b]$ ôüôå ç
% $\gamma$ Ý÷åé ìÞêïò $S=L(\gamma)=\int_a^b \sqrt{g'(t)^2+f'(t)^2}
% dt$.
% \end{proposition}

\textbullet\ Åìâáäüí åðéöÜíåéáò áðü ðåñéóôñïöÞ\\

\begin{proposition}\label{chap2:sec1:prop23-2}
¸óôù $\gamma$ êáìðýëç ìå ðáñáìåôñéêÞ åîßóùóç $x=g(t)$, $y=f(t)$,
$t\in [a,\,b]$ áí $g'$, $f'$ óõíå÷åßò óôï $[a,\,b]$ ôüôå ôï
åìâáäüí áðü ðåñéóôñïöÞ ôçò $\gamma$ ãýñù áðü ôïí $xx'$ äßíåôáé \\
$Â=2\pi\int_a^b |f(t)| \sqrt{g'(t)^2+f^{\prime}(t^2)} dt$. \\ Áí ç
$\gamma$ äßíåôáé áðü ôçí $y=f(x)$, $x\in [a,\,b]$ ôüôå
$Â=2\pi\int_a^b |f(t)| \sqrt{1+f'(x)^2} dx$
\end{proposition}

\textbullet\ ¼ãêïò óôåñåþí áðü ðåñéóôñïöÞ\\ ¸óôù $f :
[a,\,b]\rightarrow \mathbb{R}$ óõíå÷Þò êáé $R=\{f, Ox,x=a,x=b\}$
åßíáé ï üãêïò áðü ðåñéóôñïöÞ ôïõ ãñáöÞìáôïò ôçò $f$ ãýñù áðü ôïí
$Ox$ ìåôáîý ôùí åõèåéþí $x=a$, êáé $x=b$, ôüôå $V=\pi\int_a^b f
(x)^2 dx$

\textbullet\ Áí $f,g : [a,\,b]\rightarrow \mathbb{R}$ êáé $0\leq
g(x)\leq f(x)$ ôüôå ï üãêïò óôåñåïý ðïõ ðáñÜãåôáé áðü ðåñéóôñïöÞ
ôùí ãñáöçìÜôùí ôùí $f$ êáé $g$, $R=\{f,g, Ox,x=a,x=b\}$ åßíáé \\
$V=\pi\int_a^b\{ f (x)^2-g(x)^2\} dx$.

\textbullet\ Áí $x=g(t)$, $y=f(t)$, $t=[t_1,\,t_2]$ ôüôå
$V=\pi\int_{t_1}^{t_2}\{ f (t)^2 g'(t)\} dt$ ãéá $g(t_1)=a$,
$g(t_2)=b$.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{ÁóêÞóåéò}\label{chap2:sec2}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{exercise}\label{chap2:ex1}
Íá åêöñáóôåß ôï ðáñáêÜôù üñéï ùò ïëïêëÞñùìá \textlatin{Riemann} êáôÜë\-ëçëçò
óõíÜñôçóçò\\
$$\lim_{n\rightarrow\infty} \frac{1}{n}\sum_{k=1}^{n}\sqrt[n]{e^k} $$
\end{exercise}
%%%%%%%%%
\textit{Õðüäåéîç:}
ÐñÝðåé íá óêåöôïýìå ìéá óõíÜñôçóç ôçò ïðïßáò ãíùñßæïõìå üôé õðÜñ÷åé ôï ïëïêëÞñùìá.
 Ôüôå ðáßñíïõìå ìéá äéáìÝñéóç $P_n$ êáé äåß÷íïõìå ð.÷. üôé ôï $U(f,P_n)$ åßíáé ç æçôïýìåíç óåéñÜ.

\bigskip

%%%%%%%%%%%%%%
\textit{Ëýóç:}
ÐñÝðåé íá óêåöôïýìå ìéá óõíÜñôçóç ôçò ïðïßáò ãíùñßæïõìå üôé õðÜñ÷åé ôï ïëïêëÞñùìá.
Ôüôå ðáßñíïõìå ìéá äéáìÝñéóç $P_n$ êáé äåß÷íïõìå ð.÷. üôé ôï $U(f,P_n)$ åßíáé ç æçôïýìåíç óåéñÜ.\\
¸÷ïõìå üôé
\begin{eqnarray}\frac{1}{n}\sum_{k=1}^{n}\sqrt[n]{e^k} =
\frac{1}{n}\sqrt[n]{e}+\frac{1}{n}\sqrt[n]{e^2}+\cdots +
\frac{1}{n}\sqrt[n]{e^n}\nonumber\\
=\frac{1}{n}e^{\frac{1}{n}}+\frac{1}{n}e^{\frac{2}{n}}+\cdots+\frac{1}{n}e^{\frac{n}{n}}\nonumber
\end{eqnarray}




\end{document}

%%% Local Variables: 
%%% mode: latex
%%% TeX-master: t
%%% End: