summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/fonts/dejavu-math/math-test.tex
blob: 7a12a7f59adc839e0f035b15a02f67bb19b0b1a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
\pagestyle{empty}

%Accents:
\begin{displaymath}
  \widehat{bcd} \ \widetilde{efg} \ \dot A \ \dot R  \ \mathbf{\dot A \check t} 
  \  \check{\mathcal{A}} \check{\mathcal{a}} \ \mathbf{\acute \imath}
\end{displaymath}

%Angle brackets:
\begin{displaymath}
  \langle a \rangle \left\langle \frac{a}{b} \right\rangle
  \left\langle \frac{\frac{a}{b}}{c} \right\rangle
\end{displaymath}

%Big operators:
\begin{displaymath}
  (x + a)^n = \sum_{k=0}^n \intop_{t_1}^{t_2} {n \choose k} x^k a^{n-k}f(x)\,dx
\end{displaymath}

%Logical operators
\begin{displaymath}
 \def\buildrel#1\below#2{\mathrel{\mathop{\kern0mm#2}\limits_{#1}}}
 \bigcup_a^b \bigcap_c^d E {\buildrel ab \below \rightarrow} F' {\buildrel cd \below \Rightarrow} G
\end{displaymath}

%%Horizontal brackets:
\begin{displaymath}
 \underbrace{\overbracket{aaaaaaa}}_\textrm{Siédém}
 \underbrace{\overparen{aaaaa}}_\textrm{pięć}
\end{displaymath}

%Squares:
\begin{displaymath}
 \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{2}}}}}} =
 \frac{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{2}}}}}}}}}{\frac{2}{3}}
\end{displaymath}

%Cardinal numbers
\begin{displaymath}
 \aleph_{0}<2^{\aleph_0}<2^{2^{\aleph_0}}
\end{displaymath}

%Powers
\begin{displaymath}
x^{\alpha} e^{\beta x^{\gamma} e^{\delta x^{\epsilon}}}
\end{displaymath}

%Integrals
\begin{displaymath}
 \oint_C\mathbf{F}\cdot d\mathbf{r}=\int_S\mathbf{\nabla}\times\mathbf{F}\cdot d\mathbf{S}\qquad
 \oint_C\vec{A}\cdot\vec{dr}=\iint_S(\nabla\times\vec{A})\,\vec{dS}
\end{displaymath}

%Sum
\begin{displaymath}
 (1+x)^n=1+\frac{nx}{1!}+\frac{n(n-1)x^2}{2!}+\cdots
\end{displaymath}

%Equations
\setlength\arraycolsep{0.15em}
\begin{eqnarray*}
 \int_{-\infty}^\infty e^{-x^2}dx &=& \left[\int_{-\infty}^\infty e^{-x^2}dx
  \int_{-\infty}^\infty e^{-y^2}dy\right]^{1/2}\\
 &=& \left[\int_{0}^{2\pi} \int_0^\infty e^{-r^2}r\,dr\,d\theta\right]^{1/2}\\
 &=& \left[\pi\int_{0}^\infty e^{-u}du\right]^{1/2}\\
 &=& \sqrt{\pi}
\end{eqnarray*}

\endinput