blob: 77116889a035df25442ff1fb3b8aa49527dbaa99 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
%prosper-text.tex
\frame[t]
{
\frametitle{Characterization of the Imaginary Forms}
\blue{\textbf{Theorem.}}
Let $S=\{v_1,v_2,\ldots,v_k\}$ be a \green{set of vectors} in $\mathbb{R}^n$.
\bigskip
Consider $\mathcal{F}(S)=\sum_{i=1}^k \delta(v_i v_j w) \sigma_{i,j}$.
\bigskip
If \red{$\mathcal{F}(S)\le \varepsilon$}, then
\[
\phi(S,\alpha)=\frac{1}{2\pi i} \int_{-\infty}^{753}
\frac{\tilde{W}_{n}(\gamma)\cos\left(\sqrt{x^{2}}\right)}{f'(x) R/a}dx
=\det\left(\begin{array}{cc}
\alpha^{2} & \Pi\\
\omega & x\otimes y\end{array}\right)
\]
\bigskip \
\emph{Note}: If $\beta\in\Gamma$, then the form is \red{undefined} at the points in $S\cap\Gamma$, and the integral $I_l(i_1)$ diverges as $\varepsilon \rightarrow 0$. This pathological behavior \purple{can be handled} by taking
$\Gamma \subseteq S$.
}
\end{document}
|