summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/fonts/arev/fontsample.tex
blob: 6eaa7bcb957939a44d9a7110b5d19d3ae8267e97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

\documentclass{article}

\usepackage{amsmath,amsthm}
\usepackage[letterpaper,text={5.95in,9in}]{geometry}

\pagestyle{empty}
\setlength{\parindent}{0cm}

\usepackage{arev}

%\theoremstyle{definition}
\newtheorem{theorem}{Theorem}

\begin{document}

\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated singularities $a_1,a_2,\ldots,a_m$. If $\gamma$ is a closed rectifiable curve in $G$ which does not pass through any of the points $a_k$ and if $\gamma\approx 0$ in $G$ then
\[
\frac{1}{2\pi i}\int_\gamma f = \sum_{k=1}^m n(\gamma;a_k) \text{Res}(f;a_k).
\]
\end{theorem}

Another nice theorem from complex analysis is

\begin{theorem}[Maximum Modulus]
Let $G$ be a bounded open set in $\mathbb{C}$ and suppose that $f$ is a continuous function on $G^-$ which is analytic in $G$. Then
\[
\max\{|f(z)|:z\in G^-\}=\max \{|f(z)|:z\in \partial G \}.
\]
\end{theorem}

\newcommand{\abc}{abcdefgh\hbar\hslash i\imath j\jmath klmnopqrstuvwxyz}
\newcommand{\ABC}{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
\newcommand{\alphabeta}{\alpha\beta\varbeta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta\iota\kappa\varkappa\lambda\mu\nu\xi o\pi\varpi\rho\varrho\sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega}
\newcommand{\AlphaBeta}{\Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega}

$\mathrm{\ABC}$ \qquad $\ABC$

abcd$\eth$efghijklmnopqrstuvwxyz \qquad $\abc$ \quad $\ell\wp\aleph\infty\propto\emptyset\nabla\partial$

$\AlphaBeta\mho$ \qquad $\alphabeta$ \qquad $01234567890$

\end{document}