1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
|
@c arrow.texi - documentation for Eplain's commutative diagrams.
@c Copyright (C) 1991, 1992 Steven Smith.
@c This is part of the Eplain manual.
@c
@c This file is free software; you can redistribute it and/or modify
@c it under the terms of the GNU General Public License as published by
@c the Free Software Foundation; either version 2, or (at your option)
@c any later version.
@c
@c This file is distributed in the hope that it will be useful,
@c but WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with this file; if not, write to the Free Software
@c Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
@c 02110-1301, USA.
@comment \input texinfo
@comment setfilename arrow.info
@comment settitle Arrow Theoretic Diagrams
@c Input arrow macros without altering texinfo's \catcodes.
@c Use the arrow macros in an `@iftex @tex ... @end iftex' environment.
@iftex
@catcode`@$=3 @catcode`@%=14 @catcode`@&=4 @catcode`@#=6
@catcode`@^=7 @catcode`@_=8
@catcode`@"=@other @catcode`@<=@other @catcode`@>=@other
@catcode`@\=0
\catcode`\@=\other
\input arrow
\catcode`\@=0
@catcode`@\=@active
@catcode`@$=@other @catcode`@%=@other @catcode`@&=@other @catcode`@#=@other
@catcode`@^=@active @catcode`@_=@active
@catcode`@"=@active @catcode`@<=@active @catcode`@>=@active
@end iftex
@node Arrow theoretic diagrams
@chapter Arrow theoretic diagrams
This chapter describes definitions for producing commutative diagrams.
Steven Smith wrote this documentation (and the macros).
@menu
* Slanted lines and vectors::
* Commutative diagrams::
@end menu
@node Slanted lines and vectors
@section Slanted lines and vectors
The macros @code{\drawline}
@findex drawline
and @code{\drawvector}
@findex drawvector
provide the capability found in @LaTeX{}'s
@cindex @LaTeX{}
@cindex picture mode
picture mode to draw slanted lines and vectors of certain directions.
Both of these macros take three arguments: two integer arguments to
specify the direction of the line or vector, and one argument to specify
its length. For example, @samp{\drawvector(-4,1)@{60pt@}} produces the
vector
@iftex
@tex
$$\vbox{\hbox{\drawvector(-4,1){60pt}}\smallskip
\hbox{$\mathop{\hbox to60pt{\leftarrowfill\hskip-5pt\rightarrowfill}}
\limits_{{\fam0 60\,pt}}$}}$$
@end tex
@end iftex
@ifinfo
@center (A vector in the 2d quadrant of length 60 pt appears here.)
@end ifinfo
@cindex lines
@cindex vectors
which lies in the 2d quadrant, has a slope of minus 1/4, and a width of
60 pt.
Note that if an @code{\hbox} is placed around @code{\drawline} or
@code{\drawvector}, then the width of the @code{\hbox} will be the
positive dimension specified in the third argument, except when a
vertical line or vector is specified, e.g.,
@code{\drawline(0,1)@{1in@}}, which has zero width. If the specified
direction lies in the 1st or 2d quadrant (e.g., @code{(1,1)} or
@code{(-2,3)}), then the @code{\hbox} will have positive height and zero
depth. Conversely, if the specified direction lies in the 3d or 4th
quadrant (e.g., @code{(-1,-1)} or @code{(2,-3)}), then the @code{\hbox}
will have positive depth and zero height.
There are a finite number of directions that can be specified. For
@code{\drawline}, the absolute value of each integer defining the
direction must be less than or equal to six, i.e., @code{(7,-1)} is
incorrect, but @code{(6,-1)} is acceptable. For @code{\drawvector}, the
absolute value of each integer must be less than or equal to four.
Furthermore, the two integers cannot have common divisors; therefore, if
a line with slope 2 is desired, say @code{(2,1)} instead of
@code{(4,2)}. Also, specify @code{(1,0)} instead of, say, @code{(3,0)}
for horizontal lines and likewise for vertical lines.
Finally, these macros depend upon the @LaTeX{} font @code{line10}. If
your site doesn't have this font, ask your system administrator to get
it. Future enhancements will include macros to draw dotted lines and
dotted vectors of various directions.
@node Commutative diagrams
@section Commutative diagrams
@cindex commutative diagrams
The primitive commands @code{\drawline} and @code{\drawvector} can be
used to typeset arrow theoretic diagrams. This section describes (1)
macros to facilitate typesetting arrows and morphisms, and (2) macros to
facilitate the construction of commutative diagrams. All macros
described in this section must be used in math mode.
@menu
* Arrows and morphisms::
* Construction of commutative diagrams::
* Commutative diagram parameters::
@end menu
@node Arrows and morphisms
@subsection Arrows and morphisms
@cindex arrows
@cindex morphisms
The macros @code{\mapright} and @code{\mapleft} produce right and left
@findex mapright
@findex mapleft
pointing arrows, respectively. Use superscript (@code{^}) to place a
morphism above the arrow, e.g., @samp{\mapright^\alpha}; use subscript
(@code{_}) to place a morphism below the arrow, e.g.,
@samp{\mapright_@{\tilde l@}}. Superscripts and subscripts may be used
simulataneously, e.g., @samp{\mapright^\pi_@{\rm epimor.@}}.
Similarly, the macros @code{\mapup} and @code{\mapdown} produce up and
@findex mapup
@findex mapdown
down pointing arrows, respectively. Use @code{\rt}
@findex rt
to place a morphism to the right of the arrow, e.g., @samp{\mapup\rt@{\rm
id@}}; use @code{\lft}
@findex lft
to place a morphism to the left of the arrow, e.g., @samp{\mapup\lft\omega}.
@code{\lft} and @code{\rt} may be used simultaneously, e.g.,
@samp{\mapdown\lft\pi\rt@{\rm monomor.@}}.
Slanted arrows are produced by the macro @code{\arrow}, which takes
@findex arrow
a direction argument (e.g., @samp{\arrow(3,-4)}). Use @code{\rt} and
@code{\lft} to place morphisms to the right and left, respectively, of
the arrow. A slanted line (no arrowhead) is produced with the macro
@code{\sline},
@findex sline
whose syntax is identical to that of @code{\arrow}.
The length of these macros is predefined by the default @TeX{}
dimensions @code{\harrowlength},
@findex harrowlength
for horizontal arrows (or lines),
@code{\varrowlength},
@findex varrowlength
for vertical arrows (or lines), and
@code{\sarrowlength},
@findex sarrowlength
for slanted arrows (or lines). To change any of these dimensions, say,
e.g., @samp{\harrowlength=40pt}. As with all other @TeX{} dimensions,
the change may be as global or as local as you like. Furthermore, the
placement of morphisms on the arrows is controlled by the dimensions
@code{\hmorphposn},
@findex hmorphposn
@code{\vmorphposn},
@findex vmorphposn
and @code{\morphdist}.
@findex morphdist
The first two dimensions control the horizontal and vertical position of
the morphism from its default position; the latter dimension controls
the distance of the morphism from the arrow. If you have more than one
morphism per arrow (i.e., a @code{^}/@code{_} or @code{\lft}/@code{\rt}
construction), use the parameters
@code{\hmorphposnup},
@findex hmorphposnup
@code{\hmorphposndn},
@findex hmorphposndn
@code{\vmorphposnup},
@findex vmorphposnup
@code{\vmorphposndn},
@findex vmorphposndn
@code{\hmorphposnrt},
@findex hmorphposnrt
@code{\hmorphposnlft},
@findex hmorphposnlft
@code{\vmorphposnrt},
@findex vmorphposnrt
and @code{\vmorphposnlft}.
@findex vmorphposnlft
The default values of all these dimensions are provided in the section
on parameters that follows below.
There is a family of macros to produce horizontal lines, arrows, and
adjoint arrows. The following macros produce horizontal maps and have
the same syntax as @code{\mapright}:
@table @code
@item \mapright
@findex mapright
@code{$X\mapright Y$}
@iftex
@tex
$\equiv$ $\harrowlength=20ptX\mapright Y$.
@end tex
@end iftex
@ifinfo
= (a right arrow).
@end ifinfo
@item \mapleft
@findex mapleft
@code{$X\mapleft Y$}
@iftex
@tex
$\equiv$ $\harrowlength=20ptX\mapleft Y$.
@end tex
@end iftex
@ifinfo
= (a left arrow).
@end ifinfo
@item \hline
@findex hline
@code{$X\hline Y$}
@iftex
@tex
$\equiv$ $\harrowlength=20ptX\hline Y$.
@end tex
@end iftex
@ifinfo
= (horizontal line)
@end ifinfo
@ignore
@item \dothline
@findex dothline
(dotted horizontal line) {@bf Unimplemented.}
@end ignore
@item \bimapright
@findex bimapright
@code{$X\bimapright Y$}
@iftex
@tex
$\equiv$ $\harrowlength=20ptX\bimapright Y$.
@end tex
@end iftex
@ifinfo
= (two right arrows).
@end ifinfo
@item \bimapleft
@findex bimapleft
@code{$X\bimapleft Y$}
@iftex
@tex
$\equiv$ $\harrowlength=20ptX\bimapleft Y$.
@end tex
@end iftex
@ifinfo
= (two left arrows)
@end ifinfo
@item \adjmapright
@findex adjmapright
@code{$X\adjmapright Y$}
@iftex
@tex
$\equiv$ $\harrowlength=20ptX\adjmapright Y$.
@end tex
@end iftex
@ifinfo
= (two adjoint arrows; left over right)
@end ifinfo
@item \adjmapleft
@findex adjmapleft
@code{$X\adjmapleft Y$}
@iftex
@tex
$\equiv$ $\harrowlength=20ptX\adjmapleft Y$.
@end tex
@end iftex
@ifinfo
= (two adjoint arrows; right over left)
@end ifinfo
@item \bihline
@findex bihline
@code{$X\bihline Y$}
@iftex
@tex
$\equiv$ $\harrowlength=20ptX\bihline Y$.
@end tex
@end iftex
@ifinfo
= (two horizontal lines)
@end ifinfo
@end table
There is also a family of macros to produce vertical lines, arrows, and
adjoint arrows. The following macros produce vertical maps and have
the same syntax as @code{\mapdown}:
@table @code
@item \mapdown
@findex mapdown
(a down arrow)
@item \mapup
@findex mapup
(an up arrow)
@item \vline
@findex vline
(vertical line)
@ignore
@item \dotvline
@findex dotvline
(dotted vertical line) {@bf Unimplemented.}
@end ignore
@item \bimapdown
@findex bimapdown
(two down arrows)
@item \bimapup
@findex bimapup
(two up arrows)
@item \adjmapdown
@findex adjmapdown
(two adjoint arrows; down then up)
@item \adjmapup
@findex adjmapup
(two adjoint arrows; up then down)
@item \bivline
@findex bivline
(two vertical lines)
@end table
Finally, there is a family of macros to produce slanted lines, arrows,
and adjoint arrows. The following macros produce slanted maps and have
the same syntax as @code{\arrow}:
@table @code
@item \arrow
@findex arrow
(a slanted arrow)
@item \sline
@findex sline
(a slanted line)
@item \biarrow
@findex biarrow
(two straight arrows)
@item \adjarrow
@findex adjarrow
(two adjoint arrows)
@item \bisline
@findex bisline
(two straight lines)
@end table
The width between double arrows is controlled by the parameter
@code{\channelwidth}.
@findex channelwidth
The parameters @code{\hchannel} and @code{\vchannel}, if nonzero,
override @code{\channelwidth} by controlling the horizontal and vertical
shifting from the first arrow to the second.
There are no adornments on these arrows to distinguish inclusions from
epimorphisms from monomorphisms. Many texts, such as Lang's book
@cite{Algebra}, use as a tasteful alternative the symbol `inc' (in roman) next
to an arrow to denote inclusion.
@cindex Lang, Serge
Future enhancements will include a mechanism to draw curved arrows
found in, e.g., the Snake Lemma, by employing a version of the
@code{\path} macros of Appendix D of @cite{The @TeX{}book}.
@cindex Snake Lemma
@node Construction of commutative diagrams
@subsection Construction of commutative diagrams
There are two approaches to the construction of commutative diagrams
described here. The first approach, and the simplest, treats
commutative diagrams like fancy matrices, as Knuth does in Exercise
18.46 of @cite{The @TeX{}book}. This case is covered by the macro
@code{\commdiag},
@findex commdiag
which is an altered version of the Plain @TeX{} macro @code{\matrix}.
@findex matrix
An example suffices to demonstrate this macro. The following
commutative diagram (illustrating the covering homotopy property; Bott
and Tu, @cite{Differential Forms in Algebraic Topology})
@cindex Bott, Raoul
@cindex Tu, Loring W.
@cindex covering homotopy property
@iftex
@tex
$$\commdiag{Y&\mapright^f&E\cr \mapdown&\arrow(3,2)\lft{f_t}&\mapdown\cr
Y\times I&\mapright^{\bar f_t}&X}$$
@end tex
@end iftex
@ifinfo
@center (A commutative diagram appears here in the printed output.)
@end ifinfo
is produced with the code
@example
$$\commdiag@{Y&\mapright^f&E\cr \mapdown&\arrow(3,2)\lft@{f_t@}&\mapdown\cr
Y\times I&\mapright^@{\bar f_t@}&X@}$$
@end example
Of course, the parameters may be changed to produce a different effect.
The following commutative diagram (illustrating the universal mapping
property; Warner, @cite{Foundations of Differentiable Manifolds and Lie
Groups})
@cindex Warner, Frank W.
@cindex universal mapping property
@iftex
@tex
$$\varrowlength=20pt
\commdiag{V\otimes W\cr \mapup\lft\phi&\arrow(3,-1)\rt{\tilde l}\cr
V\times W&\mapright^l&U\cr}$$
@end tex
@end iftex
@ifinfo
@center (A commutative diagram appears here in the printed output.)
@end ifinfo
is produced with the code
@example
$$\varrowlength=20pt
\commdiag@{V\otimes W\cr \mapup\lft\phi&\arrow(3,-1)\rt@{\tilde l@}\cr
V\times W&\mapright^l&U\cr@}$$
@end example
A diagram containing isosceles triangles is achieved by placing the apex
of the triangle in the center column, as shown in the example
(illustrating all constant minimal realizations of a linear system;
Brockett, @cite{Finite Dimensional Linear Systems})
@cindex Brockett, Roger W.
@cindex minimal realizations
@cindex linear systems theory
@iftex
@tex
$$\sarrowlength=.42\harrowlength
\commdiag{&R^m\cr &\arrow(-1,-1)\lft{\fam6 B}\quad \arrow(1,-1)\rt{\fam6 G}\cr
R^n&\mapright^{\fam6 P}&R^n\cr
\mapdown\lft{e^{{\fam6 A}t}}&&\mapdown\rt{e^{{\fam6 F}t}}\cr
R^n&\mapright^{\fam6 P}&R^n\cr
&\arrow(1,-1)\lft{\fam6 C}\quad \arrow(-1,-1)\rt{\fam6 H}\cr
&R^q\cr}$$
@end tex
@end iftex
@ifinfo
@center (A commutative diagram appears here in the printed output.)
@end ifinfo
which is produced with the code
@example
$$\sarrowlength=.42\harrowlength
\commdiag@{&R^m\cr &\arrow(-1,-1)\lft@{\bf B@}\quad \arrow(1,-1)\rt@{\bf G@}\cr
R^n&\mapright^@{\bf P@}&R^n\cr
\mapdown\lft@{e^@{@{\bf A@}t@}@}&&\mapdown\rt@{e^@{@{\bf F@}t@}@}\cr
R^n&\mapright^@{\bf P@}&R^n\cr
&\arrow(1,-1)\lft@{\bf C@}\quad \arrow(-1,-1)\rt@{\bf H@}\cr
&R^q\cr@}$$
@end example
Other commutative diagram examples appear in the file
@code{commdiags.tex}, which is distributed with this package.
In these examples the arrow lengths and line slopes were carefully
chosen to blend with each other. In the first example, the default
settings for the arrow lengths are used, but a direction for the arrow
must be chosen. The ratio of the default horizontal and vertical arrow
lengths is approximately the golden mean
@cindex golden mean
@iftex
@tex
$\gamma=1.618\ldots$;
@end tex
@end iftex
@ifinfo
gamma=1.618...;
@end ifinfo
@cindex golden mean
the arrow direction closest to this mean is @code{(3,2)}. In the second
example, a slope of
@iftex
@tex
$-1/3$
@end tex
@end iftex
@ifinfo
-1/3
@end ifinfo
is desired and the default horizontal arrow length is 60 pt; therefore,
choose a vertical arrow length of 20 pt. You may affect the interline
glue settings of @code{\commdiag} by redefining the macro
@code{\commdiagbaselines}.
@findex commdiagbaselines
(cf@. Exercise 18.46 of @cite{The @TeX{}book} and the section on
parameters below.)
The width, height, and depth of all morphisms are hidden so that the
morphisms' size do not affect arrow positions. This can cause a large
morphism at the top or bottom of a diagram to impinge upon the text
surrounding the diagram. To overcome this problem, use @TeX{}'s
@code{\noalign} primitive to insert a @code{\vskip} immediately above or
below the offending line, e.g.,
@samp{$$\commdiag@{\noalign@{\vskip6pt@}X&\mapright^\int&Y\cr ...@}}.
The macro @code{\commdiag} is too simple to be used for more complicated
diagrams, which may have intersecting or overlapping arrows. A second
approach, borrowed from Francis Borceux's @cite{Diagram} macros for
@LaTeX{}, treats the commutative diagram like a grid of identically
shaped boxes. To compose the commutative diagram, first draw an equally
spaced grid, e.g.,
@cindex grid
@cindex Borceux, Francis
@cindex Diagram, macros for LaTeX
@iftex
@tex
$$\def\grid{\cdot&\cdot&\cdot&\cdot&\cdot&\cdot\cr}
\matrix{\grid\grid\grid\grid}$$
@end tex
@end iftex
@ifinfo
@center . . . . . .
@center . . . . . .
@center . . . . . .
@center . . . . . .
@end ifinfo
on a piece of scratch paper. Then draw each element (vertices and
arrows) of the commutative diagram on this grid, centered at each
grid point. Finally, use the macro @code{\gridcommdiag}
@findex gridcommdiag
to implement your design as a @TeX{} alignment. For example, the cubic
diagram
@cindex cube
@iftex
@tex
$$\harrowlength=48pt \varrowlength=48pt \sarrowlength=20pt
\def\cross#1#2{\setbox0=\hbox{$#1$}%
\hbox to\wd0{\hss\hbox{$#2$}\hss}\llap{\unhbox0}}
\gridcommdiag{&&B&&\mapright^b&&D\cr
&\arrow(1,1)\lft a&&&&\arrow(1,1)\lft d\cr
A&&\cross{\hmorphposn=12pt\mapright^c}{\vmorphposn=-12pt\mapdown\lft f}
&&C&&\mapdown\rt h\cr\cr
\mapdown\lft e&&F&&\cross{\hmorphposn=-12pt\mapright_j}
{\vmorphposn=12pt\mapdown\rt g}&&H\cr
&\arrow(1,1)\lft i&&&&\arrow(1,1)\rt l\cr
E&&\mapright_k&&G\cr}$$
@end tex
@end iftex
@ifinfo
@center (A commutative diagram appears here.)
@end ifinfo
that appears in Francis Borceux's documentation can be implemented on
a 7 by 7 grid, and is achieved with the code
@example
$$\harrowlength=48pt \varrowlength=48pt \sarrowlength=20pt
\def\cross#1#2@{\setbox0=\hbox@{$#1$@}%
\hbox to\wd0@{\hss\hbox@{$#2$@}\hss@}\llap@{\unhbox0@}@}
\gridcommdiag@{&&B&&\mapright^b&&D\cr
&\arrow(1,1)\lft a&&&&\arrow(1,1)\lft d\cr
A&&\cross@{\hmorphposn=12pt\mapright^c@}@{\vmorphposn=-12pt\mapdown\lft f@}
&&C&&\mapdown\rt h\cr\cr
\mapdown\lft e&&F&&\cross@{\hmorphposn=-12pt\mapright_j@}
@{\vmorphposn=12pt\mapdown\rt g@}&&H\cr
&\arrow(1,1)\lft i&&&&\arrow(1,1)\rt l\cr
E&&\mapright_k&&G\cr@}$$
@end example
The dimensions @code{\hgrid} and @code{\vgrid}
@findex hgrid
@findex vgrid
control the horizontal and vertical spacing of the grid used by
@code{\gridcommdiag}. The default setting for both of these dimensions
is 15 pt. Note that in the example of the cube the arrow lengths must
be adjusted so that the arrows overlap into neighboring boxes by the
desired amount. Hence, the @code{\gridcommdiag} method, albeit more
powerful, is less automatic than the simpler @code{\commdiag} method.
Furthermore, the ad hoc macro @code{\cross} is introduced to allow the
effect of overlapping arrows. Finally, note that the positions of four
of the morphisms are adjusted by setting @code{\hmorphposn} and
@code{\vmorphposn}.
One is not restricted to a square grid. For example, the proof of
Zassenhaus's Butterfly Lemma can be illustrated by the diagram (appearing
in Lang's book @cite{Algebra})
@cindex Zassenhaus, Hans
@cindex Lang, Serge
@cindex Butterfly Lemma
@iftex
@tex
$$\hgrid=16pt \vgrid=8pt \sarrowlength=32pt
\def\cross#1#2{\setbox0=\hbox{$#1$}%
\hbox to\wd0{\hss\hbox{$#2$}\hss}\llap{\unhbox0}}
\def\l#1{\llap{$#1$\hskip.5em}}
\def\r#1{\rlap{\hskip.5em$#1$}}
\gridcommdiag{&&U&&&&V\cr &&\bullet&&&&\bullet\cr
&&\sarrowlength=16pt\sline(0,1)&&&&\sarrowlength=16pt\sline(0,1)\cr
&&\l{u(U\cap V)}\bullet&&&&\bullet\r{(U\cap V)v}\cr
&&&\sline(2,-1)&&\sline(2,1)\cr
&&\cross{=}{\sline(0,1)}&&\bullet&&\cross{=}{\sline(0,1)}\cr\cr
&&\l{^{\textstyle u(U\cap v)}}\bullet&&\cross{=}{\sline(0,1)}&&
\bullet\r{^{\textstyle(u\cap V)v}}\cr
&\sline(2,1)&&\sline(2,-1)&&\sline(2,1)&&\sline(2,-1)\cr
\l{u}\bullet&&&&\bullet&&&&\bullet\r{v}\cr
&\sline(2,-1)&&\sline(2,1)&&\sline(2,-1)&&\sline(2,1)\cr
&&\bullet&&&&\bullet\cr &&u\cap V&&&&U\cap v\cr}$$
@end tex
@end iftex
@ifinfo
@center (A commutative diagram appears here.)
@end ifinfo
This diagram may be implemented on a 9 by 12 grid with an aspect ratio
of 1/2, and is set with the code
@example
$$\hgrid=16pt \vgrid=8pt \sarrowlength=32pt
\def\cross#1#2@{\setbox0=\hbox@{$#1$@}%
\hbox to\wd0@{\hss\hbox@{$#2$@}\hss@}\llap@{\unhbox0@}@}
\def\l#1@{\llap@{$#1$\hskip.5em@}@}
\def\r#1@{\rlap@{\hskip.5em$#1$@}@}
\gridcommdiag@{&&U&&&&V\cr &&\bullet&&&&\bullet\cr
&&\sarrowlength=16pt\sline(0,1)&&&&\sarrowlength=16pt\sline(0,1)\cr
&&\l@{u(U\cap V)@}\bullet&&&&\bullet\r@{(U\cap V)v@}\cr
&&&\sline(2,-1)&&\sline(2,1)\cr
&&\cross@{=@}@{\sline(0,1)@}&&\bullet&&\cross@{=@}@{\sline(0,1)@}\cr\cr
&&\l@{^@{\textstyle u(U\cap v)@}@}\bullet&&\cross@{=@}@{\sline(0,1)@}&&
\bullet\r@{^@{\textstyle(u\cap V)v@}@}\cr
&\sline(2,1)&&\sline(2,-1)&&\sline(2,1)&&\sline(2,-1)\cr
\l@{u@}\bullet&&&&\bullet&&&&\bullet\r@{v@}\cr
&\sline(2,-1)&&\sline(2,1)&&\sline(2,-1)&&\sline(2,1)\cr
&&\bullet&&&&\bullet\cr &&u\cap V&&&&U\cap v\cr@}$$
@end example
Again, the construction of this diagram requires careful choices for the
arrow lengths and is facilitated by the introduction of the ad hoc
macros @code{\cross}, @code{\r}, and @code{\l}. Note also that
superscripts were used to adjust the position of the vertices
@iftex
@tex
$u(U\cap v)$ and $(u\cap V)v$.
@end tex
@end iftex
@ifinfo
u(U intersection v) and (u intersection V)v.
@end ifinfo
Many diagrams may be typeset with the predefined macros that appear
here; however, ingenuity is often required to handle special cases.
@node Commutative diagram parameters
@subsection Commutative diagram parameters
The following is a list describing the parameters used in the
commutative diagram macros. These dimensions may be changed globally or
locally.
@table @code
@item \harrowlength
@findex harrowlength
(Default: 60 pt) The length of right or left arrows.
@item \varrowlength
@findex varrowlength
(Default: 0.618@code{\harrowlength}) The length of up or down
arrows.
@item \sarrowlength
@findex sarrowlength
(Default: 60 pt) The horizontal length of slanted arrows.
@item \hmorphposn
@findex hmorphposn
(Default: 0 pt) The horizontal position of the morphism with
respect to its default position. There are also the dimensions
@code{\hmorphposnup},
@findex hmorphposnup
@code{\hmorphposndn},
@findex hmorphposndn
@code{\hmorphposnrt},
@findex hmorphposnrt
and @code{\hmorphposnlft}
@findex hmorphposnlft
for @code{^}/@code{_} or @code{\lft}/@code{\rt} constructions.
@item \vmorphposn
@findex vmorphposn
(Default: 0 pt) The vertical position of the morphism with
respect to its default position. There are also the dimensions
@code{\vmorphposnup},
@findex vmorphposnup
@code{\vmorphposndn},
@findex vmorphposndn
@code{\vmorphposnrt},
@findex vmorphposnrt
and @code{\vmorphposnlft}
@findex vmorphposnlft
for @code{^}/@code{_} or @code{\lft}/@code{\rt} constructions.
@item \morphdist
@findex morphdist
(Default: 4 pt) The distance of morphisms from slanted lines
or arrows.
@item \channelwidth
@findex channelwidth
(Default: 3 pt) The distance between double lines or arrows.
@item \hchannel, \vchannel
@findex hchannel
@findex vchannel
(Defaults: 0 pt) Overrides @code{\channelwidth}. The
horizontal and vertical shifts between double lines or arrows.
@item \commdiagbaselines
@findex commdiagbaselines
(Default: @code{\baselineskip=15pt
\lineskip=3pt
\lineskiplimit=3pt })
The parameters used by @code{\commdiag} for setting interline glue.
@item \hgrid
@findex hgrid
(Default: 15 pt) The horizontal spacing of the grid used by
@code{\gridcommdiag}.
@item \vgrid
@findex vgrid
(Default: 15 pt) The vertical spacing of the grid used by
@code{\gridcommdiag}.
@end table
@comment bye
|