1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
settings.outformat="pdf";
size(20cm);
// The required data file is available here:
// http://www.uni-graz.at/~schwaige/asymptote/worldmap.dat
// This data was originally obtained from
// http://www.ngdc.noaa.gov/mgg_coastline/mapit.jsp
real findtheta(real phi, real epsilon=realEpsilon) {
// Determine for given phi the unique solution -pi/2 <= theta <= pi/2 off
// 2*theta+sin(2*theta)=pi*sin(phi)
// in the non-trivial cases by Newton iteration;
// theoretically the initial guess pi*sin(phi)/4 always works.
real nwtn(real x, real y) {return x-(2x+sin(2x)-y)/(2+2*cos(2x));};
real y=pi*sin(phi);
if(y == 0) return 0.0;
if(abs(y) == 1) return pi/2;
real startv=y/4;
real endv=nwtn(startv,y);
if(epsilon < 500*realEpsilon) epsilon=500*realEpsilon;
while(abs(endv-startv) > epsilon) {startv=endv; endv=nwtn(startv,y);};
return endv;
}
pair mollweide(real lambda, real phi, real lambda0=0){
// calculate the Mollweide projection centered at lambda0 for the point
// with coordinates(phi,lambda)
static real c1=2*sqrt(2)/pi;
static real c2=sqrt(2);
real theta=findtheta(phi);
return(c1*(lambda-lambda0)*cos(theta), c2*sin(theta));
}
guide gfrompairs(pair[] data){
guide gtmp;
for(int i=0; i < data.length; ++i) {
pair tmp=mollweide(radians(data[i].y),radians(data[i].x));
gtmp=gtmp--tmp;
}
return gtmp;
}
string datafile="worldmap.dat";
file in=input(datafile,comment="/").line();
// new commentchar since "#" is contained in the file
pair[][] arrarrpair=new pair[][] ;
int cnt=-1;
bool newseg=false;
while(true) {
if(eof(in)) break;
string str=in;
string[] spstr=split(str,"");
if(spstr[0] == "#") {++cnt; arrarrpair[cnt]=new pair[] ; newseg=true;}
if(spstr[0] != "#" && newseg) {
string[] spstr1=split(str,'\t'); // separator is TAB not SPACE
pair tmp=((real) spstr1[1],(real) spstr1[0]);
arrarrpair[cnt].push(tmp);
}
}
for(int i=0; i < arrarrpair.length; ++i)
draw(gfrompairs(arrarrpair[i]),1bp+black);
// lines of longitude and latitude
pair[] constlong(real lambda, int np=100) {
pair[] tmp;
for(int i=0; i <= np; ++i) tmp.push((-90+i*180/np,lambda));
return tmp;
}
pair[] constlat(real phi, int np=100) {
pair[] tmp;
for(int i=0; i <= 2*np; ++i) tmp.push((phi,-180+i*180/np));
return tmp;
}
for(int j=1; j <= 5; ++j) draw(gfrompairs(constlong(-180+j/6*360)),white);
draw(gfrompairs(constlong(-180)),1.5bp+white);
draw(gfrompairs(constlong(180)),1.5bp+white);
for(int j=0; j <= 12; ++j) draw(gfrompairs(constlat(-90+j/6*180)),white);
//draw(gfrompairs(constlong(10)),dotted);
close(in);
shipout(bbox(1mm,darkblue,Fill(lightblue)), view=true);
|