summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/asymptote/three_tube.asy
blob: 25bb9385ec874b2e44541c2e0f7ac12125e6044b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
void render(path3 s, void f(path3, real), render render=defaultrender)
{
  real granularity=render.tubegranularity;
  void Split(triple z0, triple c0, triple c1, triple z1, real t0=0, real t1=1,
             real depth=mantissaBits) {
    if(depth > 0) {
      real S=straightness(z0,c0,c1,z1);
      if(S > 0) {
        --depth;
        if(S > max(granularity*max(abs(z0),abs(c0),abs(c1),abs(z1)))) {
          triple m0=0.5*(z0+c0);
          triple m1=0.5*(c0+c1);
          triple m2=0.5*(c1+z1);
          triple m3=0.5*(m0+m1);
          triple m4=0.5*(m1+m2);
          triple m5=0.5*(m3+m4);
          real tm=0.5*(t0+t1);
          Split(z0,m0,m3,m5,t0,tm,depth);
          Split(m5,m4,m2,z1,tm,t1,depth);
          return;
        }
      }
    }
    f(z0..controls c0 and c1..z1,t0);
  }
  Split(point(s,0),postcontrol(s,0),precontrol(s,1),point(s,1));
}

struct rmf
{
  triple p,r,t,s;
  void operator init(triple p, triple r, triple t)
  {
    this.p=p;
    this.r=r;
    this.t=t;
    s=cross(t,r);
  }
}

// Rotation minimizing frame
// http://www.cs.hku.hk/research/techreps/document/TR-2007-07.pdf
rmf[] rmf(path3 g, real[] t)
{
  rmf[] R=new rmf[t.length];
  triple d=dir(g,0);
  R[0]=rmf(point(g,0),perp(d),d);
  for(int i=1; i < t.length; ++i) {
    rmf Ri=R[i-1];
    real t=t[i];
    triple p=point(g,t);
    triple v1=p-Ri.p;
    if(v1 != O) {
      triple r=Ri.r;
      triple u1=unit(v1);
      triple ti=Ri.t;
      triple tp=ti-2*dot(u1,ti)*u1;
      ti=dir(g,t);
      triple rp=r-2*dot(u1,r)*u1;
      triple u2=unit(ti-tp);
      rp=rp-2*dot(u2,rp)*u2;
      R[i]=rmf(p,unit(rp),unit(ti));
    } else
      R[i]=R[i-1];
  }
  return R;
}

private real[][][] bispline0(real[][] z, real[][] p, real[][] q, real[][] r,
                             real[] x, real[] y, bool[][] cond={})
{ // z[i][j] is the value at (x[i],y[j])
  // p and q are the first derivatives with respect to x and y, respectively
  // r is the second derivative ddu/dxdy
  int n=x.length-1;
  int m=y.length-1;

  bool all=cond.length == 0;

  int count;
  if(all)
    count=n*m;
  else {
    count=0;
    for(int i=0; i < n; ++i) {
      bool[] condi=cond[i];
      bool[] condp=cond[i+1];
      for(int j=0; j < m; ++j)
        if(all || (condi[j] && condi[j+1] && condp[j] && condp[j+1])) 
          ++count;
    }
  }

  real[][][] s=new real[count][][];
  int k=0;
  for(int i=0; i < n; ++i) {
    int ip=i+1;
    real xi=x[i];
    real xp=x[ip];
    real hx=(xp-xi)/3;
    real[] zi=z[i];
    real[] zp=z[ip];
    real[] ri=r[i];
    real[] rp=r[ip];
    real[] pi=p[i];
    real[] pp=p[ip];
    real[] qi=q[i];
    real[] qp=q[ip];
    bool[] condi=all ? null : cond[i];
    bool[] condp=all ? null : cond[i+1];
    for(int j=0; j < m; ++j) {
      if(all || (condi[j] && condi[j+1] && condp[j] && condp[j+1])) {
        real yj=y[j];
        int jp=j+1;
        real yp=y[jp];
        real hy=(yp-yj)/3;
        real hxy=hx*hy;
        real zij=zi[j];
        real zip=zi[jp];
        real zpj=zp[j];
        real zpp=zp[jp];
        real pij=hx*pi[j];
        real ppj=hx*pp[j];
        real qip=hy*qi[jp];
        real qpp=hy*qp[jp];
        real zippip=zip+hx*pi[jp];
        real zppmppp=zpp-hx*pp[jp];
        real zijqij=zij+hy*qi[j];
        real zpjqpj=zpj+hy*qp[j];
        
        s[k]=new real[][] {{zij,zijqij,zip-qip,zip},
                           {zij+pij,zijqij+pij+hxy*ri[j],
                            zippip-qip-hxy*ri[jp],zippip},
                           {zpj-ppj,zpjqpj-ppj-hxy*rp[j],
                            zppmppp-qpp+hxy*rp[jp],zppmppp},
                           {zpj,zpjqpj,zpp-qpp,zpp}};
        ++k;
      }
    }
  }
  
  return s;
}

// return the surface values described by a real matrix f, interpolated with
// xsplinetype and ysplinetype.
real[][][] bispline(real[][] f, real[] x, real[] y,
                    splinetype xsplinetype=null,
                    splinetype ysplinetype=xsplinetype, bool[][] cond={})
{
  real epsilon=sqrtEpsilon*norm(y);
  if(xsplinetype == null)
    xsplinetype=(abs(x[0]-x[x.length-1]) <= epsilon) ? periodic : notaknot;
  if(ysplinetype == null)
    ysplinetype=(abs(y[0]-y[y.length-1]) <= epsilon) ? periodic : notaknot;
  int n=x.length; int m=y.length;
  real[][] ft=transpose(f);
  real[][] tp=new real[m][];
  for(int j=0; j < m; ++j)
    tp[j]=xsplinetype(x,ft[j]);
  real[][] q=new real[n][];
  for(int i=0; i < n; ++i)
    q[i]=ysplinetype(y,f[i]);
  real[][] qt=transpose(q);
  real[] d1=xsplinetype(x,qt[0]);
  real[] d2=xsplinetype(x,qt[m-1]);
  real[][] r=new real[n][];
  real[][] p=transpose(tp);
  for(int i=0; i < n; ++i)
    r[i]=clamped(d1[i],d2[i])(y,p[i]);
  return bispline0(f,p,q,r,x,y,cond);
}

bool uperiodic(real[][] a) {
  int n=a.length;
  if(n == 0) return false;
  int m=a[0].length;
  real[] a0=a[0];
  real[] a1=a[n-1];
  for(int j=0; j < m; ++j) {
    real norm=0;
    for(int i=0; i < n; ++i)
      norm=max(norm,abs(a[i][j]));
    real epsilon=sqrtEpsilon*norm;
    if(abs(a0[j]-a1[j]) > epsilon) return false;
  }
  return true;
}
bool vperiodic(real[][] a) {
  int n=a.length;
  if(n == 0) return false;
  int m=a[0].length-1;
  for(int i=0; i < n; ++i) {
    real[] ai=a[i];
    real epsilon=sqrtEpsilon*norm(ai);
    if(abs(ai[0]-ai[m]) > epsilon) return false;
  }
  return true;
}

// return the surface described by a parametric function f evaluated at u and v
// and interpolated with usplinetype and vsplinetype.
surface surface(triple f(pair z), real[] u, real[] v,
                splinetype[] usplinetype, splinetype[] vsplinetype=Spline,
                bool cond(pair z)=null)
{
  int nu=u.length-1;
  int nv=v.length-1;
  real[] ipt=sequence(u.length);
  real[] jpt=sequence(v.length);
  real[][] fx=new real[u.length][v.length];
  real[][] fy=new real[u.length][v.length];
  real[][] fz=new real[u.length][v.length];

  bool[][] active;
  bool all=cond == null;
  if(!all) active=new bool[u.length][v.length];

  for(int i=0; i <= nu; ++i) {
    real ui=u[i];
    real[] fxi=fx[i];
    real[] fyi=fy[i];
    real[] fzi=fz[i];
    bool[] activei=all ? null : active[i];
    for(int j=0; j <= nv; ++j) {
      pair z=(ui,v[j]);
      if(!all) activei[j]=cond(z);
      triple f=f(z);
      fxi[j]=f.x;
      fyi[j]=f.y;
      fzi[j]=f.z;
    }
  }

  if(usplinetype.length == 0) {
    usplinetype=new splinetype[] {uperiodic(fx) ? periodic : notaknot,
                                  uperiodic(fy) ? periodic : notaknot,
                                  uperiodic(fz) ? periodic : notaknot};
  } else if(usplinetype.length != 3) abort("usplinetype must have length 3");

  if(vsplinetype.length == 0) {
    vsplinetype=new splinetype[] {vperiodic(fx) ? periodic : notaknot,
                                  vperiodic(fy) ? periodic : notaknot,
                                  vperiodic(fz) ? periodic : notaknot};
  } else if(vsplinetype.length != 3) abort("vsplinetype must have length 3");
  
  real[][][] sx=bispline(fx,ipt,jpt,usplinetype[0],vsplinetype[0],active);
  real[][][] sy=bispline(fy,ipt,jpt,usplinetype[1],vsplinetype[1],active);
  real[][][] sz=bispline(fz,ipt,jpt,usplinetype[2],vsplinetype[2],active);

  surface s=surface(sx.length);
  s.index=new int[nu][nv];
  int k=-1;
  for(int i=0; i < nu; ++i) {
    int[] indexi=s.index[i];
    for(int j=0; j < nv; ++j)
      indexi[j]=++k;
  }

  for(int k=0; k < sx.length; ++k) {
    triple[][] Q=new triple[4][];
    real[][] Px=sx[k];
    real[][] Py=sy[k];
    real[][] Pz=sz[k];
    for(int i=0; i < 4 ; ++i) {
      real[] Pxi=Px[i];
      real[] Pyi=Py[i];
      real[] Pzi=Pz[i];
      Q[i]=new triple[] {(Pxi[0],Pyi[0],Pzi[0]),
                         (Pxi[1],Pyi[1],Pzi[1]),
                         (Pxi[2],Pyi[2],Pzi[2]),
                         (Pxi[3],Pyi[3],Pzi[3])};
    }
    s.s[k]=patch(Q);
  }

  if(usplinetype[0] == periodic && usplinetype[1] == periodic &&
     usplinetype[1] == periodic) s.ucyclic(true);

  if(vsplinetype[0] == periodic && vsplinetype[1] == periodic &&
     vsplinetype[1] == periodic) s.vcyclic(true);
  
  return s;
}

path3 interp(path3 a, path3 b, real t) 
{
  int n=size(a);
  return path3(sequence(new triple(int i) {
        return interp(precontrol(a,i),precontrol(b,i),t);},n),
    sequence(new triple(int i) {return interp(point(a,i),point(b,i),t);},n),
    sequence(new triple(int i) {return interp(postcontrol(a,i),
                                              postcontrol(b,i),t);},n),
    sequence(new bool(int i) {return straight(a,i) && straight(b,i);},n),
    cyclic(a) && cyclic(b));
}

struct tube
{
  surface s;
  path3 center; // tube axis

  void Null(transform3) {}
  void Null(transform3, bool) {}
  
  void operator init(path3 p, real width, render render=defaultrender,
                     void cylinder(transform3)=Null,
                     void sphere(transform3, bool half)=Null,
                     void pipe(path3, path3)=null) {
    real r=0.5*width;

    void generate(path3 p) {
      int n=length(p);
      if(piecewisestraight(p)) {
        for(int i=0; i < n; ++i) {
          triple v=point(p,i);
          triple u=point(p,i+1)-v;
          transform3 t=shift(v)*align(unit(u))*scale(r,r,abs(u));
          s.append(t*unitcylinder);
          cylinder(t);
        }
        center=center&p;
      } else {
        real[] T;
        path3 G;
        for(int i=0; i < n; ++i)
          render(subpath(p,i,i+1),
                 new void(path3 g, real s) {
                   G=G&g;
                   T.push(i+s);
                 },render);
        T.push(n);
        T.cyclic=cyclic(p);
        rmf[] rmf=rmf(p,T);
        triple f(pair t) {
          rmf R=rmf[round(t.x)];
          int n=round(t.y);
          static real[] x={1,0,-1,0};
          static real[] y={0,1,0,-1};
          return point(G,t.x)+r*(R.r*x[n]-R.s*y[n]);
        }

        static real[] v={0,1,2,3,0};
        static real[] circular(real[] x, real[] y) {
          static real a=8/3*(sqrt(2)-1);
          return a*periodic(x,y);
        }
        
        static splinetype[] Monotonic={monotonic,monotonic,monotonic};
        static splinetype[] Circular={circular,circular,circular};
        if(T.length > 0) {
          surface S=surface(f,sequence(T.length),v,Monotonic,Circular);
          s.append(S);

          // Compute center of tube:
          int n=S.index.length;
          if(T.cyclic) --n;
          triple[] pre=new triple[n+1];
          triple[] point=new triple[n+1];
          triple[] post=new triple[n+1];

          int[] index=S.index[0];
          triple Point;
          for(int m=0; m < 4; ++m)
            Point += S.s[index[m]].P[0][0];
          pre[0]=point[0]=0.25*Point;
            
          for(int i=0; i < n; ++i) {
            index=S.index[i];
            triple Pre,Point,Post;
            for(int m=0; m < 4; ++m) {
              triple [][] P=S.s[index[m]].P;
              Post += P[1][0];
              Pre += P[2][0];
              Point += P[3][0];
            }
            post[i]=0.25*Post;
            pre[i+1]=0.25*Pre;
            point[i+1]=0.25*Point;

          }

          index=S.index[n-1];
          triple Post;
          for(int m=0; m < 4; ++m)
            Post += S.s[index[m]].P[3][0];
          post[n]=0.25*Post;

          bool[] b=array(n+1,false);
          path3 Center=path3(pre,point,post,b,T.cyclic);
          center=center&Center;

          if(pipe != null) { // Compute path along tube
            triple[] pre=new triple[n+1];
            triple[] point=new triple[n+1];
            triple[] post=new triple[n+1];
            pre[0]=point[0]=S.s[S.index[0][0]].P[0][0];
            for(int i=0; i < n; ++i) {
              triple [][] P=S.s[S.index[i][0]].P;
              post[i]=P[1][0];
              pre[i+1]=P[2][0];
              point[i+1]=P[3][0];
            }
            post[n]=S.s[S.index[n-1][0]].P[3][0];
            pipe(Center,path3(pre,point,post,b,T.cyclic));
          }
        }
      }
    }
    
    transform3 t=scale3(r);
    bool cyclic=cyclic(p);
    int begin=0;
    int n=length(p);
    for(int i=cyclic ? 0 : 1; i < n; ++i)
      if(abs(dir(p,i,1)-dir(p,i,-1)) > sqrtEpsilon) {
        generate(subpath(p,begin,i));
        triple dir=dir(p,i,-1);
        transform3 T=t*align(dir);
        s.append(shift(point(p,i))*T*(dir != O ? unithemisphere : unitsphere));
        sphere(shift(point(center,length(center)))*T,
               half=straight(p,i-1) && straight(p,i));
        begin=i;
      }
    generate(subpath(p,begin,n));
  }
}