summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/asymptote/stats.asy
blob: be9efdfa429684b8975186f115fe835b7d44e97e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
private import graph;

real legendmarkersize=2mm;

real mean(real A[])
{
  return sum(A)/A.length;
}

// unbiased estimate
real variance(real A[])
{
  return sum((A-mean(A))^2)/(A.length-1);
}

real variancebiased(real A[])
{
  return sum((A-mean(A))^2)/A.length;
}

// unbiased estimate
real stdev(real A[])
{
  return sqrt(variance(A));
}

real rms(real A[])
{
  return sqrt(sum(A^2)/A.length);
}

real skewness(real A[])
{
  real[] diff=A-mean(A);
  return sum(diff^3)/sqrt(sum(diff^2)^3/A.length);
}

real kurtosis(real A[])
{
  real[] diff=A-mean(A);
  return sum(diff^4)/sum(diff^2)^2*A.length;
}

real kurtosisexcess(real A[])
{
  return kurtosis(A)-3;
}

real Gaussian(real x, real sigma)
{
  static real sqrt2pi=sqrt(2pi);
  return exp(-0.5*(x/sigma)^2)/(sigma*sqrt2pi);
}

real Gaussian(real x)
{
  static real invsqrt2pi=1/sqrt(2pi);
  return exp(-0.5*x^2)*invsqrt2pi;
}

// Return frequency count of data in [bins[i],bins[i+1]) for i=0,...,n-1.
int[] frequency(real[] data, real[] bins)
{
  int n=bins.length-1;
  int[] freq=new int[n];
  for(int i=0; i < n; ++i)
    freq[i]=sum(bins[i] <= data & data < bins[i+1]);
  return freq;
}

// Return frequency count in n uniform bins from a to b
// (faster than the above more general algorithm).
int[] frequency(real[] data, real a, real b, int n)
{
  int[] freq=sequence(new int(int x) {return 0;},n);
  real h=n/(b-a);
  for(int i=0; i < data.length; ++i) {
    int I=Floor((data[i]-a)*h);
    if(I >= 0 && I < n)
      ++freq[I];
  }
  return freq;
}

// Return frequency count in [xbins[i],xbins[i+1]) and [ybins[j],ybins[j+1]).
int[][] frequency(real[] x, real[] y, real[] xbins, real[] ybins)
{
  int n=xbins.length-1;
  int m=ybins.length-1;
  int[][] freq=new int[n][m];
  bool[][] inybin=new bool[m][y.length];
  for(int j=0; j < m; ++j)
    inybin[j]=ybins[j] <= y & y < ybins[j+1];
  for(int i=0; i < n; ++i) {
    bool[] inxbini=xbins[i] <= x & x < xbins[i+1];
    int[] freqi=freq[i];
    for(int j=0; j < m; ++j)
      freqi[j]=sum(inxbini & inybin[j]);
  }
  return freq;
}

// Return frequency count in nx by ny uniform bins in box(a,b).
int[][] frequency(real[] x, real[] y, pair a, pair b, int nx, int ny=nx)
{
  int[][] freq=new int[nx][];
  for(int i=0; i < nx; ++i)
    freq[i]=sequence(new int(int x) {return 0;},ny);
  real hx=nx/(b.x-a.x);
  real hy=ny/(b.y-a.y);
  real ax=a.x;
  real ay=a.y;
  for(int i=0; i < x.length; ++i) {
    int I=Floor((x[i]-ax)*hx);
    int J=Floor((y[i]-ay)*hy);
    if(I >= 0 && I <= nx && J >= 0 && J <= ny)
      ++freq[I][J];
  }
  return freq;
}

int[][] frequency(pair[] z, pair a, pair b, int nx, int ny=nx)
{
  int[][] freq=new int[nx][];
  for(int i=0; i < nx; ++i)
    freq[i]=sequence(new int(int x) {return 0;},ny);
  real hx=nx/(b.x-a.x);
  real hy=ny/(b.y-a.y);
  real ax=a.x;
  real ay=a.y;
  for(int i=0; i < z.length; ++i) {
    int I=Floor((z[i].x-ax)*hx);
    int J=Floor((z[i].y-ay)*hy);
    if(I >= 0 && I < nx && J >= 0 && J < ny)
      ++freq[I][J];
  }
  return freq;
}

path halfbox(pair a, pair b)
{
  return a--(a.x,b.y)--b;
}

path topbox(pair a, pair b)
{
  return a--(a.x,b.y)--b--(b.x,a.y);
}

// Draw a histogram for bin boundaries bin[n+1] of frequency data in count[n].
void histogram(picture pic=currentpicture, real[] bins, real[] count,
               real low=-infinity,
	       pen fillpen=nullpen, pen drawpen=nullpen, bool bars=false,
	       Label legend="", real markersize=legendmarkersize)
{
  if((fillpen == nullpen || bars == true) && drawpen == nullpen)
    drawpen=currentpen;
  bool[] valid=count > 0;
  real m=min(valid ? count : null);
  real M=max(valid ? count : null);
  bounds my=autoscale(pic.scale.y.scale.T(m),pic.scale.y.T(M),
                      pic.scale.y.scale);
  if(low == -infinity) low=pic.scale.y.scale.Tinv(my.min);
  real last=low;
  int n=count.length;
  begingroup(pic);
  for(int i=0; i < n; ++i) {
    if(valid[i]) {
      real c=count[i];
      pair b=Scale(pic,(bins[i+1],c));
      pair a=Scale(pic,(bins[i],low));
      if(fillpen != nullpen) {
	fill(pic,box(a,b),fillpen);
	if(!bars) draw(pic,b--(b.x,a.y),fillpen);
      }
      if(!bars)
	draw(pic,halfbox(Scale(pic,(bins[i],last)),b),drawpen);
      else draw(pic,topbox(a,b),drawpen);
      last=c;
    } else {
      if(!bars && last != low) {
	draw(pic,Scale(pic,(bins[i],last))--Scale(pic,(bins[i],low)),drawpen);
        last=low;
      }
    }
  }
  if(!bars && last != low)
    draw(pic,Scale(pic,(bins[n],last))--Scale(pic,(bins[n],low)),drawpen);
  endgroup(pic);

  if(legend.s != "") {
    marker m=marker(scale(markersize)*shift((-0.5,-0.5))*unitsquare,
		    drawpen,fillpen == nullpen ? Draw :
		    (drawpen == nullpen ? Fill(fillpen) : FillDraw(fillpen)));
    legend.p(drawpen);
    pic.legend.push(Legend(legend.s,legend.p,invisible,m.f));
  }
}

// Draw a histogram for data in n uniform bins between a and b
// (optionally normalized).
void histogram(picture pic=currentpicture, real[] data, real a, real b, int n,
               bool normalize=false, real low=-infinity,
	       pen fillpen=nullpen, pen drawpen=nullpen, bool bars=false,
	       Label legend="", real markersize=legendmarkersize)
{
  real dx=(b-a)/n;
  real[] freq=frequency(data,a,b,n);
  if(normalize) freq /= dx*sum(freq);
  histogram(pic,a+sequence(n+1)*dx,freq,low,fillpen,drawpen,bars,legend,
	    markersize);
}

// Method of Shimazaki and Shinomoto for selecting the optimal number of bins.
// Shimazaki H. and Shinomoto S., A method for selecting the bin size of a
// time histogram, Neural Computation (2007), Vol. 19(6), 1503-1527.
// cf. http://www.ton.scphys.kyoto-u.ac.jp/~hideaki/res/histogram.html
int bins(real[] data, int max=100)
{
  real m=min(data);
  real M=max(data)*(1+epsilon);
  real n=data.length;
  int bins=1;
  real minC=2n-n^2; // Cost function for N=1.
  for(int N=2; N <= max; ++N) {
    real C=N*(2n-sum(frequency(data,m,M,N)^2));
    if(C < minC) {
      minC=C;
      bins=N;
    }
  }

  return bins;
}

// return a pair of central Gaussian random numbers with unit variance
pair Gaussrandpair()
{
  real r2,v1,v2;
  do {
    v1=2.0*unitrand()-1.0;
    v2=2.0*unitrand()-1.0;
    r2=v1*v1+v2*v2;
  } while(r2 >= 1.0 || r2 == 0.0);
  return (v1,v2)*sqrt(-log(r2)/r2);
}

// return a central Gaussian random number with unit variance
real Gaussrand()
{
  static real sqrt2=sqrt(2.0);
  static pair z;
  static bool cached=true;
  cached=!cached;
  if(cached) return sqrt2*z.y;
  z=Gaussrandpair();
  return sqrt2*z.x;
}

struct linefit {
  real m,b;     // slope, intercept
  real dm,db;   // standard error in slope, intercept
  real r;       // correlation coefficient
  real fit(real x) {
    return m*x+b;
  }
}

// Do a least-squares fit of data in real arrays x and y to the line y=m*x+b
linefit leastsquares(real[] x, real[] y)
{
  linefit L;
  int n=x.length;
  if(n == 1) abort("Least squares fit requires at least 2 data points");
  real sx=sum(x);
  real sy=sum(y);
  real sxx=n*sum(x^2)-sx^2;
  real sxy=n*sum(x*y)-sx*sy;
  L.m=sxy/sxx;
  L.b=(sy-L.m*sx)/n;
  if(n > 2) {
    real syy=n*sum(y^2)-sy^2;
    if(sxx == 0 || syy == 0) return L;
    L.r=sxy/sqrt(sxx*syy);
    real arg=syy-sxy^2/sxx;
    if(arg <= 0) return L;
    real s=sqrt(arg/(n-2));
    L.dm=s*sqrt(1/sxx);
    L.db=s*sqrt(1+sx^2/sxx)/n;
  }  
  return L;
}