1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
package re;
our $VERSION = 0.03;
=head1 NAME
re - Perl pragma to alter regular expression behaviour
=head1 SYNOPSIS
use re 'taint';
($x) = ($^X =~ /^(.*)$/s); # $x is tainted here
$pat = '(?{ $foo = 1 })';
use re 'eval';
/foo${pat}bar/; # won't fail (when not under -T switch)
{
no re 'taint'; # the default
($x) = ($^X =~ /^(.*)$/s); # $x is not tainted here
no re 'eval'; # the default
/foo${pat}bar/; # disallowed (with or without -T switch)
}
use re 'debug'; # NOT lexically scoped (as others are)
/^(.*)$/s; # output debugging info during
# compile and run time
use re 'debugcolor'; # same as 'debug', but with colored output
...
(We use $^X in these examples because it's tainted by default.)
=head1 DESCRIPTION
When C<use re 'taint'> is in effect, and a tainted string is the target
of a regex, the regex memories (or values returned by the m// operator
in list context) are tainted. This feature is useful when regex operations
on tainted data aren't meant to extract safe substrings, but to perform
other transformations.
When C<use re 'eval'> is in effect, a regex is allowed to contain
C<(?{ ... })> zero-width assertions even if regular expression contains
variable interpolation. That is normally disallowed, since it is a
potential security risk. Note that this pragma is ignored when the regular
expression is obtained from tainted data, i.e. evaluation is always
disallowed with tainted regular expresssions. See L<perlre/(?{ code })>.
For the purpose of this pragma, interpolation of precompiled regular
expressions (i.e., the result of C<qr//>) is I<not> considered variable
interpolation. Thus:
/foo${pat}bar/
I<is> allowed if $pat is a precompiled regular expression, even
if $pat contains C<(?{ ... })> assertions.
When C<use re 'debug'> is in effect, perl emits debugging messages when
compiling and using regular expressions. The output is the same as that
obtained by running a C<-DDEBUGGING>-enabled perl interpreter with the
B<-Dr> switch. It may be quite voluminous depending on the complexity
of the match. Using C<debugcolor> instead of C<debug> enables a
form of output that can be used to get a colorful display on terminals
that understand termcap color sequences. Set C<$ENV{PERL_RE_TC}> to a
comma-separated list of C<termcap> properties to use for highlighting
strings on/off, pre-point part on/off.
See L<perldebug/"Debugging regular expressions"> for additional info.
The directive C<use re 'debug'> is I<not lexically scoped>, as the
other directives are. It has both compile-time and run-time effects.
See L<perlmodlib/Pragmatic Modules>.
=cut
# N.B. File::Basename contains a literal for 'taint' as a fallback. If
# taint is changed here, File::Basename must be updated as well.
my %bitmask = (
taint => 0x00100000,
eval => 0x00200000,
);
sub setcolor {
eval { # Ignore errors
require Term::Cap;
my $terminal = Tgetent Term::Cap ({OSPEED => 9600}); # Avoid warning.
my $props = $ENV{PERL_RE_TC} || 'md,me,so,se,us,ue';
my @props = split /,/, $props;
my $colors = join "\t", map {$terminal->Tputs($_,1)} @props;
$colors =~ s/\0//g;
$ENV{PERL_RE_COLORS} = $colors;
};
}
sub bits {
my $on = shift;
my $bits = 0;
unless (@_) {
require Carp;
Carp::carp("Useless use of \"re\" pragma");
}
foreach my $s (@_){
if ($s eq 'debug' or $s eq 'debugcolor') {
setcolor() if $s eq 'debugcolor';
require XSLoader;
XSLoader::load('re');
install() if $on;
uninstall() unless $on;
next;
}
if (exists $bitmask{$s}) {
$bits |= $bitmask{$s};
} else {
require Carp;
Carp::carp("Unknown \"re\" subpragma '$s' (known ones are: @{[join(', ', map {qq('$_')} 'debug', 'debugcolor', sort keys %bitmask)]})");
}
}
$bits;
}
sub import {
shift;
$^H |= bits(1, @_);
}
sub unimport {
shift;
$^H &= ~ bits(0, @_);
}
1;
|