1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
|
/******************************************************************************
LZMA decoder library with a zlib like API
Copyright (C) 1999-2005 Igor Pavlov (http://7-zip.org/)
Copyright (C) 2005 Lasse Collin <lasse.collin@tukaani.org>
Based on zlib.h and bzlib.h. FIXME
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
******************************************************************************/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/* FIXME DEBUG */
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include <string.h>
#include <assert.h>
#include "lzmadec.h"
#include "private.h"
#ifndef UINT64_MAX
#define UINT64_MAX (~(uint64_t)0)
#endif
/* Cleaner way to refer to strm->state */
#define STATE ((lzmadec_state*)(strm->state))
static void *lzmadec_alloc (void *opaque, size_t nmemb, size_t size);
static void lzmadec_free (void *opaque, void *addr);
static int_fast8_t lzmadec_internal_init (lzmadec_stream *strm);
static inline int_fast8_t lzmadec_decode_main (
lzmadec_stream *strm,
const int_fast8_t finish_decoding);
static int_fast8_t lzmadec_header_properties (
uint_fast8_t *pb,
uint_fast8_t *lp,
uint_fast8_t *lc,
const uint8_t c);
static int_fast8_t lzmadec_header_dictionary (
uint_fast32_t *size,
const uint8_t *buffer);
static void lzmadec_header_uncompressed (
uint_fast64_t *size,
int_fast8_t *is_streamed,
const uint8_t *buffer);
/******************
extern functions
******************/
/* This function doesn't do much but it's here to be as close to zlib
as possible. See lzmadec_internal_init for actual initialization. */
extern int_fast8_t
lzmadec_init (lzmadec_stream *strm)
{
/* Set the functions */
if (strm->lzma_alloc == NULL)
strm->lzma_alloc = lzmadec_alloc;
if (strm->lzma_free == NULL)
strm->lzma_free = lzmadec_free;
strm->total_in = 0;
strm->total_out = 0;
/* Allocate memory for internal state structure */
strm->state = (lzmadec_state*)((strm->lzma_alloc)(strm->opaque, 1,
sizeof (lzmadec_state)));
if (strm->state == NULL)
return LZMADEC_MEM_ERROR;
/* We will allocate memory and put the pointers in probs and
dictionary later. Before that, make it clear that they contain
no valid pointer yet. */
STATE->probs = NULL;
STATE->dictionary = NULL;
/* Mark that the decoding engine is not yet initialized. */
STATE->status = LZMADEC_STATUS_UNINITIALIZED;
/* Initialize the internal data if there is enough input available */
if (strm->avail_in >= LZMA_MINIMUM_COMPRESSED_FILE_SIZE) {
return (lzmadec_internal_init (strm));
}
return LZMADEC_OK;
}
extern int_fast8_t
lzmadec_decode (lzmadec_stream *strm, const int_fast8_t finish_decoding)
{
switch (STATE->status) {
case LZMADEC_STATUS_UNINITIALIZED:
if (strm->avail_in < LZMA_MINIMUM_COMPRESSED_FILE_SIZE)
return LZMADEC_BUF_ERROR;
if (lzmadec_internal_init (strm) != LZMADEC_OK)
return LZMADEC_HEADER_ERROR;
/* Fall through */
case LZMADEC_STATUS_RUNNING:
/* */
if (strm->total_out < STATE->uncompressed_size)
break;
if (strm->total_out > STATE->uncompressed_size)
return LZMADEC_DATA_ERROR;
STATE->status = LZMADEC_STATUS_STREAM_END;
/* Fall through */
case LZMADEC_STATUS_FINISHING:
/* Sanity check */
if (!finish_decoding)
return LZMADEC_SEQUENCE_ERROR;
if (strm->total_out > STATE->uncompressed_size)
return LZMADEC_DATA_ERROR;
if (strm->total_out < STATE->uncompressed_size)
break;
/* Fall through */
case LZMADEC_STATUS_STREAM_END:
return LZMADEC_STREAM_END;
case LZMADEC_STATUS_ERROR:
default:
return LZMADEC_SEQUENCE_ERROR;
}
/* Let's decode! */
return (lzmadec_decode_main(strm, finish_decoding));
}
extern int_fast8_t
lzmadec_end (lzmadec_stream *strm)
{
(strm->lzma_free)(strm->opaque, STATE->dictionary);
STATE->dictionary = NULL;
(strm->lzma_free)(strm->opaque, STATE->probs);
STATE->probs = NULL;
(strm->lzma_free)(strm->opaque, strm->state);
strm->state = NULL;
return LZMADEC_OK;
}
extern int_fast8_t
lzmadec_buffer_info (lzmadec_info *info, const uint8_t *buffer,
const size_t len)
{
/* LZMA header is 13 bytes long. */
if (len < 13)
return LZMADEC_BUF_ERROR;
if (lzmadec_header_properties (&info->pb, &info->lp, &info->lc,
buffer[0]) != LZMADEC_OK)
return LZMADEC_HEADER_ERROR;
if (LZMADEC_OK != lzmadec_header_dictionary (
&info->dictionary_size, buffer + 1))
return LZMADEC_HEADER_ERROR;
lzmadec_header_uncompressed (&info->uncompressed_size,
&info->is_streamed, buffer + 5);
return LZMADEC_OK;
}
/*******************
Memory allocation
*******************/
/* Default function for allocating memory */
static void *
lzmadec_alloc (void *opaque,
size_t nmemb, size_t size)
{
return (malloc (nmemb * size)); /* No need to zero the memory. */
}
/* Default function for freeing memory */
static void
lzmadec_free (void *opaque, void *addr)
{
free (addr);
}
/****************
Header parsing
****************/
/* Parse the properties byte */
static int_fast8_t
lzmadec_header_properties (
uint_fast8_t *pb, uint_fast8_t *lp, uint_fast8_t *lc, const uint8_t c)
{
/* pb, lp and lc are encoded into a single byte. */
if (c > (9 * 5 * 5))
return LZMADEC_HEADER_ERROR;
*pb = c / (9 * 5); /* 0 <= pb <= 4 */
*lp = (c % (9 * 5)) / 9; /* 0 <= lp <= 4 */
*lc = c % 9; /* 0 <= lc <= 8 */
assert (*pb < 5 && *lp < 5 && *lc < 9);
return LZMADEC_OK;
}
/* Parse the dictionary size (4 bytes, little endian) */
static int_fast8_t
lzmadec_header_dictionary (uint_fast32_t *size, const uint8_t *buffer)
{
uint_fast32_t i;
*size = 0;
for (i = 0; i < 4; i++)
*size += (uint_fast32_t)(*buffer++) << (i * 8);
/* The dictionary size is limited to 256 MiB (checked from
LZMA SDK 4.30) */
if (*size > (1 << 28))
return LZMADEC_HEADER_ERROR;
return LZMADEC_OK;
}
/* Parse the uncompressed size field (8 bytes, little endian) */
static void
lzmadec_header_uncompressed (uint_fast64_t *size, int_fast8_t *is_streamed,
const uint8_t *buffer)
{
/* Streamed files have all 64 bits set in the size field.
We don't know the uncompressed size beforehand. */
*is_streamed = 1; /* Assume streamed. */
*size = 0;
uint_fast32_t i;
for (i = 0; i < 8; i++) {
*size += (uint_fast64_t)buffer[i] << (i * 8);
if (buffer[i] != 255)
*is_streamed = 0;
}
assert ((*is_streamed == 1 && *size == UINT64_MAX)
|| (*is_streamed == 0 && *size < UINT64_MAX));
}
/* Because the LZMA decoder cannot be initialized in practice by
lzmadec_decode_init(), lzmadec_internal_init()
is run when lzmadec_decompress() is called the first time.
lzmadec_decompress() provides the FIXME FIXME FIXME
is because initialization needs to know how much to allocate memory.
This function reads the first 18 (LZMA_MINIMUM_COMPRESSED_FILE_SIZE)
bytes of an LZMA stream, parses it, allocates the required memory and
initializes the internal variables to a good values. 18 bytes is also
the size of the smallest possible LZMA encoded stream. */
static int_fast8_t
lzmadec_internal_init (lzmadec_stream *strm)
{
uint_fast32_t i;
uint32_t num_probs;
/* Make sure we have been called sanely */
if (STATE->probs != NULL || STATE->dictionary != NULL
|| STATE->status != LZMADEC_STATUS_UNINITIALIZED)
return LZMADEC_SEQUENCE_ERROR;
/* Check that we have enough input */
if (strm->avail_in < LZMA_MINIMUM_COMPRESSED_FILE_SIZE)
return LZMADEC_BUF_ERROR;
/* Parse the header (13 bytes) */
/* - Properties (the first byte) */
if (lzmadec_header_properties (&STATE->pb, &STATE->lp, &STATE->lc,
*strm->next_in) != LZMADEC_OK)
return LZMADEC_HEADER_ERROR;
strm->next_in++;
strm->avail_in--;
/* - Calculate these right away: */
STATE->pos_state_mask = (1 << STATE->pb) - 1;
STATE->literal_pos_mask = (1 << STATE->lp) - 1;
/* - Dictionary size */
lzmadec_header_dictionary (&STATE->dictionary_size, strm->next_in);
strm->next_in += 4;
strm->avail_in -= 4;
/* - Uncompressed size */
lzmadec_header_uncompressed (&STATE->uncompressed_size,
&STATE->streamed, strm->next_in);
strm->next_in += 8;
strm->avail_in -= 8;
/* Allocate memory for internal data */
const size_t lzmadec_num_probs = (LZMA_BASE_SIZE
+ (LZMA_LIT_SIZE << (STATE->lc + STATE->lp)));
STATE->probs = (CProb *)((strm->lzma_alloc)(strm->opaque, 1,
lzmadec_num_probs * sizeof(CProb)));
if (STATE->probs == NULL)
return LZMADEC_MEM_ERROR;
/* When dictionary_size == 0, it must be set to 1. */
if (STATE->dictionary_size == 0)
STATE->dictionary_size = 1;
/* Allocate dictionary */
STATE->dictionary = (unsigned char*)((strm->lzma_alloc)(
strm->opaque, 1, STATE->dictionary_size));
if (STATE->dictionary == NULL) {
/* First free() the memory allocated for internal data */
(strm->lzma_free)(strm->opaque, STATE->probs);
return LZMADEC_MEM_ERROR;
}
/* Initialize the internal data */
num_probs = LZMA_BASE_SIZE
+ ((CProb)LZMA_LIT_SIZE << (STATE->lc + STATE->lp));
for (i = 0; i < num_probs; i++)
STATE->probs[i] = 1024; /* LZMA_BIT_MODEL_TOTAL >> 1; */
/* Read the first five bytes of data and initialize STATE->code */
STATE->code = 0;
for (i = 0; i < 5; i++)
STATE->code = (STATE->code << 8) | (uint32_t)(*strm->next_in++);
strm->avail_in -= 5;
/* Zero the buffer[] */
memset (STATE->buffer, 0,
LZMA_IN_BUFFER_SIZE + LZMA_REQUIRED_IN_BUFFER_SIZE);
/* Set the initial static values */
STATE->rep0 = 1;
STATE->rep1 = 1;
STATE->rep2 = 1;
STATE->rep3 = 1;
STATE->state = 0;
strm->total_out = 0;
STATE->distance_limit = 0;
STATE->dictionary_position = 0;
STATE->dictionary[STATE->dictionary_size - 1] = 0;
STATE->buffer_size = 0;
STATE->buffer_position = STATE->buffer;
STATE->len = 0;
STATE->range = 0xFFFFFFFF;
/* Mark that initialization has been done */
STATE->status = LZMADEC_STATUS_RUNNING;
return LZMADEC_OK;
}
/*********************
LZMA decoder engine
*********************/
/* Have a nice day! */
#define RC_NORMALIZE \
if (range < LZMA_TOP_VALUE) { \
range <<= 8; \
code = (code << 8) | *buffer++; \
}
#define IfBit0(p) \
RC_NORMALIZE; \
bound = (range >> LZMA_NUM_BIT_MODEL_TOTAL_BITS) * *(p); \
if (code < bound)
#define UpdateBit0(p) \
range = bound; \
*(p) += (LZMA_BIT_MODEL_TOTAL - *(p)) >> LZMA_NUM_MOVE_BITS;
#define UpdateBit1(p) \
range -= bound; \
code -= bound; \
*(p) -= (*(p)) >> LZMA_NUM_MOVE_BITS;
#define RC_GET_BIT2(p, mi, A0, A1) \
IfBit0(p) { \
UpdateBit0(p); \
mi <<= 1; \
A0; \
} else { \
UpdateBit1(p); \
mi = (mi + mi) + 1; \
A1; \
}
#define RC_GET_BIT(p, mi) RC_GET_BIT2(p, mi, ; , ;)
#define RangeDecoderBitTreeDecode(probs, numLevels, res) \
{ \
int i = numLevels; \
res = 1; \
do { \
CProb *p = probs + res; \
RC_GET_BIT(p, res) \
} while(--i != 0); \
res -= (1 << numLevels); \
}
static inline int_fast8_t
lzmadec_decode_main (lzmadec_stream *strm, const int_fast8_t finish_decoding)
{
/* Split the *strm structure to separate _local_ variables.
This improves readability a little. The major reason to do
this is performance; at least with GCC 3.4.4 this makes
the code about 30% faster! */
/* strm-> */
unsigned char *next_out = strm->next_out;
unsigned char *next_in = strm->next_in;
size_t avail_in = strm->avail_in;
uint64_t total_out = strm->total_out;
/* strm->state-> */
const int_fast8_t lc = STATE->lc;
const uint32_t pos_state_mask = STATE->pos_state_mask;
const uint32_t literal_pos_mask = STATE->literal_pos_mask;
const uint32_t dictionary_size = STATE->dictionary_size;
unsigned char *dictionary = STATE->dictionary;
/* int_fast8_t streamed;*/ /* boolean */
CProb *p = STATE->probs;
uint32_t range = STATE->range;
uint32_t code = STATE->code;
uint32_t dictionary_position = STATE->dictionary_position;
uint32_t distance_limit = STATE->distance_limit;
uint32_t rep0 = STATE->rep0;
uint32_t rep1 = STATE->rep1;
uint32_t rep2 = STATE->rep2;
uint32_t rep3 = STATE->rep3;
int state = STATE->state;
int len = STATE->len;
unsigned char *buffer_start = STATE->buffer;
size_t buffer_size = STATE->buffer_size;
/* Other variable initializations */
int_fast8_t i; /* Temporary variable for loop indexing */
unsigned char *next_out_end = next_out + strm->avail_out;
unsigned char *buffer = STATE->buffer_position;
/* This should have been verified in lzmadec_decode() already: */
assert (STATE->uncompressed_size > total_out);
/* With non-streamed LZMA stream the output has to be limited. */
if (STATE->uncompressed_size - total_out < strm->avail_out) {
next_out_end = next_out + (STATE->uncompressed_size - total_out);
}
/* The main loop */
while (1) {
assert (len >= 0);
assert (state >= 0);
/* Copy uncompressed data to next_out: */
{
unsigned char *foo = next_out;
while (len != 0 && next_out != next_out_end) {
uint32_t pos = dictionary_position - rep0;
if (pos >= dictionary_size)
pos += dictionary_size;
*next_out++ = dictionary[dictionary_position] = dictionary[pos];
if (++dictionary_position == dictionary_size)
dictionary_position = 0;
len--;
}
total_out += next_out - foo;
}
/* Fill the internal input buffer: */
{
size_t avail_buf;
/* Check for overflow (invalid input) */
if (buffer > buffer_start + LZMA_IN_BUFFER_SIZE)
return LZMADEC_DATA_ERROR;
/* Calculate how much data is unread in the buffer: */
avail_buf = buffer_size - (buffer - buffer_start);
/* Copy more data to the buffer if needed: */
if (avail_buf < LZMA_REQUIRED_IN_BUFFER_SIZE) {
const size_t copy_size = MIN (avail_in,
LZMA_IN_BUFFER_SIZE - avail_buf);
if (avail_buf > 0)
memmove (buffer_start, buffer, avail_buf);
memcpy (buffer_start + avail_buf,
next_in, copy_size);
buffer = buffer_start;
next_in += copy_size;
avail_in -= copy_size;
buffer_size = avail_buf + copy_size;
}
}
/* Decoder cannot continue if there is
- no output space available
- less data in the input buffer than a single decoder pass
could consume; decoding is still continued if the callee
has marked that all available input data has been given. */
if ((next_out == next_out_end)
|| (!finish_decoding
&& buffer_size < LZMA_REQUIRED_IN_BUFFER_SIZE))
break;
assert (STATE->status != LZMADEC_STATUS_FINISHING);
/* The rest of the main loop can at maximum
- read at maximum of LZMA_REQUIRED_IN_BUFFER_SIZE bytes
from the buffer[]
- write one byte to next_out. */
{
CProb *prob;
uint32_t bound;
int_fast32_t posState = (int_fast32_t)(total_out & pos_state_mask);
prob = p + LZMA_IS_MATCH + (state << LZMA_NUM_POS_BITS_MAX) + posState;
IfBit0(prob) {
int_fast32_t symbol = 1;
UpdateBit0(prob)
prob = p + LZMA_LITERAL + (LZMA_LIT_SIZE *
(((total_out & literal_pos_mask) << lc)
+ ((dictionary_position != 0
? dictionary[dictionary_position - 1]
: dictionary[dictionary_size - 1])
>> (8 - lc))));
if (state >= LZMA_NUM_LIT_STATES) {
int_fast32_t matchByte;
uint32_t pos = dictionary_position - rep0;
if (pos >= dictionary_size)
pos += dictionary_size;
matchByte = dictionary[pos];
do {
int_fast32_t bit;
CProb *probLit;
matchByte <<= 1;
bit = (matchByte & 0x100);
probLit = prob + 0x100 + bit + symbol;
RC_GET_BIT2(probLit, symbol,
if (bit != 0) break,
if (bit == 0) break)
} while (symbol < 0x100);
}
while (symbol < 0x100) {
CProb *probLit = prob + symbol;
RC_GET_BIT(probLit, symbol)
}
if (distance_limit < dictionary_size)
distance_limit++;
/* Eliminate? */
*next_out++ = dictionary[dictionary_position]
= (char)symbol;
if (++dictionary_position == dictionary_size)
dictionary_position = 0;
total_out++;
if (state < 4)
state = 0;
else if (state < 10)
state -= 3;
else
state -= 6;
continue;
}
UpdateBit1(prob);
prob = p + LZMA_IS_REP + state;
IfBit0(prob) {
UpdateBit0(prob);
rep3 = rep2;
rep2 = rep1;
rep1 = rep0;
state = state < LZMA_NUM_LIT_STATES ? 0 : 3;
prob = p + LZMA_LEN_CODER;
} else {
UpdateBit1(prob);
prob = p + LZMA_IS_REP_G0 + state;
IfBit0(prob) {
UpdateBit0(prob);
prob = p + LZMA_IS_REP0_LONG + (state
<< LZMA_NUM_POS_BITS_MAX)
+ posState;
IfBit0(prob) {
UpdateBit0(prob);
if (distance_limit == 0)
return LZMADEC_DATA_ERROR;
if (distance_limit < dictionary_size)
distance_limit++;
state = state < LZMA_NUM_LIT_STATES ? 9 : 11;
len++;
continue;
} else {
UpdateBit1(prob);
}
} else {
uint32_t distance;
UpdateBit1(prob);
prob = p + LZMA_IS_REP_G1 + state;
IfBit0(prob) {
UpdateBit0(prob);
distance = rep1;
} else {
UpdateBit1(prob);
prob = p + LZMA_IS_REP_G2 + state;
IfBit0(prob) {
UpdateBit0(prob);
distance = rep2;
} else {
UpdateBit1(prob);
distance = rep3;
rep3 = rep2;
}
rep2 = rep1;
}
rep1 = rep0;
rep0 = distance;
}
state = state < LZMA_NUM_LIT_STATES ? 8 : 11;
prob = p + LZMA_REP_LEN_CODER;
}
{
int_fast32_t numBits, offset;
CProb *probLen = prob + LZMA_LEN_CHOICE;
IfBit0(probLen) {
UpdateBit0(probLen);
probLen = prob + LZMA_LEN_LOW
+ (posState
<< LZMA_LEN_NUM_LOW_BITS);
offset = 0;
numBits = LZMA_LEN_NUM_LOW_BITS;
} else {
UpdateBit1(probLen);
probLen = prob + LZMA_LEN_CHOICE2;
IfBit0(probLen) {
UpdateBit0(probLen);
probLen = prob + LZMA_LEN_MID
+ (posState
<< LZMA_LEN_NUM_MID_BITS);
offset = LZMA_LEN_NUM_LOW_SYMBOLS;
numBits = LZMA_LEN_NUM_MID_BITS;
} else {
UpdateBit1(probLen);
probLen = prob + LZMA_LEN_HIGH;
offset = LZMA_LEN_NUM_LOW_SYMBOLS
+ LZMA_LEN_NUM_MID_SYMBOLS;
numBits = LZMA_LEN_NUM_HIGH_BITS;
}
}
RangeDecoderBitTreeDecode(probLen, numBits, len);
len += offset;
}
if (state < 4) {
int_fast32_t posSlot;
state += LZMA_NUM_LIT_STATES;
prob = p + LZMA_POS_SLOT + (MIN (len,
LZMA_NUM_LEN_TO_POS_STATES - 1)
<< LZMA_NUM_POS_SLOT_BITS);
RangeDecoderBitTreeDecode(prob, LZMA_NUM_POS_SLOT_BITS, posSlot);
if (posSlot >= LZMA_START_POS_MODEL_INDEX) {
int_fast32_t numDirectBits = ((posSlot >> 1) - 1);
rep0 = (2 | ((uint32_t)posSlot & 1));
if (posSlot < LZMA_END_POS_MODEL_INDEX) {
rep0 <<= numDirectBits;
prob = p + LZMA_SPEC_POS + rep0 - posSlot - 1;
} else {
numDirectBits -= LZMA_NUM_ALIGN_BITS;
do {
RC_NORMALIZE
range >>= 1;
rep0 <<= 1;
if (code >= range) {
code -= range;
rep0 |= 1;
}
} while (--numDirectBits != 0);
prob = p + LZMA_ALIGN;
rep0 <<= LZMA_NUM_ALIGN_BITS;
numDirectBits = LZMA_NUM_ALIGN_BITS;
}
{
i = 1;
int_fast32_t mi = 1;
do {
CProb *prob3 = prob + mi;
RC_GET_BIT2(prob3, mi, ; , rep0 |= i);
i <<= 1;
} while(--numDirectBits != 0);
}
} else {
rep0 = posSlot;
}
if (++rep0 == (uint32_t)(0)) {
/* End of stream marker detected */
STATE->status = LZMADEC_STATUS_STREAM_END;
break;
}
}
if (rep0 > distance_limit)
return LZMADEC_DATA_ERROR;
len += LZMA_MATCH_MIN_LEN;
if (dictionary_size - distance_limit > (uint32_t)(len))
distance_limit += len;
else
distance_limit = dictionary_size;
}
}
RC_NORMALIZE;
if (STATE->uncompressed_size < total_out) {
STATE->status = LZMADEC_STATUS_ERROR;
return LZMADEC_DATA_ERROR;
}
/* Store the saved values back to the lzmadec_stream structure. */
strm->total_in += (strm->avail_in - avail_in);
strm->total_out = total_out;
strm->avail_in = avail_in;
strm->avail_out -= (next_out - strm->next_out);
strm->next_in = next_in;
strm->next_out = next_out;
STATE->range = range;
STATE->code = code;
STATE->rep0 = rep0;
STATE->rep1 = rep1;
STATE->rep2 = rep2;
STATE->rep3 = rep3;
STATE->state = state;
STATE->len = len;
STATE->dictionary_position = dictionary_position;
STATE->distance_limit = distance_limit;
STATE->buffer_size = buffer_size;
STATE->buffer_position = buffer;
if (STATE->status == LZMADEC_STATUS_STREAM_END
|| STATE->uncompressed_size == total_out) {
STATE->status = LZMADEC_STATUS_STREAM_END;
if (len == 0)
return LZMADEC_STREAM_END;
}
return LZMADEC_OK;
}
|