1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
/*****
* runmath.in
*
* Runtime functions for math operations.
*
*****/
pair => primPair()
realarray* => realArray()
pairarray* => pairArray()
#include <inttypes.h>
#include "mathop.h"
#include "path.h"
#ifdef __CYGWIN__
extern "C" double yn(int, double);
extern "C" double jn(int, double);
#endif
using namespace camp;
typedef array realarray;
typedef array pairarray;
using types::realArray;
using types::pairArray;
using run::integeroverflow;
using vm::frame;
const char *invalidargument="invalid argument";
extern uint32_t CLZ(uint32_t a);
inline unsigned intbits() {
static unsigned count=0;
if(count > 0) return count;
while((1UL << count) < Int_MAX)
++count;
++count;
return count;
}
static const unsigned char BitReverseTable8[256]=
{
#define R2(n) n, n+2*64, n+1*64, n+3*64
#define R4(n) R2(n),R2(n+2*16),R2(n+1*16),R2(n+3*16)
#define R6(n) R4(n),R4(n+2*4 ),R4(n+1*4 ),R4(n+3*4 )
R6(0),R6(2),R6(1),R6(3)
};
#undef R2
#undef R4
#undef R6
unsigned long long bitreverse8(unsigned long long a)
{
return
(unsigned long long) BitReverseTable8[a];
}
unsigned long long bitreverse16(unsigned long long a)
{
return
((unsigned long long) BitReverseTable8[a & 0xff] << 8) |
((unsigned long long) BitReverseTable8[(a >> 8)]);
}
unsigned long long bitreverse24(unsigned long long a)
{
return
((unsigned long long) BitReverseTable8[a & 0xff] << 16) |
((unsigned long long) BitReverseTable8[(a >> 8) & 0xff] << 8) |
((unsigned long long) BitReverseTable8[(a >> 16)]);
}
unsigned long long bitreverse32(unsigned long long a)
{
return
((unsigned long long) BitReverseTable8[a & 0xff] << 24) |
((unsigned long long) BitReverseTable8[(a >> 8) & 0xff] << 16) |
((unsigned long long) BitReverseTable8[(a >> 16) & 0xff] << 8) |
((unsigned long long) BitReverseTable8[(a >> 24)]);
}
unsigned long long bitreverse40(unsigned long long a)
{
return
((unsigned long long) BitReverseTable8[a & 0xff] << 32) |
((unsigned long long) BitReverseTable8[(a >> 8) & 0xff] << 24) |
((unsigned long long) BitReverseTable8[(a >> 16) & 0xff] << 16) |
((unsigned long long) BitReverseTable8[(a >> 24) & 0xff] << 8) |
((unsigned long long) BitReverseTable8[(a >> 32)]);
}
unsigned long long bitreverse48(unsigned long long a)
{
return
((unsigned long long) BitReverseTable8[a & 0xff] << 40) |
((unsigned long long) BitReverseTable8[(a >> 8) & 0xff] << 32) |
((unsigned long long) BitReverseTable8[(a >> 16) & 0xff] << 24) |
((unsigned long long) BitReverseTable8[(a >> 24) & 0xff] << 16) |
((unsigned long long) BitReverseTable8[(a >> 32) & 0xff] << 8) |
((unsigned long long) BitReverseTable8[(a >> 40)]);
}
unsigned long long bitreverse56(unsigned long long a)
{
return
((unsigned long long) BitReverseTable8[a & 0xff] << 48) |
((unsigned long long) BitReverseTable8[(a >> 8) & 0xff] << 40) |
((unsigned long long) BitReverseTable8[(a >> 16) & 0xff] << 32) |
((unsigned long long) BitReverseTable8[(a >> 24) & 0xff] << 24) |
((unsigned long long) BitReverseTable8[(a >> 32) & 0xff] << 16) |
((unsigned long long) BitReverseTable8[(a >> 40) & 0xff] << 8) |
((unsigned long long) BitReverseTable8[(a >> 48)]);
}
unsigned long long bitreverse64(unsigned long long a)
{
return
((unsigned long long) BitReverseTable8[a & 0xff] << 56) |
((unsigned long long) BitReverseTable8[(a >> 8) & 0xff] << 48) |
((unsigned long long) BitReverseTable8[(a >> 16) & 0xff] << 40) |
((unsigned long long) BitReverseTable8[(a >> 24) & 0xff] << 32) |
((unsigned long long) BitReverseTable8[(a >> 32) & 0xff] << 24) |
((unsigned long long) BitReverseTable8[(a >> 40) & 0xff] << 16) |
((unsigned long long) BitReverseTable8[(a >> 48) & 0xff] << 8) |
((unsigned long long) BitReverseTable8[(a >> 56)]);
}
// From Warren, Jr., Henry S. (2013) [2002]. Hacker's Delight (2 ed.).
// Addison Wesley - Pearson Education, Inc. pp. 81-96.
Int popcount(Int a)
{
const uint64_t m1 = 0x5555555555555555; //binary: 0101...
const uint64_t m2 = 0x3333333333333333; //binary: 00110011..
const uint64_t m4 = 0x0f0f0f0f0f0f0f0f; //binary: 4 zeros, 4 ones ...
const uint64_t h01 = 0x0101010101010101; //the sum of 256 to the power of 0,1,2,3...
// This algorithm uses 12 arithmetic operations, one of which is a multiply.
a -= (a >> 1) & m1; //put count of each 2 bits into those 2 bits
a=(a & m2)+((a >> 2) & m2); //put count of each 4 bits into those 4 bits
a=(a+(a >> 4)) & m4; //put count of each 8 bits into those 8 bits
return (a * h01) >> 56; //returns left 8 bits of a+(a << 8)+(a << 16)+(a << 24)+...
}
// Return the factorial of a non-negative integer using a lookup table.
Int factorial(Int n)
{
static Int *table;
static Int size=0;
if(size == 0) {
Int f=1;
size=2;
while(f <= Int_MAX/size)
f *= (size++);
table=new Int[size];
table[0]=f=1;
for(Int i=1; i < size; ++i) {
f *= i;
table[i]=f;
}
}
if(n >= size) integeroverflow(0);
return table[n];
}
static inline Int Round(double x)
{
return Int(x+((x >= 0) ? 0.5 : -0.5));
}
inline Int sgn(double x)
{
return (x > 0.0 ? 1 : (x < 0.0 ? -1 : 0));
}
static bool initializeRandom=true;
void Srand(Int seed)
{
initializeRandom=false;
const int n=256;
static char state[n];
initstate(intcast(seed),state,n);
}
// Autogenerated routines:
real ^(real x, Int y)
{
return pow(x,y);
}
pair ^(pair z, Int y)
{
return pow(z,y);
}
Int quotient(Int x, Int y)
{
return quotient<Int>()(x,y);
}
Int abs(Int x)
{
return Abs(x);
}
Int sgn(real x)
{
return sgn(x);
}
Int rand()
{
if(initializeRandom)
Srand(1);
return random();
}
void srand(Int seed)
{
Srand(seed);
}
// a random number uniformly distributed in the interval [0,1]
real unitrand()
{
return ((real) random())/RANDOM_MAX;
}
Int ceil(real x)
{
return Intcast(ceil(x));
}
Int floor(real x)
{
return Intcast(floor(x));
}
Int round(real x)
{
if(validInt(x)) return Round(x);
integeroverflow(0);
}
Int Ceil(real x)
{
return Ceil(x);
}
Int Floor(real x)
{
return Floor(x);
}
Int Round(real x)
{
return Round(Intcap(x));
}
real fmod(real x, real y)
{
if (y == 0.0) dividebyzero();
return fmod(x,y);
}
real atan2(real y, real x)
{
return atan2(y,x);
}
real hypot(real x, real y)
{
return hypot(x,y);
}
real remainder(real x, real y)
{
return remainder(x,y);
}
real Jn(Int n, real x)
{
return jn(n,x);
}
real Yn(Int n, real x)
{
return yn(n,x);
}
real erf(real x)
{
return erf(x);
}
real erfc(real x)
{
return erfc(x);
}
Int factorial(Int n) {
if(n < 0) error(invalidargument);
return factorial(n);
}
Int choose(Int n, Int k) {
if(n < 0 || k < 0 || k > n) error(invalidargument);
Int f=1;
Int r=n-k;
for(Int i=n; i > r; --i) {
if(f > Int_MAX/i) integeroverflow(0);
f=(f*i)/(n-i+1);
}
return f;
}
real gamma(real x)
{
#ifdef HAVE_TGAMMA
return tgamma(x);
#else
real lg = lgamma(x);
return signgam*exp(lg);
#endif
}
realarray *quadraticroots(real a, real b, real c)
{
quadraticroots q(a,b,c);
array *roots=new array(q.roots);
if(q.roots >= 1) (*roots)[0]=q.t1;
if(q.roots == 2) (*roots)[1]=q.t2;
return roots;
}
pairarray *quadraticroots(explicit pair a, explicit pair b, explicit pair c)
{
Quadraticroots q(a,b,c);
array *roots=new array(q.roots);
if(q.roots >= 1) (*roots)[0]=q.z1;
if(q.roots == 2) (*roots)[1]=q.z2;
return roots;
}
realarray *cubicroots(real a, real b, real c, real d)
{
cubicroots q(a,b,c,d);
array *roots=new array(q.roots);
if(q.roots >= 1) (*roots)[0]=q.t1;
if(q.roots >= 2) (*roots)[1]=q.t2;
if(q.roots == 3) (*roots)[2]=q.t3;
return roots;
}
// Logical operations
bool !(bool b)
{
return !b;
}
bool :boolMemEq(frame *a, frame *b)
{
return a == b;
}
bool :boolMemNeq(frame *a, frame *b)
{
return a != b;
}
bool :boolFuncEq(callable *a, callable *b)
{
return a->compare(b);
}
bool :boolFuncNeq(callable *a, callable *b)
{
return !(a->compare(b));
}
// Bit operations
Int AND(Int a, Int b)
{
return a & b;
}
Int OR(Int a, Int b)
{
return a | b;
}
Int XOR(Int a, Int b)
{
return a ^ b;
}
Int NOT(Int a)
{
return ~a;
}
Int CLZ(Int a)
{
if((unsignedInt) a > 0xFFFFFFFF)
return CLZ((uint32_t) (a >> 32));
else {
int bits=intbits();
if(a != 0) return bits-32+CLZ((uint32_t) a);
return bits;
}
}
Int popcount(Int a)
{
return popcount(a);
}
Int CTZ(Int a)
{
return popcount((a&-a)-1);
}
// bitreverse a within a word of length bits.
Int bitreverse(Int a, Int bits)
{
typedef unsigned long long Bitreverse(unsigned long long a);
static Bitreverse *B[]={bitreverse8,bitreverse16,bitreverse24,bitreverse32,
bitreverse40,bitreverse48,bitreverse56,bitreverse64};
int maxbits=intbits()-1; // Drop sign bit
#if Int_MAX2 >= 0x7fffffffffffffffLL
--maxbits; // Drop extra bit for reserved values
#endif
if(bits <= 0 || bits > maxbits || a < 0 ||
(unsigned long long) a >= (1ULL << bits))
return -1;
unsigned int bytes=(bits+7)/8;
return B[bytes-1]((unsigned long long) a) >> (8*bytes-bits);
}
|