1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
/*****
* runmath.in
*
* Runtime functions for math operations.
*
*****/
pair => primPair()
realarray* => realArray()
pairarray* => pairArray()
#include "mathop.h"
#include "path.h"
using namespace camp;
typedef array realarray;
typedef array pairarray;
using types::realArray;
using types::pairArray;
using run::integeroverflow;
using vm::frame;
const char *invalidargument="invalid argument";
// Return the factorial of a non-negative integer using a lookup table.
Int factorial(Int n)
{
static Int *table;
static Int size=0;
if(size == 0) {
Int f=1;
size=2;
while(f <= Int_MAX/size)
f *= (size++);
table=new Int[size];
table[0]=f=1;
for(Int i=1; i < size; ++i) {
f *= i;
table[i]=f;
}
}
if(n >= size) integeroverflow(0);
return table[n];
}
static inline Int Round(double x)
{
return Int(x+((x >= 0) ? 0.5 : -0.5));
}
inline Int sgn(double x)
{
return (x > 0.0 ? 1 : (x < 0.0 ? -1 : 0));
}
// Autogenerated routines:
real ^(real x, Int y)
{
return pow(x,y);
}
pair ^(pair z, Int y)
{
return pow(z,y);
}
Int quotient(Int x, Int y)
{
if(y == 0) dividebyzero();
if(y == -1) return Negate(x);
// Implementation-independent definition of integer division: round down
return (x-portableMod(x,y))/y;
}
Int abs(Int x)
{
return Abs(x);
}
Int sgn(real x)
{
return sgn(x);
}
Int rand()
{
return random();
}
void srand(Int seed)
{
const int n=256;
static char state[n];
initstate(intcast(seed),state,n);
}
// a random number uniformly distributed in the interval [0,1]
real unitrand()
{
return ((real) random())/RAND_MAX;
}
Int ceil(real x)
{
return Intcast(ceil(x));
}
Int floor(real x)
{
return Intcast(floor(x));
}
Int round(real x)
{
if(validInt(x)) return Round(x);
integeroverflow(0);
}
Int Ceil(real x)
{
return Ceil(x);
}
Int Floor(real x)
{
return Floor(x);
}
Int Round(real x)
{
return Round(Intcap(x));
}
real fmod(real x, real y)
{
if (y == 0.0) dividebyzero();
return fmod(x,y);
}
real atan2(real y, real x)
{
return atan2(y,x);
}
real hypot(real x, real y)
{
return hypot(x,y);
}
real remainder(real x, real y)
{
return remainder(x,y);
}
real Jn(Int n, real x)
{
return jn(n,x);
}
real Yn(Int n, real x)
{
return yn(n,x);
}
real erf(real x)
{
return erf(x);
}
real erfc(real x)
{
return erfc(x);
}
Int factorial(Int n) {
if(n < 0) error(invalidargument);
return factorial(n);
}
Int choose(Int n, Int k) {
if(n < 0 || k < 0 || k > n) error(invalidargument);
Int f=1;
Int r=n-k;
for(Int i=n; i > r; --i) {
if(f > Int_MAX/i) integeroverflow(0);
f=(f*i)/(n-i+1);
}
return f;
}
real gamma(real x)
{
#ifdef HAVE_TGAMMA
return tgamma(x);
#else
real lg = lgamma(x);
return signgam*exp(lg);
#endif
}
realarray *quadraticroots(real a, real b, real c)
{
quadraticroots q(a,b,c);
array *roots=new array(q.roots);
if(q.roots >= 1) (*roots)[0]=q.t1;
if(q.roots == 2) (*roots)[1]=q.t2;
return roots;
}
pairarray *quadraticroots(explicit pair a, explicit pair b, explicit pair c)
{
Quadraticroots q(a,b,c);
array *roots=new array(q.roots);
if(q.roots >= 1) (*roots)[0]=q.z1;
if(q.roots == 2) (*roots)[1]=q.z2;
return roots;
}
realarray *cubicroots(real a, real b, real c, real d)
{
cubicroots q(a,b,c,d);
array *roots=new array(q.roots);
if(q.roots >= 1) (*roots)[0]=q.t1;
if(q.roots >= 2) (*roots)[1]=q.t2;
if(q.roots == 3) (*roots)[2]=q.t3;
return roots;
}
// Logical operations
bool !(bool b)
{
return !b;
}
bool :boolMemEq(frame *a, frame *b)
{
return a == b;
}
bool :boolMemNeq(frame *a, frame *b)
{
return a != b;
}
bool :boolFuncEq(callable *a, callable *b)
{
return a->compare(b);
}
bool :boolFuncNeq(callable *a, callable *b)
{
return !(a->compare(b));
}
// Bit operations
Int AND(Int a, Int b)
{
return a & b;
}
Int OR(Int a, Int b)
{
return a | b;
}
Int XOR(Int a, Int b)
{
return a ^ b;
}
Int NOT(Int a)
{
return ~a;
}
Int CLZ(Int a)
{
if((unsignedInt) a > 0xFFFFFFFF) return -1;
#ifdef __GNUC__
return __builtin_clz(a);
#else
// find the log base 2 of a 32-bit integer
static const int MultiplyDeBruijnBitPosition[32] = {
0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30,
8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31
};
a |= a >> 1; // first round down to one less than a power of 2
a |= a >> 2;
a |= a >> 4;
a |= a >> 8;
a |= a >> 16;
return 31-MultiplyDeBruijnBitPosition[(unsignedInt)(a * 0x07C4ACDDU) >> 27];
#endif
}
Int CTZ(Int a)
{
if((unsignedInt) a > 0xFFFFFFFF) return -1;
#ifdef __GNUC__
return __builtin_ctz(a);
#else
// find the number of trailing zeros in a 32-bit number
static const int MultiplyDeBruijnBitPosition[32] = {
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
};
return MultiplyDeBruijnBitPosition[((unsignedInt)((a & -a) * 0x077CB531U))
>> 27];
#endif
}
|