1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
|
/***** Autogenerated from runarray.in; changes will be overwritten *****/
#line 1 "runtimebase.in"
/*****
* runtimebase.in
* Andy Hammerlindl 2009/07/28
*
* Common declarations needed for all code-generating .in files.
*
*****/
#line 1 "runarray.in"
/*****
* runarray.in
*
* Runtime functions for array operations.
*
*****/
#line 1 "runtimebase.in"
#include "stack.h"
#include "types.h"
#include "builtin.h"
#include "entry.h"
#include "errormsg.h"
#include "array.h"
#include "triple.h"
#include "callable.h"
#include "opsymbols.h"
using vm::stack;
using vm::error;
using vm::array;
using vm::read;
using vm::callable;
using types::formal;
using types::function;
using camp::triple;
#define PRIMITIVE(name,Name,asyName) using types::prim##Name;
#include <primitives.h>
#undef PRIMITIVE
typedef double real;
void unused(void *);
namespace run {
array *copyArray(array *a);
array *copyArray2(array *a);
array *copyArray3(array *a);
double *copyTripleArray2Components(array *a, size_t &N,
GCPlacement placement=NoGC);
triple *copyTripleArray2C(array *a, size_t &N,
GCPlacement placement=NoGC);
}
function *realRealFunction();
#define CURRENTPEN processData().currentpen
#line 21 "runarray.in"
#include "array.h"
#include "arrayop.h"
#include "triple.h"
#include "path3.h"
#include "Delaunay.h"
#include "glrender.h"
#ifdef HAVE_LIBFFTW3
#include "fftw++.h"
#endif
using namespace camp;
using namespace vm;
namespace run {
extern pair zero;
}
typedef array boolarray;
typedef array Intarray;
typedef array Intarray2;
typedef array realarray;
typedef array realarray2;
typedef array pairarray;
typedef array pairarray2;
typedef array triplearray2;
using types::booleanArray;
using types::IntArray;
using types::IntArray2;
using types::realArray;
using types::realArray2;
using types::pairArray;
using types::pairArray2;
using types::tripleArray2;
typedef callable callableReal;
void outOfBounds(const char *op, size_t len, Int n)
{
ostringstream buf;
buf << op << " array of length " << len << " with out-of-bounds index " << n;
error(buf);
}
inline item& arrayRead(array *a, Int n)
{
size_t len=checkArray(a);
bool cyclic=a->cyclic();
if(cyclic && len > 0) n=imod(n,len);
else if(n < 0 || n >= (Int) len) outOfBounds("reading",len,n);
return (*a)[(unsigned) n];
}
// Helper function to create deep arrays.
static array* deepArray(Int depth, Int *dims)
{
assert(depth > 0);
if (depth == 1) {
return new array(dims[0]);
} else {
Int length = dims[0];
depth--; dims++;
array *a = new array(length);
for (Int index = 0; index < length; index++) {
(*a)[index] = deepArray(depth, dims);
}
return a;
}
}
namespace run {
array *Identity(Int n)
{
size_t N=(size_t) n;
array *c=new array(N);
for(size_t i=0; i < N; ++i) {
array *ci=new array(N);
(*c)[i]=ci;
for(size_t j=0; j < N; ++j)
(*ci)[j]=0.0;
(*ci)[i]=1.0;
}
return c;
}
}
static const char *incommensurate="Incommensurate matrices";
static const char *singular="Singular matrix";
static const char *invalidarraylength="Invalid array length: ";
static size_t *pivot,*Row,*Col;
bound_double *bounddouble(int N)
{
if(N == 16) return bound;
if(N == 10) return boundtri;
ostringstream buf;
buf << invalidarraylength << " " << N;
error(buf);
return NULL;
}
bound_triple *boundtriple(int N)
{
if(N == 16) return bound;
if(N == 10) return boundtri;
ostringstream buf;
buf << invalidarraylength << " " << N;
error(buf);
return NULL;
}
static inline void inverseAllocate(size_t n)
{
pivot=new size_t[n];
Row=new size_t[n];
Col=new size_t[n];
}
static inline void inverseDeallocate()
{
delete[] pivot;
delete[] Row;
delete[] Col;
}
namespace run {
array *copyArray(array *a)
{
size_t size=checkArray(a);
array *c=new array(size);
for(size_t i=0; i < size; i++)
(*c)[i]=(*a)[i];
return c;
}
array *copyArray2(array *a)
{
size_t size=checkArray(a);
array *c=new array(size);
for(size_t i=0; i < size; i++) {
array *ai=read<array*>(a,i);
size_t aisize=checkArray(ai);
array *ci=new array(aisize);
(*c)[i]=ci;
for(size_t j=0; j < aisize; j++)
(*ci)[j]=(*ai)[j];
}
return c;
}
double *copyTripleArray2Components(array *a, size_t &N, GCPlacement placement)
{
size_t n=checkArray(a);
N=0;
for(size_t i=0; i < n; i++)
N += checkArray(read<array*>(a,i));
double *A=(placement == NoGC) ? new double [3*N] :
new(placement) double[3*N];
double *p=A;
for(size_t i=0; i < n; i++) {
array *ai=read<array*>(a,i);
size_t m=checkArray(ai);
for(size_t j=0; j < m; j++) {
triple v=read<triple>(ai,j);
*p=v.getx();
*(p+N)=v.gety();
*(p+2*N)=v.getz();
++p;
}
}
return A;
}
triple *copyTripleArray2C(array *a, size_t &N, GCPlacement placement)
{
size_t n=checkArray(a);
N=0;
for(size_t i=0; i < n; i++)
N += checkArray(read<array*>(a,i));
triple *A=(placement == NoGC) ? new triple [N] :
new(placement) triple[N];
triple *p=A;
for(size_t i=0; i < n; i++) {
array *ai=read<array*>(a,i);
size_t m=checkArray(ai);
for(size_t j=0; j < m; j++)
*(p++)=read<triple>(ai,j);
}
return A;
}
triple operator *(const array& t, const triple& v)
{
size_t n=checkArray(&t);
if(n != 4) error(incommensurate);
array *t0=read<array*>(t,0);
array *t1=read<array*>(t,1);
array *t2=read<array*>(t,2);
array *t3=read<array*>(t,3);
if(checkArray(t0) != 4 || checkArray(t1) != 4 ||
checkArray(t2) != 4 || checkArray(t3) != 4)
error(incommensurate);
double x=v.getx();
double y=v.gety();
double z=v.getz();
double f=read<real>(t3,0)*x+read<real>(t3,1)*y+read<real>(t3,2)*z+
read<real>(t3,3);
if(f == 0.0) run::dividebyzero();
f=1.0/f;
return triple((read<real>(t0,0)*x+read<real>(t0,1)*y+read<real>(t0,2)*z+
read<real>(t0,3))*f,
(read<real>(t1,0)*x+read<real>(t1,1)*y+read<real>(t1,2)*z+
read<real>(t1,3))*f,
(read<real>(t2,0)*x+read<real>(t2,1)*y+read<real>(t2,2)*z+
read<real>(t2,3))*f);
}
template<class T>
array *mult(array *a, array *b)
{
size_t n=checkArray(a);
size_t nb=checkArray(b);
size_t na0=n == 0 ? 0 : checkArray(read<array*>(a,0));
if(na0 != nb)
error(incommensurate);
size_t nb0=nb == 0 ? 0 : checkArray(read<array*>(b,0));
array *c=new array(n);
T *A,*B;
copyArray2C(A,a,false);
copyArray2C(B,b,false);
for(size_t i=0; i < n; ++i) {
T *Ai=A+i*nb;
array *ci=new array(nb0);
(*c)[i]=ci;
for(size_t j=0; j < nb0; ++j) {
T sum=T();
size_t kj=j;
for(size_t k=0; k < nb; ++k, kj += nb0)
sum += Ai[k]*B[kj];
(*ci)[j]=sum;
}
}
delete[] B;
delete[] A;
return c;
}
// Compute transpose(A)*A where A is an n x m matrix.
template<class T>
array *AtA(array *a)
{
size_t n=checkArray(a);
size_t m=n == 0 ? 0 : checkArray(read<array*>(a,0));
array *c=new array(m);
T *A;
copyArray2C(A,a,false);
for(size_t i=0; i < m; ++i) {
array *ci=new array(m);
(*c)[i]=ci;
for(size_t j=0; j < m; ++j) {
T sum=T();
size_t kj=j;
size_t ki=i;
for(size_t k=0; k < n; ++k, kj += m, ki += m)
sum += A[ki]*A[kj];
(*ci)[j]=sum;
}
}
delete[] A;
return c;
}
double norm(double *a, size_t n)
{
if(n == 0) return 0.0;
double M=fabs(a[0]);
for(size_t i=1; i < n; ++i)
M=::max(M,fabs(a[i]));
return M;
}
double norm(triple *a, size_t n)
{
if(n == 0) return 0.0;
double M=a[0].abs2();
for(size_t i=1; i < n; ++i)
M=::max(M,a[i].abs2());
return sqrt(M);
}
// Transpose an n x n matrix in place.
void transpose(double *a, size_t n)
{
for(size_t i=1; i < n; i++) {
for(size_t j=0; j < i; j++) {
size_t ij=n*i+j;
size_t ji=n*j+i;
double temp=a[ij];
a[ij]=a[ji];
a[ji]=temp;
}
}
}
// Invert an n x n array in place.
void inverse(double *a, size_t n)
{
inverseAllocate(n);
for(size_t i=0; i < n; i++)
pivot[i]=0;
size_t col=0, row=0;
// This is the main loop over the columns to be reduced.
for(size_t i=0; i < n; i++) {
real big=0.0;
// This is the outer loop of the search for a pivot element.
for(size_t j=0; j < n; j++) {
double *aj=a+n*j;
if(pivot[j] != 1) {
for(size_t k=0; k < n; k++) {
if(pivot[k] == 0) {
real temp=fabs(aj[k]);
if(temp >= big) {
big=temp;
row=j;
col=k;
}
} else if(pivot[k] > 1) {
inverseDeallocate();
error(singular);
}
}
}
}
++(pivot[col]);
// Interchange rows, if needed, to put the pivot element on the diagonal.
double *acol=a+n*col;
if(row != col) {
double *arow=a+n*row;
for(size_t k=0; k < n; k++) {
real temp=arow[k];
arow[k]=acol[k];
acol[k]=temp;
}
}
Row[i]=row;
Col[i]=col;
// Divide the pivot row by the pivot element.
real denom=acol[col];
if(denom == 0.0) {
inverseDeallocate();
error(singular);
}
real pivinv=1.0/denom;
acol[col]=1.0;
for(size_t k=0; k < n; k++)
acol[k]=acol[k]*pivinv;
// Reduce all rows except for the pivoted one.
for(size_t k=0; k < n; k++) {
if(k != col) {
double *ak=a+n*k;
real akcol=ak[col];
ak[col]=0.0;
for(size_t j=0; j < n; j++)
ak[j] -= acol[j]*akcol;
}
}
}
// Unscramble the inverse matrix in view of the column interchanges.
for(size_t k=n; k > 0;) {
k--;
size_t r=Row[k];
size_t c=Col[k];
if(r != c) {
for(size_t j=0; j < n; j++) {
double *aj=a+n*j;
real temp=aj[r];
aj[r]=aj[c];
aj[c]=temp;
}
}
}
inverseDeallocate();
}
}
callable *Func;
stack *FuncStack;
double wrapFunction(double x)
{
FuncStack->push(x);
Func->call(FuncStack);
return pop<double>(FuncStack);
}
callable *compareFunc;
bool compareFunction(const vm::item& i, const vm::item& j)
{
FuncStack->push(i);
FuncStack->push(j);
compareFunc->call(FuncStack);
return pop<bool>(FuncStack);
}
// Crout's algorithm for computing the LU decomposition of a square matrix.
// cf. routine ludcmp (Press et al., Numerical Recipes, 1991).
Int LUdecompose(double *a, size_t n, size_t* index, bool warn=true)
{
double *vv=new double[n];
Int swap=1;
for(size_t i=0; i < n; ++i) {
double big=0.0;
double *ai=a+i*n;
for(size_t j=0; j < n; ++j) {
double temp=fabs(ai[j]);
if(temp > big) big=temp;
}
if(big == 0.0) {
delete[] vv;
if(warn) error(singular);
else return 0;
}
vv[i]=1.0/big;
}
for(size_t j=0; j < n; ++j) {
for(size_t i=0; i < j; ++i) {
double *ai=a+i*n;
double sum=ai[j];
for(size_t k=0; k < i; ++k) {
sum -= ai[k]*a[k*n+j];
}
ai[j]=sum;
}
double big=0.0;
size_t imax=j;
for(size_t i=j; i < n; ++i) {
double *ai=a+i*n;
double sum=ai[j];
for(size_t k=0; k < j; ++k)
sum -= ai[k]*a[k*n+j];
ai[j]=sum;
double temp=vv[i]*fabs(sum);
if(temp >= big) {
big=temp;
imax=i;
}
}
double *aj=a+j*n;
double *aimax=a+imax*n;
if(j != imax) {
for(size_t k=0; k < n; ++k) {
double temp=aimax[k];
aimax[k]=aj[k];
aj[k]=temp;
}
swap *= -1;
vv[imax]=vv[j];
}
if(index)
index[j]=imax;
if(j != n) {
double denom=aj[j];
if(denom == 0.0) {
delete[] vv;
if(warn) error(singular);
else return 0;
}
for(size_t i=j+1; i < n; ++i)
a[i*n+j] /= denom;
}
}
delete[] vv;
return swap;
}
namespace run {
void dividebyzero(size_t i)
{
ostringstream buf;
if(i > 0) buf << "array element " << i << ": ";
buf << "Divide by zero";
error(buf);
}
void integeroverflow(size_t i)
{
ostringstream buf;
if(i > 0) buf << "array element " << i << ": ";
buf << "Integer overflow";
error(buf);
}
}
// Autogenerated routines:
#ifndef NOSYM
#include "runarray.symbols.h"
#endif
namespace run {
// Create an empty array.
#line 550 "runarray.in"
void emptyArray(stack *Stack)
{
#line 551 "runarray.in"
{Stack->push<array*>(new array(0)); return;}
}
// Create a new array (technically a vector).
// This array will be multidimensional. First the number of dimensions
// is popped off the stack, followed by each dimension in reverse order.
// The array itself is technically a one dimensional array of one
// dimension arrays and so on.
#line 560 "runarray.in"
void newDeepArray(stack *Stack)
{
Int depth=vm::pop<Int>(Stack);
#line 561 "runarray.in"
assert(depth > 0);
Int *dims = new Int[depth];
for (Int index = depth-1; index >= 0; index--) {
Int i=pop<Int>(Stack);
if(i < 0) error("cannot create a negative length array");
dims[index]=i;
}
array *a=deepArray(depth, dims);
delete[] dims;
{Stack->push<array*>(a); return;}
}
// Creates an array with elements already specified. First, the number
// of elements is popped off the stack, followed by each element in
// reverse order.
#line 580 "runarray.in"
void newInitializedArray(stack *Stack)
{
Int n=vm::pop<Int>(Stack);
#line 581 "runarray.in"
assert(n >= 0);
array *a = new array(n);
for (Int index = n-1; index >= 0; index--)
(*a)[index] = pop(Stack);
{Stack->push<array*>(a); return;}
}
// Similar to newInitializedArray, but after the n elements, append another
// array to it.
#line 594 "runarray.in"
void newAppendedArray(stack *Stack)
{
Int n=vm::pop<Int>(Stack);
array* tail=vm::pop<array*>(Stack);
#line 595 "runarray.in"
assert(n >= 0);
array *a = new array(n);
for (Int index = n-1; index >= 0; index--)
(*a)[index] = pop(Stack);
copy(tail->begin(), tail->end(), back_inserter(*a));
{Stack->push<array*>(a); return;}
}
// Produce an array of n deep copies of value.
// typeDepth is the true depth of the array determined at compile-time when the
// operations for the array type are added. This typeDepth argument is
// automatically pushed on the stack and is not visible to the user.
#line 612 "runarray.in"
void copyArrayValue(stack *Stack)
{
Int typeDepth=vm::pop<Int>(Stack);
Int depth=vm::pop<Int>(Stack,Int_MAX);
item value=vm::pop(Stack);
Int n=vm::pop<Int>(Stack);
#line 613 "runarray.in"
if(n < 0) error("cannot create a negative length array");
if(depth < 0) error("cannot copy to a negative depth");
if(depth > typeDepth) depth=typeDepth;
{Stack->push<array*>(new array((size_t) n, value, depth)); return;}
}
// Deep copy of array.
// typeDepth is the true depth of the array determined at compile-time when the
// operations for the array type are added. This typeDepth argument is
// automatically pushed on the stack and is not visible to the user.
#line 624 "runarray.in"
void copyArray(stack *Stack)
{
Int typeDepth=vm::pop<Int>(Stack);
Int depth=vm::pop<Int>(Stack,Int_MAX);
array * a=vm::pop<array *>(Stack);
#line 625 "runarray.in"
if(depth < 0) error("cannot copy to a negative depth");
if(depth > typeDepth) depth=typeDepth;
{Stack->push<array*>(a->copyToDepth(depth)); return;}
}
// Read an element from an array. Checks for initialization & bounds.
#line 632 "runarray.in"
void arrayRead(stack *Stack)
{
Int n=vm::pop<Int>(Stack);
array * a=vm::pop<array *>(Stack);
#line 633 "runarray.in"
item& i=arrayRead(a,n);
if (i.empty()) {
ostringstream buf;
buf << "read uninitialized value from array at index " << n;
error(buf);
}
{Stack->push(i); return;}
}
// Slice a substring from an array.
#line 644 "runarray.in"
void arraySliceRead(stack *Stack)
{
Int right=vm::pop<Int>(Stack);
Int left=vm::pop<Int>(Stack);
array * a=vm::pop<array *>(Stack);
#line 645 "runarray.in"
checkArray(a);
{Stack->push(a->slice(left, right)); return;}
}
// Slice a substring from an array. This implements the cases a[i:] and a[:]
// where the endpoint is not given, and assumed to be the length of the array.
#line 652 "runarray.in"
void arraySliceReadToEnd(stack *Stack)
{
Int left=vm::pop<Int>(Stack);
array * a=vm::pop<array *>(Stack);
#line 653 "runarray.in"
size_t len=checkArray(a);
{Stack->push(a->slice(left, (Int)len)); return;}
}
// Read an element from an array of arrays. Check bounds and initialize
// as necessary.
#line 660 "runarray.in"
void arrayArrayRead(stack *Stack)
{
Int n=vm::pop<Int>(Stack);
array * a=vm::pop<array *>(Stack);
#line 661 "runarray.in"
item& i=arrayRead(a,n);
if (i.empty()) i=new array(0);
{Stack->push(i); return;}
}
// Write an element to an array. Increase size if necessary.
// TODO: Add arrayWriteAndPop
#line 669 "runarray.in"
void arrayWrite(stack *Stack)
{
item value=vm::pop(Stack);
Int n=vm::pop<Int>(Stack);
array * a=vm::pop<array *>(Stack);
#line 670 "runarray.in"
size_t len=checkArray(a);
bool cyclic=a->cyclic();
if(cyclic && len > 0) n=imod(n,len);
else {
if(cyclic) outOfBounds("writing cyclic",len,n);
if(n < 0) outOfBounds("writing",len,n);
if(len <= (size_t) n)
a->resize(n+1);
}
(*a)[n] = value;
{Stack->push(value); return;}
}
#line 684 "runarray.in"
void arraySliceWrite(stack *Stack)
{
array * src=vm::pop<array *>(Stack);
Int right=vm::pop<Int>(Stack);
Int left=vm::pop<Int>(Stack);
array * dest=vm::pop<array *>(Stack);
#line 685 "runarray.in"
checkArray(src);
checkArray(dest);
dest->setSlice(left, right, src);
{Stack->push<array*>(src); return;}
}
#line 692 "runarray.in"
void arraySliceWriteToEnd(stack *Stack)
{
array * src=vm::pop<array *>(Stack);
Int left=vm::pop<Int>(Stack);
array * dest=vm::pop<array *>(Stack);
#line 693 "runarray.in"
checkArray(src);
size_t len=checkArray(dest);
dest->setSlice(left, (Int) len, src);
{Stack->push<array*>(src); return;}
}
// Returns the length of an array.
#line 701 "runarray.in"
void arrayLength(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
#line 702 "runarray.in"
{Stack->push<Int>((Int) checkArray(a)); return;}
}
// Returns an array of integers representing the keys of the array.
#line 707 "runarray.in"
void arrayKeys(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
#line 708 "runarray.in"
size_t size=checkArray(a);
array *keys=new array();
for (size_t i=0; i<size; ++i) {
item& cell = (*a)[i];
if (!cell.empty())
keys->push((Int)i);
}
{Stack->push<array*>(keys); return;}
}
// Return the cyclic flag for an array.
#line 722 "runarray.in"
void arrayCyclicFlag(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
#line 723 "runarray.in"
checkArray(a);
{Stack->push<bool>(a->cyclic()); return;}
}
#line 728 "runarray.in"
void arraySetCyclicFlag(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
bool b=vm::pop<bool>(Stack);
#line 729 "runarray.in"
checkArray(a);
a->cyclic(b);
{Stack->push<bool>(b); return;}
}
// Check to see if an array element is initialized.
#line 736 "runarray.in"
void arrayInitializedHelper(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
Int n=vm::pop<Int>(Stack);
#line 737 "runarray.in"
size_t len=checkArray(a);
bool cyclic=a->cyclic();
if(cyclic && len > 0) n=imod(n,len);
else if(n < 0 || n >= (Int) len) {Stack->push<bool>(false); return;}
item&i=(*a)[(unsigned) n];
{Stack->push<bool>(!i.empty()); return;}
}
// Returns the initialize method for an array.
#line 747 "runarray.in"
void arrayInitialized(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
#line 748 "runarray.in"
{Stack->push<callable*>(new thunk(new bfunc(arrayInitializedHelper),a)); return;}
}
// The helper function for the cyclic method that sets the cyclic flag.
#line 753 "runarray.in"
void arrayCyclicHelper(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
bool b=vm::pop<bool>(Stack);
#line 754 "runarray.in"
checkArray(a);
a->cyclic(b);
}
// Set the cyclic flag for an array.
#line 760 "runarray.in"
void arrayCyclic(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
#line 761 "runarray.in"
{Stack->push<callable*>(new thunk(new bfunc(arrayCyclicHelper),a)); return;}
}
// The helper function for the push method that does the actual operation.
#line 766 "runarray.in"
void arrayPushHelper(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
item x=vm::pop(Stack);
#line 767 "runarray.in"
checkArray(a);
a->push(x);
{Stack->push(x); return;}
}
// Returns the push method for an array.
#line 774 "runarray.in"
void arrayPush(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
#line 775 "runarray.in"
{Stack->push<callable*>(new thunk(new bfunc(arrayPushHelper),a)); return;}
}
// The helper function for the append method that appends b to a.
#line 780 "runarray.in"
void arrayAppendHelper(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
array * b=vm::pop<array *>(Stack);
#line 781 "runarray.in"
checkArray(a);
size_t size=checkArray(b);
for(size_t i=0; i < size; i++)
a->push((*b)[i]);
}
// Returns the append method for an array.
#line 789 "runarray.in"
void arrayAppend(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
#line 790 "runarray.in"
{Stack->push<callable*>(new thunk(new bfunc(arrayAppendHelper),a)); return;}
}
// The helper function for the pop method.
#line 795 "runarray.in"
void arrayPopHelper(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
#line 796 "runarray.in"
size_t asize=checkArray(a);
if(asize == 0)
error("cannot pop element from empty array");
{Stack->push(a->pop()); return;}
}
// Returns the pop method for an array.
#line 804 "runarray.in"
void arrayPop(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
#line 805 "runarray.in"
{Stack->push<callable*>(new thunk(new bfunc(arrayPopHelper),a)); return;}
}
// The helper function for the insert method.
#line 810 "runarray.in"
void arrayInsertHelper(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
array * x=vm::pop<array *>(Stack);
Int i=vm::pop<Int>(Stack);
#line 811 "runarray.in"
size_t asize=checkArray(a);
checkArray(x);
if(a->cyclic() && asize > 0) i=imod(i,asize);
if(i < 0 || i > (Int) asize)
outOfBounds("inserting",asize,i);
(*a).insert((*a).begin()+i,(*x).begin(),(*x).end());
}
// Returns the insert method for an array.
#line 821 "runarray.in"
void arrayInsert(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
#line 822 "runarray.in"
{Stack->push<callable*>(new thunk(new bfunc(arrayInsertHelper),a)); return;}
}
// Returns the delete method for an array.
#line 827 "runarray.in"
void arrayDelete(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
#line 828 "runarray.in"
{Stack->push<callable*>(new thunk(new bfunc(arrayDeleteHelper),a)); return;}
}
#line 832 "runarray.in"
void arrayAlias(stack *Stack)
{
array * b=vm::pop<array *>(Stack);
array * a=vm::pop<array *>(Stack);
#line 833 "runarray.in"
{Stack->push<bool>(a==b); return;}
}
// Return array formed by indexing array a with elements of integer array b
#line 838 "runarray.in"
void arrayIntArray(stack *Stack)
{
array * b=vm::pop<array *>(Stack);
array * a=vm::pop<array *>(Stack);
#line 839 "runarray.in"
size_t asize=checkArray(a);
size_t bsize=checkArray(b);
array *r=new array(bsize);
bool cyclic=a->cyclic();
for(size_t i=0; i < bsize; i++) {
Int index=read<Int>(b,i);
if(cyclic && asize > 0) index=imod(index,asize);
else
if(index < 0 || index >= (Int) asize)
outOfBounds("reading",asize,index);
(*r)[i]=(*a)[index];
}
{Stack->push<array*>(r); return;}
}
// returns the complement of the integer array a in {0,2,...,n-1},
// so that b[complement(a,b.length)] yields the complement of b[a].
#line 857 "runarray.in"
// Intarray* complement(Intarray *a, Int n);
void gen_runarray32(stack *Stack)
{
Int n=vm::pop<Int>(Stack);
Intarray * a=vm::pop<Intarray *>(Stack);
#line 858 "runarray.in"
size_t asize=checkArray(a);
array *r=new array(0);
bool *keep=new bool[n];
for(Int i=0; i < n; ++i) keep[i]=true;
for(size_t i=0; i < asize; ++i) {
Int j=read<Int>(a,i);
if(j >= 0 && j < n) keep[j]=false;
}
for(Int i=0; i < n; i++)
if(keep[i]) r->push(i);
delete[] keep;
{Stack->push<Intarray*>(r); return;}
}
// Generate the sequence {f(i) : i=0,1,...n-1} given a function f and integer n
#line 875 "runarray.in"
void arraySequence(stack *Stack)
{
Int n=vm::pop<Int>(Stack);
callable * f=vm::pop<callable *>(Stack);
#line 876 "runarray.in"
if(n < 0) n=0;
array *a=new array(n);
for(Int i=0; i < n; ++i) {
Stack->push(i);
f->call(Stack);
(*a)[i]=pop(Stack);
}
{Stack->push<Intarray*>(a); return;}
}
// Return the array {0,1,...n-1}
#line 888 "runarray.in"
// Intarray* sequence(Int n);
void gen_runarray34(stack *Stack)
{
Int n=vm::pop<Int>(Stack);
#line 889 "runarray.in"
if(n < 0) n=0;
array *a=new array(n);
for(Int i=0; i < n; ++i) {
(*a)[i]=i;
}
{Stack->push<Intarray*>(a); return;}
}
// Apply a function to each element of an array
#line 899 "runarray.in"
void arrayFunction(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
callable * f=vm::pop<callable *>(Stack);
#line 900 "runarray.in"
size_t size=checkArray(a);
array *b=new array(size);
for(size_t i=0; i < size; ++i) {
Stack->push((*a)[i]);
f->call(Stack);
(*b)[i]=pop(Stack);
}
{Stack->push<array*>(b); return;}
}
#line 911 "runarray.in"
void arraySort(stack *Stack)
{
bool stable=vm::pop<bool>(Stack,true);
callable * less=vm::pop<callable *>(Stack);
array * a=vm::pop<array *>(Stack);
#line 912 "runarray.in"
array *c=copyArray(a);
compareFunc=less;
FuncStack=Stack;
if(stable) stable_sort(c->begin(),c->end(),compareFunction);
else sort(c->begin(),c->end(),compareFunction);
{Stack->push<array*>(c); return;}
}
#line 921 "runarray.in"
void arraySearch(stack *Stack)
{
callable * less=vm::pop<callable *>(Stack);
item key=vm::pop(Stack);
array * a=vm::pop<array *>(Stack);
#line 922 "runarray.in"
size_t size=a->size();
compareFunc=less;
FuncStack=Stack;
if(size == 0 || compareFunction(key,(*a)[0])) {Stack->push<Int>(-1); return;}
size_t u=size-1;
if(!compareFunction(key,(*a)[u])) {Stack->push<Int>(Intcast(u)); return;}
size_t l=0;
while (l < u) {
size_t i=(l+u)/2;
if(compareFunction(key,(*a)[i])) u=i;
else if(compareFunction(key,(*a)[i+1])) {Stack->push<Int>(Intcast(i)); return;}
else l=i+1;
}
{Stack->push<Int>(0); return;}
}
#line 940 "runarray.in"
// bool all(boolarray *a);
void gen_runarray38(stack *Stack)
{
boolarray * a=vm::pop<boolarray *>(Stack);
#line 941 "runarray.in"
size_t size=checkArray(a);
bool c=true;
for(size_t i=0; i < size; i++)
if(!get<bool>((*a)[i])) {c=false; break;}
{Stack->push<bool>(c); return;}
}
#line 949 "runarray.in"
// boolarray* !(boolarray* a);
void gen_runarray39(stack *Stack)
{
boolarray* a=vm::pop<boolarray*>(Stack);
#line 950 "runarray.in"
size_t size=checkArray(a);
array *c=new array(size);
for(size_t i=0; i < size; i++)
(*c)[i]=!read<bool>(a,i);
{Stack->push<boolarray*>(c); return;}
}
#line 958 "runarray.in"
// Int sum(boolarray *a);
void gen_runarray40(stack *Stack)
{
boolarray * a=vm::pop<boolarray *>(Stack);
#line 959 "runarray.in"
size_t size=checkArray(a);
Int sum=0;
for(size_t i=0; i < size; i++)
sum += read<bool>(a,i) ? 1 : 0;
{Stack->push<Int>(sum); return;}
}
#line 967 "runarray.in"
void arrayConcat(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
#line 968 "runarray.in"
// a is an array of arrays to be concatenated together.
// The signature is
// T[] concat(... T[][] a);
size_t numArgs=checkArray(a);
size_t resultSize=0;
for (size_t i=0; i < numArgs; ++i) {
resultSize += checkArray(a->read<array *>(i));
}
array *result=new array(resultSize);
size_t ri=0;
for (size_t i=0; i < numArgs; ++i) {
array *arg=a->read<array *>(i);
size_t size=checkArray(arg);
for (size_t j=0; j < size; ++j) {
(*result)[ri]=(*arg)[j];
++ri;
}
}
{Stack->push<array*>(result); return;}
}
#line 995 "runarray.in"
void array2Transpose(stack *Stack)
{
array * a=vm::pop<array *>(Stack);
#line 996 "runarray.in"
size_t asize=checkArray(a);
array *c=new array(0);
for(size_t i=0; i < asize; i++) {
size_t ip=i+1;
array *ai=read<array*>(a,i);
size_t aisize=checkArray(ai);
size_t csize=checkArray(c);
if(csize < aisize) {
c->resize(aisize);
for(size_t j=csize; j < aisize; j++) {
(*c)[j]=new array(ip);
}
}
for(size_t j=0; j < aisize; j++) {
array *cj=read<array*>(c,j);
if(checkArray(cj) < ip) cj->resize(ip);
(*cj)[i]=(*ai)[j];
}
}
{Stack->push<array*>(c); return;}
}
// a is a rectangular 3D array; perm is an Int array indicating the type of
// permutation (021 or 120, etc; original is 012).
// Transpose by sending respective members to the permutated locations:
// return the array obtained by putting a[i][j][k] into position perm{ijk}.
#line 1023 "runarray.in"
void array3Transpose(stack *Stack)
{
array * perm=vm::pop<array *>(Stack);
array * a=vm::pop<array *>(Stack);
#line 1024 "runarray.in"
const size_t DIM=3;
if(checkArray(perm) != DIM) {
ostringstream buf;
buf << "permutation array must have length " << DIM;
error(buf);
}
size_t* size=new size_t[DIM];
for(size_t i=0; i < DIM; ++i) size[i]=DIM;
for(size_t i=0; i < DIM; ++i) {
Int p=read<Int>(perm,i);
size_t P=(size_t) p;
if(p < 0 || P >= DIM) {
ostringstream buf;
buf << "permutation index out of range: " << p;
error(buf);
}
size[P]=P;
}
for(size_t i=0; i < DIM; ++i)
if(size[i] == DIM) error("permutation indices must be distinct");
static const char *rectangular=
"3D transpose implemented for rectangular matrices only";
size_t isize=size[0]=checkArray(a);
array *a0=read<array*>(a,0);
size[1]=checkArray(a0);
array *a00=read<array*>(a0,0);
size[2]=checkArray(a00);
for(size_t i=0; i < isize; i++) {
array *ai=read<array*>(a,i);
size_t jsize=checkArray(ai);
if(jsize != size[1]) error(rectangular);
for(size_t j=0; j < jsize; j++) {
array *aij=read<array*>(ai,j);
if(checkArray(aij) != size[2]) error(rectangular);
}
}
size_t perm0=(size_t) read<Int>(perm,0);
size_t perm1=(size_t) read<Int>(perm,1);
size_t perm2=(size_t) read<Int>(perm,2);
size_t sizep0=size[perm0];
size_t sizep1=size[perm1];
size_t sizep2=size[perm2];
array *c=new array(sizep0);
for(size_t i=0; i < sizep0; ++i) {
array *ci=new array(sizep1);
(*c)[i]=ci;
for(size_t j=0; j < sizep1; ++j) {
array *cij=new array(sizep2);
(*ci)[j]=cij;
}
}
size_t* i=new size_t[DIM];
for(i[0]=0; i[0] < size[0]; ++i[0]) {
array *a0=read<array*>(a,i[0]);
for(i[1]=0; i[1] < size[1]; ++i[1]) {
array *a1=read<array*>(a0,i[1]);
for(i[2]=0; i[2] < size[2]; ++i[2]) {
array *c0=read<array*>(c,i[perm0]);
array *c1=read<array*>(c0,i[perm1]);
(*c1)[i[perm2]]=read<real>(a1,i[2]);
}
}
}
delete[] i;
delete[] size;
{Stack->push<array*>(c); return;}
}
// Find the index of the nth true value in a boolean array or -1 if not found.
// If n is negative, search backwards.
#line 1108 "runarray.in"
// Int find(boolarray *a, Int n=1);
void gen_runarray44(stack *Stack)
{
Int n=vm::pop<Int>(Stack,1);
boolarray * a=vm::pop<boolarray *>(Stack);
#line 1109 "runarray.in"
size_t size=checkArray(a);
Int j=-1;
if(n > 0)
for(size_t i=0; i < size; i++)
if(read<bool>(a,i)) {
n--; if(n == 0) {j=(Int) i; break;}
}
if(n < 0)
for(size_t i=size; i > 0;)
if(read<bool>(a,--i)) {
n++; if(n == 0) {j=(Int) i; break;}
}
{Stack->push<Int>(j); return;}
}
// Find all indices of true values in a boolean array.
#line 1126 "runarray.in"
// Intarray* findall(boolarray *a);
void gen_runarray45(stack *Stack)
{
boolarray * a=vm::pop<boolarray *>(Stack);
#line 1127 "runarray.in"
size_t size=checkArray(a);
array *b=new array(0);
for(size_t i=0; i < size; i++) {
if(read<bool>(a,i)) {
b->push((Int) i);
}
}
{Stack->push<Intarray*>(b); return;}
}
// construct vector obtained by replacing those elements of b for which the
// corresponding elements of a are false by the corresponding element of c.
#line 1140 "runarray.in"
void arrayConditional(stack *Stack)
{
array * c=vm::pop<array *>(Stack);
array * b=vm::pop<array *>(Stack);
array * a=vm::pop<array *>(Stack);
#line 1141 "runarray.in"
size_t size=checkArray(a);
array *r=new array(size);
if(b && c) {
checkArrays(a,b);
checkArrays(b,c);
for(size_t i=0; i < size; i++)
(*r)[i]=read<bool>(a,i) ? (*b)[i] : (*c)[i];
} else {
r->clear();
if(b) {
checkArrays(a,b);
for(size_t i=0; i < size; i++)
if(read<bool>(a,i)) r->push((*b)[i]);
} else if(c) {
checkArrays(a,c);
for(size_t i=0; i < size; i++)
if(!read<bool>(a,i)) r->push((*c)[i]);
}
}
{Stack->push<array*>(r); return;}
}
// Return an n x n identity matrix.
#line 1165 "runarray.in"
// realarray2* identity(Int n);
void gen_runarray47(stack *Stack)
{
Int n=vm::pop<Int>(Stack);
#line 1166 "runarray.in"
{Stack->push<realarray2*>(Identity(n)); return;}
}
// Return the inverse of an n x n matrix a using Gauss-Jordan elimination.
#line 1171 "runarray.in"
// realarray2* inverse(realarray2 *a);
void gen_runarray48(stack *Stack)
{
realarray2 * a=vm::pop<realarray2 *>(Stack);
#line 1172 "runarray.in"
size_t n=checkArray(a);
double *A;
copyArray2C(A,a,true,0,NoGC);
inverse(A,n);
a=copyCArray2(n,n,A);
delete[] A;
{Stack->push<realarray2*>(a); return;}
}
// Solve the linear equation ax=b by LU decomposition, returning the
// solution x, where a is an n x n matrix and b is an array of length n.
// If no solution exists, return an empty array.
#line 1185 "runarray.in"
// realarray* solve(realarray2 *a, realarray *b, bool warn=true);
void gen_runarray49(stack *Stack)
{
bool warn=vm::pop<bool>(Stack,true);
realarray * b=vm::pop<realarray *>(Stack);
realarray2 * a=vm::pop<realarray2 *>(Stack);
#line 1186 "runarray.in"
size_t n=checkArray(a);
if(n == 0) {Stack->push<realarray*>(new array(0)); return;}
size_t m=checkArray(b);
if(m != n) error(incommensurate);
real *A;
copyArray2C(A,a);
size_t *index=new size_t[n];
if(LUdecompose(A,n,index,warn) == 0)
{Stack->push<realarray*>(new array(0)); return;}
array *x=new array(n);
real *B;
copyArrayC(B,b);
for(size_t i=0; i < n; ++i) {
size_t ip=index[i];
real sum=B[ip];
B[ip]=B[i];
real *Ai=A+i*n;
for(size_t j=0; j < i; ++j)
sum -= Ai[j]*B[j];
B[i]=sum;
}
for(size_t i=n; i > 0;) {
--i;
real sum=B[i];
real *Ai=A+i*n;
for(size_t j=i+1; j < n; ++j)
sum -= Ai[j]*B[j];
B[i]=sum/Ai[i];
}
for(size_t i=0; i < n; ++i)
(*x)[i]=B[i];
delete[] index;
delete[] B;
delete[] A;
{Stack->push<realarray*>(x); return;}
}
// Solve the linear equation ax=b by LU decomposition, returning the
// solution x, where a is an n x n matrix and b is an n x m matrix.
// If no solution exists, return an empty array.
#line 1238 "runarray.in"
// realarray2* solve(realarray2 *a, realarray2 *b, bool warn=true);
void gen_runarray50(stack *Stack)
{
bool warn=vm::pop<bool>(Stack,true);
realarray2 * b=vm::pop<realarray2 *>(Stack);
realarray2 * a=vm::pop<realarray2 *>(Stack);
#line 1239 "runarray.in"
size_t n=checkArray(a);
if(n == 0) {Stack->push<realarray2*>(new array(0)); return;}
if(checkArray(b) != n) error(incommensurate);
size_t m=checkArray(read<array*>(b,0));
real *A,*B;
copyArray2C(A,a);
copyArray2C(B,b,false);
size_t *index=new size_t[n];
if(LUdecompose(A,n,index,warn) == 0)
{Stack->push<realarray2*>(new array(0)); return;}
array *x=new array(n);
for(size_t i=0; i < n; ++i) {
real *Ai=A+i*n;
real *Bi=B+i*m;
real *Bip=B+index[i]*m;
for(size_t k=0; k < m; ++k) {
real sum=Bip[k];
Bip[k]=Bi[k];
size_t jk=k;
for(size_t j=0; j < i; ++j, jk += m)
sum -= Ai[j]*B[jk];
Bi[k]=sum;
}
}
for(size_t i=n; i > 0;) {
--i;
real *Ai=A+i*n;
real *Bi=B+i*m;
for(size_t k=0; k < m; ++k) {
real sum=Bi[k];
size_t jk=(i+1)*m+k;
for(size_t j=i+1; j < n; ++j, jk += m)
sum -= Ai[j]*B[jk];
Bi[k]=sum/Ai[i];
}
}
for(size_t i=0; i < n; ++i) {
real *Bi=B+i*m;
array *xi=new array(m);
(*x)[i]=xi;
for(size_t j=0; j < m; ++j)
(*xi)[j]=Bi[j];
}
delete[] index;
delete[] B;
delete[] A;
{Stack->push<realarray2*>(x); return;}
}
// Compute the determinant of an n x n matrix.
#line 1301 "runarray.in"
// real determinant(realarray2 *a);
void gen_runarray51(stack *Stack)
{
realarray2 * a=vm::pop<realarray2 *>(Stack);
#line 1302 "runarray.in"
real *A;
copyArray2C(A,a);
size_t n=checkArray(a);
real det=LUdecompose(A,n,NULL,false);
size_t n1=n+1;
for(size_t i=0; i < n; ++i)
det *= A[i*n1];
delete[] A;
{Stack->push<real>(det); return;}
}
#line 1317 "runarray.in"
// realarray* *(realarray2 *a, realarray *b);
void gen_runarray52(stack *Stack)
{
realarray * b=vm::pop<realarray *>(Stack);
realarray2 * a=vm::pop<realarray2 *>(Stack);
#line 1318 "runarray.in"
size_t n=checkArray(a);
size_t m=checkArray(b);
array *c=new array(n);
real *B;
copyArrayC(B,b);
for(size_t i=0; i < n; ++i) {
array *ai=read<array*>(a,i);
if(checkArray(ai) != m) error(incommensurate);
real sum=0.0;
for(size_t j=0; j < m; ++j)
sum += read<real>(ai,j)*B[j];
(*c)[i]=sum;
}
delete[] B;
{Stack->push<realarray*>(c); return;}
}
#line 1336 "runarray.in"
// realarray* *(realarray *a, realarray2 *b);
void gen_runarray53(stack *Stack)
{
realarray2 * b=vm::pop<realarray2 *>(Stack);
realarray * a=vm::pop<realarray *>(Stack);
#line 1337 "runarray.in"
size_t n=checkArray(a);
if(n != checkArray(b)) error(incommensurate);
real *A;
copyArrayC(A,a);
array **B=new array*[n];
array *bk=read<array *>(b,0);
B[0]=bk;
size_t m=bk->size();
for(size_t k=1; k < n; k++) {
array *bk=read<array *>(b,k);
if(bk->size() != m) error(incommensurate);
B[k]=bk;
}
array *c=new array(m);
for(size_t i=0; i < m; ++i) {
real sum=0.0;
for(size_t k=0; k < n; ++k)
sum += A[k]*read<real>(B[k],i);
(*c)[i]=sum;
}
delete[] B;
delete[] A;
{Stack->push<realarray*>(c); return;}
}
#line 1365 "runarray.in"
// Intarray2* *(Intarray2 *a, Intarray2 *b);
void gen_runarray54(stack *Stack)
{
Intarray2 * b=vm::pop<Intarray2 *>(Stack);
Intarray2 * a=vm::pop<Intarray2 *>(Stack);
#line 1366 "runarray.in"
{Stack->push<Intarray2*>(mult<Int>(a,b)); return;}
}
#line 1370 "runarray.in"
// realarray2* *(realarray2 *a, realarray2 *b);
void gen_runarray55(stack *Stack)
{
realarray2 * b=vm::pop<realarray2 *>(Stack);
realarray2 * a=vm::pop<realarray2 *>(Stack);
#line 1371 "runarray.in"
{Stack->push<realarray2*>(mult<real>(a,b)); return;}
}
#line 1375 "runarray.in"
// pairarray2* *(pairarray2 *a, pairarray2 *b);
void gen_runarray56(stack *Stack)
{
pairarray2 * b=vm::pop<pairarray2 *>(Stack);
pairarray2 * a=vm::pop<pairarray2 *>(Stack);
#line 1376 "runarray.in"
{Stack->push<pairarray2*>(mult<pair>(a,b)); return;}
}
#line 1380 "runarray.in"
// triple *(realarray2 *t, triple v);
void gen_runarray57(stack *Stack)
{
triple v=vm::pop<triple>(Stack);
realarray2 * t=vm::pop<realarray2 *>(Stack);
#line 1381 "runarray.in"
{Stack->push<triple>(*t*v); return;}
}
#line 1385 "runarray.in"
// realarray2* AtA(realarray2 *a);
void gen_runarray58(stack *Stack)
{
realarray2 * a=vm::pop<realarray2 *>(Stack);
#line 1386 "runarray.in"
{Stack->push<realarray2*>(AtA<real>(a)); return;}
}
#line 1390 "runarray.in"
// pair project(triple v, realarray2 *t);
void gen_runarray59(stack *Stack)
{
realarray2 * t=vm::pop<realarray2 *>(Stack);
triple v=vm::pop<triple>(Stack);
#line 1391 "runarray.in"
size_t n=checkArray(t);
if(n != 4) error(incommensurate);
array *t0=read<array*>(t,0);
array *t1=read<array*>(t,1);
array *t3=read<array*>(t,3);
if(checkArray(t0) != 4 || checkArray(t1) != 4 || checkArray(t3) != 4)
error(incommensurate);
real x=v.getx();
real y=v.gety();
real z=v.getz();
real f=read<real>(t3,0)*x+read<real>(t3,1)*y+read<real>(t3,2)*z+
read<real>(t3,3);
if(f == 0.0) dividebyzero();
f=1.0/f;
{Stack->push<pair>(pair((read<real>(t0,0)*x+read<real>(t0,1)*y+read<real>(t0,2)*z+
read<real>(t0,3))*f,
(read<real>(t1,0)*x+read<real>(t1,1)*y+read<real>(t1,2)*z+
read<real>(t1,3))*f)); return;}
}
// Compute the dot product of vectors a and b.
#line 1416 "runarray.in"
// real dot(realarray *a, realarray *b);
void gen_runarray60(stack *Stack)
{
realarray * b=vm::pop<realarray *>(Stack);
realarray * a=vm::pop<realarray *>(Stack);
#line 1417 "runarray.in"
size_t n=checkArrays(a,b);
real sum=0.0;
for(size_t i=0; i < n; ++i)
sum += read<real>(a,i)*read<real>(b,i);
{Stack->push<real>(sum); return;}
}
// Compute the complex dot product of vectors a and b.
#line 1426 "runarray.in"
// pair dot(pairarray *a, pairarray *b);
void gen_runarray61(stack *Stack)
{
pairarray * b=vm::pop<pairarray *>(Stack);
pairarray * a=vm::pop<pairarray *>(Stack);
#line 1427 "runarray.in"
size_t n=checkArrays(a,b);
pair sum=zero;
for(size_t i=0; i < n; ++i)
sum += read<pair>(a,i)*conj(read<pair>(b,i));
{Stack->push<pair>(sum); return;}
}
// Solve the problem L\inv f, where f is an n vector and L is the n x n matrix
//
// [ b[0] c[0] a[0] ]
// [ a[1] b[1] c[1] ]
// [ a[2] b[2] c[2] ]
// [ ... ]
// [ c[n-1] a[n-1] b[n-1] ]
#line 1442 "runarray.in"
// realarray* tridiagonal(realarray *a, realarray *b, realarray *c, realarray *f);
void gen_runarray62(stack *Stack)
{
realarray * f=vm::pop<realarray *>(Stack);
realarray * c=vm::pop<realarray *>(Stack);
realarray * b=vm::pop<realarray *>(Stack);
realarray * a=vm::pop<realarray *>(Stack);
#line 1443 "runarray.in"
size_t n=checkArrays(a,b);
checkEqual(n,checkArray(c));
checkEqual(n,checkArray(f));
array *up=new array(n);
array& u=*up;
if(n == 0) {Stack->push<realarray*>(up); return;}
// Special case: zero Dirichlet boundary conditions
if(read<real>(a,0) == 0.0 && read<real>(c,n-1) == 0.0) {
real temp=read<real>(b,0);
if(temp == 0.0) dividebyzero();
temp=1.0/temp;
real *work=new real[n];
u[0]=read<real>(f,0)*temp;
work[0]=-read<real>(c,0)*temp;
for(size_t i=1; i < n; i++) {
real temp=(read<real>(b,i)+read<real>(a,i)*work[i-1]);
if(temp == 0.0) {delete[] work; dividebyzero();}
temp=1.0/temp;
u[i]=(read<real>(f,i)-read<real>(a,i)*read<real>(u,i-1))*temp;
work[i]=-read<real>(c,i)*temp;
}
for(size_t i=n-1; i >= 1; i--)
u[i-1]=read<real>(u,i-1)+work[i-1]*read<real>(u,i);
delete[] work;
{Stack->push<realarray*>(up); return;}
}
real binv=read<real>(b,0);
if(binv == 0.0) dividebyzero();
binv=1.0/binv;
if(n == 1) {u[0]=read<real>(f,0)*binv; {Stack->push<realarray*>(up); return;}}
if(n == 2) {
real factor=(read<real>(b,0)*read<real>(b,1)-
read<real>(a,0)*read<real>(c,1));
if(factor== 0.0) dividebyzero();
factor=1.0/factor;
real temp=(read<real>(b,0)*read<real>(f,1)-
read<real>(c,1)*read<real>(f,0))*factor;
u[0]=(read<real>(b,1)*read<real>(f,0)-
read<real>(a,0)*read<real>(f,1))*factor;
u[1]=temp;
{Stack->push<realarray*>(up); return;}
}
real *gamma=new real[n-2];
real *delta=new real[n-2];
gamma[0]=read<real>(c,0)*binv;
delta[0]=read<real>(a,0)*binv;
u[0]=read<real>(f,0)*binv;
real beta=read<real>(c,n-1);
real fn=read<real>(f,n-1)-beta*read<real>(u,0);
real alpha=read<real>(b,n-1)-beta*delta[0];
for(size_t i=1; i <= n-3; i++) {
real alphainv=read<real>(b,i)-read<real>(a,i)*gamma[i-1];
if(alphainv == 0.0) {delete[] gamma; delete[] delta; dividebyzero();}
alphainv=1.0/alphainv;
beta *= -gamma[i-1];
gamma[i]=read<real>(c,i)*alphainv;
u[i]=(read<real>(f,i)-read<real>(a,i)*read<real>(u,i-1))*alphainv;
fn -= beta*read<real>(u,i);
delta[i]=-read<real>(a,i)*delta[i-1]*alphainv;
alpha -= beta*delta[i];
}
real alphainv=read<real>(b,n-2)-read<real>(a,n-2)*gamma[n-3];
if(alphainv == 0.0) {delete[] gamma; delete[] delta; dividebyzero();}
alphainv=1.0/alphainv;
u[n-2]=(read<real>(f,n-2)-read<real>(a,n-2)*read<real>(u,n-3))
*alphainv;
beta=read<real>(a,n-1)-beta*gamma[n-3];
real dnm1=(read<real>(c,n-2)-read<real>(a,n-2)*delta[n-3])*alphainv;
real temp=alpha-beta*dnm1;
if(temp == 0.0) {delete[] gamma; delete[] delta; dividebyzero();}
u[n-1]=temp=(fn-beta*read<real>(u,n-2))/temp;
u[n-2]=read<real>(u,n-2)-dnm1*temp;
for(size_t i=n-2; i >= 1; i--)
u[i-1]=read<real>(u,i-1)-gamma[i-1]*read<real>(u,i)-delta[i-1]*temp;
delete[] delta;
delete[] gamma;
{Stack->push<realarray*>(up); return;}
}
// Root solve by Newton-Raphson
#line 1540 "runarray.in"
// real newton(Int iterations=100, callableReal *f, callableReal *fprime, real x, bool verbose=false);
void gen_runarray63(stack *Stack)
{
bool verbose=vm::pop<bool>(Stack,false);
real x=vm::pop<real>(Stack);
callableReal * fprime=vm::pop<callableReal *>(Stack);
callableReal * f=vm::pop<callableReal *>(Stack);
Int iterations=vm::pop<Int>(Stack,100);
#line 1542 "runarray.in"
static const real fuzz=1000.0*DBL_EPSILON;
Int i=0;
size_t oldPrec=0;
if(verbose)
oldPrec=cout.precision(DBL_DIG);
real diff=DBL_MAX;
real lastdiff;
do {
real x0=x;
Stack->push(x);
fprime->call(Stack);
real dfdx=pop<real>(Stack);
if(dfdx == 0.0) {
x=DBL_MAX;
break;
}
Stack->push(x);
f->call(Stack);
real fx=pop<real>(Stack);
x -= fx/dfdx;
lastdiff=diff;
if(verbose)
cout << "Newton-Raphson: " << x << endl;
diff=fabs(x-x0);
if(++i == iterations) {
x=DBL_MAX;
break;
}
} while (diff != 0.0 && (diff < lastdiff || diff > fuzz*fabs(x)));
if(verbose)
cout.precision(oldPrec);
{Stack->push<real>(x); return;}
}
// Root solve by Newton-Raphson bisection
// cf. routine rtsafe (Press et al., Numerical Recipes, 1991).
#line 1588 "runarray.in"
// real newton(Int iterations=100, callableReal *f, callableReal *fprime, real x1, real x2, bool verbose=false);
void gen_runarray64(stack *Stack)
{
bool verbose=vm::pop<bool>(Stack,false);
real x2=vm::pop<real>(Stack);
real x1=vm::pop<real>(Stack);
callableReal * fprime=vm::pop<callableReal *>(Stack);
callableReal * f=vm::pop<callableReal *>(Stack);
Int iterations=vm::pop<Int>(Stack,100);
#line 1590 "runarray.in"
static const real fuzz=1000.0*DBL_EPSILON;
size_t oldPrec=0;
if(verbose)
oldPrec=cout.precision(DBL_DIG);
Stack->push(x1);
f->call(Stack);
real f1=pop<real>(Stack);
if(f1 == 0.0) {Stack->push<real>(x1); return;}
Stack->push(x2);
f->call(Stack);
real f2=pop<real>(Stack);
if(f2 == 0.0) {Stack->push<real>(x2); return;}
if((f1 > 0.0 && f2 > 0.0) || (f1 < 0.0 && f2 < 0.0)) {
ostringstream buf;
buf << "root not bracketed, f(x1)=" << f1 << ", f(x2)=" << f2 << endl;
error(buf);
}
real x=0.5*(x1+x2);
real dxold=fabs(x2-x1);
if(f1 > 0.0) {
real temp=x1;
x1=x2;
x2=temp;
}
if(verbose)
cout << "midpoint: " << x << endl;
real dx=dxold;
Stack->push(x);
f->call(Stack);
real y=pop<real>(Stack);
Stack->push(x);
fprime->call(Stack);
real dy=pop<real>(Stack);
Int j;
for(j=0; j < iterations; j++) {
if(((x-x2)*dy-y)*((x-x1)*dy-y) >= 0.0 || fabs(2.0*y) > fabs(dxold*dy)) {
dxold=dx;
dx=0.5*(x2-x1);
x=x1+dx;
if(verbose)
cout << "bisection: " << x << endl;
if(x1 == x) {Stack->push<real>(x); return;}
} else {
dxold=dx;
dx=y/dy;
real temp=x;
x -= dx;
if(verbose)
cout << "Newton-Raphson: " << x << endl;
if(temp == x) {Stack->push<real>(x); return;}
}
if(fabs(dx) < fuzz*fabs(x)) {Stack->push<real>(x); return;}
Stack->push(x);
f->call(Stack);
y=pop<real>(Stack);
Stack->push(x);
fprime->call(Stack);
dy=pop<real>(Stack);
if(y < 0.0) x1=x;
else x2=x;
}
if(verbose)
cout.precision(oldPrec);
{Stack->push<real>((j == iterations) ? DBL_MAX : x); return;}
}
// Find a root for the specified continuous (but not necessarily
// differentiable) function. Whatever value t is returned, it is guaranteed
// that t is within [a, b] and within tolerance of a sign change.
// An error is thrown if fa and fb are both positive or both negative.
//
// In this implementation, the binary search is interleaved
// with a modified version of quadratic interpolation.
// This is a C++ port of the Asymptote routine written by Charles Staats III.
#line 1676 "runarray.in"
// real _findroot(callableReal *f, real a, real b, real tolerance, real fa, real fb);
void gen_runarray65(stack *Stack)
{
real fb=vm::pop<real>(Stack);
real fa=vm::pop<real>(Stack);
real tolerance=vm::pop<real>(Stack);
real b=vm::pop<real>(Stack);
real a=vm::pop<real>(Stack);
callableReal * f=vm::pop<callableReal *>(Stack);
#line 1678 "runarray.in"
if(fa == 0.0) {Stack->push<real>(a); return;}
if(fb == 0.0) {Stack->push<real>(b); return;}
const char* oppsign="fa and fb must have opposite signs";
int sign;
if(fa < 0.0) {
if(fb < 0.0) error(oppsign);
sign=1;
} else {
if(fb > 0.0) error(oppsign);
fa=-fa;
fb=-fb;
sign=-1;
}
real t=a;
real ft=fa;
real twicetolerance=2.0*tolerance;
while(b-a > tolerance) {
t=(a+b)*0.5;
Stack->push(t);
f->call(Stack);
ft=sign*pop<double>(Stack);
if(ft == 0.0) {Stack->push<real>(t); return;}
// If halving the interval already puts us within tolerance,
// don't bother with the interpolation step.
if(b-a >= twicetolerance) {
real factor=1.0/(b-a);
real q_A=2.0*(fa-2.0*ft+fb)*factor*factor;
real q_B=(fb-fa)*factor;
quadraticroots Q=quadraticroots(q_A,q_B,ft);
// If the interpolation somehow failed, continue on to the next binary
// search step. This may or may not be possible, depending on what
// theoretical guarantees are provided by the quadraticroots function.
real root;
bool found=Q.roots > 0;
if(found) {
root=t+Q.t1;
if(root <= a || root >= b) {
if(Q.roots == 1) found=false;
else {
root=t+Q.t2;
if(root <= a || root >= b) found=false;
}
}
}
if(found) {
if(ft > 0.0) {
b=t;
fb=ft;
} else {
a=t;
fa=ft;
}
t=root;
// If the interpolated value is close to one edge of
// the interval, move it farther away from the edge in
// an effort to catch the root in the middle.
real margin=(b-a)*1.0e-3;
if(t-a < margin) t=a+2.0*(t-a);
else if(b-t < margin) t=b-2.0*(b-t);
Stack->push(t);
f->call(Stack);
ft=sign*pop<double>(Stack);
if(ft == 0.0) {Stack->push<real>(t); return;}
}
}
if(ft > 0.0) {
b=t;
fb=ft;
} else if(ft < 0.0) {
a=t;
fa=ft;
}
}
{Stack->push<real>(a-(b-a)/(fb-fa)*fa); return;}
}
#line 1770 "runarray.in"
// real simpson(callableReal *f, real a, real b, real acc=DBL_EPSILON, real dxmax=0);
void gen_runarray66(stack *Stack)
{
real dxmax=vm::pop<real>(Stack,0);
real acc=vm::pop<real>(Stack,DBL_EPSILON);
real b=vm::pop<real>(Stack);
real a=vm::pop<real>(Stack);
callableReal * f=vm::pop<callableReal *>(Stack);
#line 1772 "runarray.in"
real integral;
if(dxmax <= 0) dxmax=fabs(b-a);
callable *oldFunc=Func;
Func=f;
FuncStack=Stack;
if(!simpson(integral,wrapFunction,a,b,acc,dxmax))
error("nesting capacity exceeded in simpson");
Func=oldFunc;
{Stack->push<real>(integral); return;}
}
// Compute the fast Fourier transform of a pair array
#line 1785 "runarray.in"
// pairarray* fft(pairarray *a, Int sign=1);
void gen_runarray67(stack *Stack)
{
Int sign=vm::pop<Int>(Stack,1);
pairarray * a=vm::pop<pairarray *>(Stack);
#line 1786 "runarray.in"
#ifdef HAVE_LIBFFTW3
unsigned n=(unsigned) checkArray(a);
array *c=new array(n);
if(n) {
Complex *f=utils::ComplexAlign(n);
fftwpp::fft1d Forward(n,intcast(sign),f);
for(size_t i=0; i < n; i++) {
pair z=read<pair>(a,i);
f[i]=Complex(z.getx(),z.gety());
}
Forward.fft(f);
for(size_t i=0; i < n; i++) {
Complex z=f[i];
(*c)[i]=pair(z.real(),z.imag());
}
utils::deleteAlign(f);
}
#else
unused(a);
unused(&sign);
array *c=new array(0);
error("Please install fftw3, run ./configure, and recompile");
#endif // HAVE_LIBFFTW3
{Stack->push<pairarray*>(c); return;}
}
#line 1815 "runarray.in"
// Intarray2* triangulate(pairarray *z);
void gen_runarray68(stack *Stack)
{
pairarray * z=vm::pop<pairarray *>(Stack);
#line 1816 "runarray.in"
size_t nv=checkArray(z);
// Call robust version of Gilles Dumoulin's port of Paul Bourke's
// triangulation code.
XYZ *pxyz=new XYZ[nv+3];
ITRIANGLE *V=new ITRIANGLE[4*nv];
for(size_t i=0; i < nv; ++i) {
pair w=read<pair>(z,i);
pxyz[i].p[0]=w.getx();
pxyz[i].p[1]=w.gety();
pxyz[i].i=(Int) i;
}
Int ntri;
Triangulate((Int) nv,pxyz,V,ntri,true,false);
size_t nt=(size_t) ntri;
array *t=new array(nt);
for(size_t i=0; i < nt; ++i) {
array *ti=new array(3);
(*t)[i]=ti;
ITRIANGLE *Vi=V+i;
(*ti)[0]=pxyz[Vi->p1].i;
(*ti)[1]=pxyz[Vi->p2].i;
(*ti)[2]=pxyz[Vi->p3].i;
}
delete[] V;
delete[] pxyz;
{Stack->push<Intarray2*>(t); return;}
}
#line 1850 "runarray.in"
// real norm(realarray *a);
void gen_runarray69(stack *Stack)
{
realarray * a=vm::pop<realarray *>(Stack);
#line 1851 "runarray.in"
size_t n=checkArray(a);
real M=0.0;
for(size_t i=0; i < n; ++i) {
real x=fabs(vm::read<real>(a,i));
if(x > M) M=x;
}
{Stack->push<real>(M); return;}
}
#line 1861 "runarray.in"
// real norm(realarray2 *a);
void gen_runarray70(stack *Stack)
{
realarray2 * a=vm::pop<realarray2 *>(Stack);
#line 1862 "runarray.in"
size_t n=checkArray(a);
real M=0.0;
for(size_t i=0; i < n; ++i) {
vm::array *ai=vm::read<vm::array*>(a,i);
size_t m=checkArray(ai);
for(size_t j=0; j < m; ++j) {
real a=fabs(vm::read<real>(ai,j));
if(a > M) M=a;
}
}
{Stack->push<real>(M); return;}
}
#line 1876 "runarray.in"
// real norm(triplearray2 *a);
void gen_runarray71(stack *Stack)
{
triplearray2 * a=vm::pop<triplearray2 *>(Stack);
#line 1877 "runarray.in"
size_t n=checkArray(a);
real M=0.0;
for(size_t i=0; i < n; ++i) {
vm::array *ai=vm::read<vm::array*>(a,i);
size_t m=checkArray(ai);
for(size_t j=0; j < m; ++j) {
real a=vm::read<triple>(ai,j).abs2();
if(a > M) M=a;
}
}
{Stack->push<real>(sqrt(M)); return;}
}
#line 1891 "runarray.in"
// real change2(triplearray2 *a);
void gen_runarray72(stack *Stack)
{
triplearray2 * a=vm::pop<triplearray2 *>(Stack);
#line 1892 "runarray.in"
size_t n=checkArray(a);
if(n == 0) {Stack->push<real>(0.0); return;}
vm::array *a0=vm::read<vm::array*>(a,0);
size_t m=checkArray(a0);
if(m == 0) {Stack->push<real>(0.0); return;}
triple a00=vm::read<triple>(a0,0);
real M=0.0;
for(size_t i=0; i < n; ++i) {
vm::array *ai=vm::read<vm::array*>(a,i);
size_t m=checkArray(ai);
for(size_t j=0; j < m; ++j) {
real a=(vm::read<triple>(ai,j)-a00).abs2();
if(a > M) M=a;
}
}
{Stack->push<real>(M); return;}
}
#line 1913 "runarray.in"
// triple minbezier(triplearray2 *P, triple b);
void gen_runarray73(stack *Stack)
{
triple b=vm::pop<triple>(Stack);
triplearray2 * P=vm::pop<triplearray2 *>(Stack);
#line 1914 "runarray.in"
size_t N;
real *A=copyTripleArray2Components(P,N);
bound_double *B=bounddouble(N);
b=triple(B(A,::min,b.getx(),Fuzz*norm(A,N),maxdepth),
B(A+N,::min,b.gety(),Fuzz*norm(A+N,N),maxdepth),
B(A+2*N,::min,b.getz(),Fuzz*norm(A+2*N,N),maxdepth));
delete[] A;
{Stack->push<triple>(b); return;}
}
#line 1925 "runarray.in"
// triple maxbezier(triplearray2 *P, triple b);
void gen_runarray74(stack *Stack)
{
triple b=vm::pop<triple>(Stack);
triplearray2 * P=vm::pop<triplearray2 *>(Stack);
#line 1926 "runarray.in"
size_t N;
real *A=copyTripleArray2Components(P,N);
bound_double *B=bounddouble(N);
b=triple(B(A,::max,b.getx(),Fuzz*norm(A,N),maxdepth),
B(A+N,::max,b.gety(),Fuzz*norm(A+N,N),maxdepth),
B(A+2*N,::max,b.getz(),Fuzz*norm(A+2*N,N),maxdepth));
delete[] A;
{Stack->push<triple>(b); return;}
}
#line 1937 "runarray.in"
// pair minratio(triplearray2 *P, pair b);
void gen_runarray75(stack *Stack)
{
pair b=vm::pop<pair>(Stack);
triplearray2 * P=vm::pop<triplearray2 *>(Stack);
#line 1938 "runarray.in"
size_t N;
triple *A=copyTripleArray2C(P,N);
real fuzz=Fuzz*norm(A,N);
bound_triple *B=boundtriple(N);
b=pair(B(A,::min,xratio,b.getx(),fuzz,maxdepth),
B(A,::min,yratio,b.gety(),fuzz,maxdepth));
delete[] A;
{Stack->push<pair>(b); return;}
}
#line 1949 "runarray.in"
// pair maxratio(triplearray2 *P, pair b);
void gen_runarray76(stack *Stack)
{
pair b=vm::pop<pair>(Stack);
triplearray2 * P=vm::pop<triplearray2 *>(Stack);
#line 1950 "runarray.in"
size_t N;
triple *A=copyTripleArray2C(P,N);
bound_triple *B=boundtriple(N);
real fuzz=Fuzz*norm(A,N);
b=pair(B(A,::max,xratio,b.getx(),fuzz,maxdepth),
B(A,::max,yratio,b.gety(),fuzz,maxdepth));
delete[] A;
{Stack->push<pair>(b); return;}
}
#line 1961 "runarray.in"
// realarray* _projection();
void gen_runarray77(stack *Stack)
{
#line 1962 "runarray.in"
#ifdef HAVE_GL
array *a=new array(14);
gl::projection P=gl::camera();
size_t k=0;
(*a)[k++]=P.orthographic ? 1.0 : 0.0;
triple camera=P.camera;
(*a)[k++]=camera.getx();
(*a)[k++]=camera.gety();
(*a)[k++]=camera.getz();
triple up=P.up;
(*a)[k++]=up.getx();
(*a)[k++]=up.gety();
(*a)[k++]=up.getz();
triple target=P.target;
(*a)[k++]=target.getx();
(*a)[k++]=target.gety();
(*a)[k++]=target.getz();
(*a)[k++]=P.zoom;
(*a)[k++]=P.angle;
(*a)[k++]=P.viewportshift.getx();
(*a)[k++]=P.viewportshift.gety();
#endif
{Stack->push<realarray*>(new array(0)); return;}
}
} // namespace run
namespace trans {
void gen_runarray_venv(venv &ve)
{
#line 549 "runarray.in"
REGISTER_BLTIN(run::emptyArray,"emptyArray");
#line 555 "runarray.in"
REGISTER_BLTIN(run::newDeepArray,"newDeepArray");
#line 577 "runarray.in"
REGISTER_BLTIN(run::newInitializedArray,"newInitializedArray");
#line 592 "runarray.in"
REGISTER_BLTIN(run::newAppendedArray,"newAppendedArray");
#line 608 "runarray.in"
REGISTER_BLTIN(run::copyArrayValue,"copyArrayValue");
#line 620 "runarray.in"
REGISTER_BLTIN(run::copyArray,"copyArray");
#line 631 "runarray.in"
REGISTER_BLTIN(run::arrayRead,"arrayRead");
#line 643 "runarray.in"
REGISTER_BLTIN(run::arraySliceRead,"arraySliceRead");
#line 650 "runarray.in"
REGISTER_BLTIN(run::arraySliceReadToEnd,"arraySliceReadToEnd");
#line 658 "runarray.in"
REGISTER_BLTIN(run::arrayArrayRead,"arrayArrayRead");
#line 667 "runarray.in"
REGISTER_BLTIN(run::arrayWrite,"arrayWrite");
#line 684 "runarray.in"
REGISTER_BLTIN(run::arraySliceWrite,"arraySliceWrite");
#line 692 "runarray.in"
REGISTER_BLTIN(run::arraySliceWriteToEnd,"arraySliceWriteToEnd");
#line 700 "runarray.in"
REGISTER_BLTIN(run::arrayLength,"arrayLength");
#line 706 "runarray.in"
REGISTER_BLTIN(run::arrayKeys,"arrayKeys");
#line 721 "runarray.in"
REGISTER_BLTIN(run::arrayCyclicFlag,"arrayCyclicFlag");
#line 728 "runarray.in"
REGISTER_BLTIN(run::arraySetCyclicFlag,"arraySetCyclicFlag");
#line 735 "runarray.in"
REGISTER_BLTIN(run::arrayInitializedHelper,"arrayInitializedHelper");
#line 746 "runarray.in"
REGISTER_BLTIN(run::arrayInitialized,"arrayInitialized");
#line 752 "runarray.in"
REGISTER_BLTIN(run::arrayCyclicHelper,"arrayCyclicHelper");
#line 759 "runarray.in"
REGISTER_BLTIN(run::arrayCyclic,"arrayCyclic");
#line 765 "runarray.in"
REGISTER_BLTIN(run::arrayPushHelper,"arrayPushHelper");
#line 773 "runarray.in"
REGISTER_BLTIN(run::arrayPush,"arrayPush");
#line 779 "runarray.in"
REGISTER_BLTIN(run::arrayAppendHelper,"arrayAppendHelper");
#line 788 "runarray.in"
REGISTER_BLTIN(run::arrayAppend,"arrayAppend");
#line 794 "runarray.in"
REGISTER_BLTIN(run::arrayPopHelper,"arrayPopHelper");
#line 803 "runarray.in"
REGISTER_BLTIN(run::arrayPop,"arrayPop");
#line 809 "runarray.in"
REGISTER_BLTIN(run::arrayInsertHelper,"arrayInsertHelper");
#line 820 "runarray.in"
REGISTER_BLTIN(run::arrayInsert,"arrayInsert");
#line 826 "runarray.in"
REGISTER_BLTIN(run::arrayDelete,"arrayDelete");
#line 832 "runarray.in"
REGISTER_BLTIN(run::arrayAlias,"arrayAlias");
#line 837 "runarray.in"
REGISTER_BLTIN(run::arrayIntArray,"arrayIntArray");
#line 855 "runarray.in"
addFunc(ve, run::gen_runarray32, IntArray(), SYM(complement), formal(IntArray(), SYM(a), false, false), formal(primInt(), SYM(n), false, false));
#line 874 "runarray.in"
REGISTER_BLTIN(run::arraySequence,"arraySequence");
#line 887 "runarray.in"
addFunc(ve, run::gen_runarray34, IntArray(), SYM(sequence), formal(primInt(), SYM(n), false, false));
#line 898 "runarray.in"
REGISTER_BLTIN(run::arrayFunction,"arrayFunction");
#line 911 "runarray.in"
REGISTER_BLTIN(run::arraySort,"arraySort");
#line 921 "runarray.in"
REGISTER_BLTIN(run::arraySearch,"arraySearch");
#line 940 "runarray.in"
addFunc(ve, run::gen_runarray38, primBoolean(), SYM(all), formal(booleanArray(), SYM(a), false, false));
#line 949 "runarray.in"
addFunc(ve, run::gen_runarray39, booleanArray(), SYM_LOGNOT, formal(booleanArray(), SYM(a), false, false));
#line 958 "runarray.in"
addFunc(ve, run::gen_runarray40, primInt(), SYM(sum), formal(booleanArray(), SYM(a), false, false));
#line 967 "runarray.in"
REGISTER_BLTIN(run::arrayConcat,"arrayConcat");
#line 995 "runarray.in"
REGISTER_BLTIN(run::array2Transpose,"array2Transpose");
#line 1019 "runarray.in"
REGISTER_BLTIN(run::array3Transpose,"array3Transpose");
#line 1106 "runarray.in"
addFunc(ve, run::gen_runarray44, primInt(), SYM(find), formal(booleanArray(), SYM(a), false, false), formal(primInt(), SYM(n), true, false));
#line 1125 "runarray.in"
addFunc(ve, run::gen_runarray45, IntArray(), SYM(findall), formal(booleanArray(), SYM(a), false, false));
#line 1138 "runarray.in"
REGISTER_BLTIN(run::arrayConditional,"arrayConditional");
#line 1164 "runarray.in"
addFunc(ve, run::gen_runarray47, realArray2(), SYM(identity), formal(primInt(), SYM(n), false, false));
#line 1170 "runarray.in"
addFunc(ve, run::gen_runarray48, realArray2(), SYM(inverse), formal(realArray2(), SYM(a), false, false));
#line 1182 "runarray.in"
addFunc(ve, run::gen_runarray49, realArray(), SYM(solve), formal(realArray2(), SYM(a), false, false), formal(realArray(), SYM(b), false, false), formal(primBoolean(), SYM(warn), true, false));
#line 1235 "runarray.in"
addFunc(ve, run::gen_runarray50, realArray2(), SYM(solve), formal(realArray2(), SYM(a), false, false), formal(realArray2(), SYM(b), false, false), formal(primBoolean(), SYM(warn), true, false));
#line 1300 "runarray.in"
addFunc(ve, run::gen_runarray51, primReal(), SYM(determinant), formal(realArray2(), SYM(a), false, false));
#line 1317 "runarray.in"
addFunc(ve, run::gen_runarray52, realArray(), SYM_TIMES, formal(realArray2(), SYM(a), false, false), formal(realArray(), SYM(b), false, false));
#line 1336 "runarray.in"
addFunc(ve, run::gen_runarray53, realArray(), SYM_TIMES, formal(realArray(), SYM(a), false, false), formal(realArray2(), SYM(b), false, false));
#line 1365 "runarray.in"
addFunc(ve, run::gen_runarray54, IntArray2(), SYM_TIMES, formal(IntArray2(), SYM(a), false, false), formal(IntArray2(), SYM(b), false, false));
#line 1370 "runarray.in"
addFunc(ve, run::gen_runarray55, realArray2(), SYM_TIMES, formal(realArray2(), SYM(a), false, false), formal(realArray2(), SYM(b), false, false));
#line 1375 "runarray.in"
addFunc(ve, run::gen_runarray56, pairArray2(), SYM_TIMES, formal(pairArray2(), SYM(a), false, false), formal(pairArray2(), SYM(b), false, false));
#line 1380 "runarray.in"
addFunc(ve, run::gen_runarray57, primTriple(), SYM_TIMES, formal(realArray2(), SYM(t), false, false), formal(primTriple(), SYM(v), false, false));
#line 1385 "runarray.in"
addFunc(ve, run::gen_runarray58, realArray2(), SYM(AtA), formal(realArray2(), SYM(a), false, false));
#line 1390 "runarray.in"
addFunc(ve, run::gen_runarray59, primPair(), SYM(project), formal(primTriple(), SYM(v), false, false), formal(realArray2(), SYM(t), false, false));
#line 1415 "runarray.in"
addFunc(ve, run::gen_runarray60, primReal(), SYM(dot), formal(realArray(), SYM(a), false, false), formal(realArray(), SYM(b), false, false));
#line 1425 "runarray.in"
addFunc(ve, run::gen_runarray61, primPair(), SYM(dot), formal(pairArray(), SYM(a), false, false), formal(pairArray(), SYM(b), false, false));
#line 1435 "runarray.in"
addFunc(ve, run::gen_runarray62, realArray(), SYM(tridiagonal), formal(realArray(), SYM(a), false, false), formal(realArray(), SYM(b), false, false), formal(realArray(), SYM(c), false, false), formal(realArray(), SYM(f), false, false));
#line 1539 "runarray.in"
addFunc(ve, run::gen_runarray63, primReal(), SYM(newton), formal(primInt(), SYM(iterations), true, false), formal(realRealFunction(), SYM(f), false, false), formal(realRealFunction(), SYM(fprime), false, false), formal(primReal(), SYM(x), false, false), formal(primBoolean(), SYM(verbose), true, false));
#line 1586 "runarray.in"
addFunc(ve, run::gen_runarray64, primReal(), SYM(newton), formal(primInt(), SYM(iterations), true, false), formal(realRealFunction(), SYM(f), false, false), formal(realRealFunction(), SYM(fprime), false, false), formal(primReal(), SYM(x1), false, false), formal(primReal(), SYM(x2), false, false), formal(primBoolean(), SYM(verbose), true, false));
#line 1668 "runarray.in"
addFunc(ve, run::gen_runarray65, primReal(), SYM(_findroot), formal(realRealFunction(), SYM(f), false, false), formal(primReal(), SYM(a), false, false), formal(primReal(), SYM(b), false, false), formal(primReal(), SYM(tolerance), false, false), formal(primReal(), SYM(fa), false, false), formal(primReal(), SYM(fb), false, false));
#line 1770 "runarray.in"
addFunc(ve, run::gen_runarray66, primReal(), SYM(simpson), formal(realRealFunction(), SYM(f), false, false), formal(primReal(), SYM(a), false, false), formal(primReal(), SYM(b), false, false), formal(primReal(), SYM(acc), true, false), formal(primReal(), SYM(dxmax), true, false));
#line 1784 "runarray.in"
addFunc(ve, run::gen_runarray67, pairArray(), SYM(fft), formal(pairArray(), SYM(a), false, false), formal(primInt(), SYM(sign), true, false));
#line 1815 "runarray.in"
addFunc(ve, run::gen_runarray68, IntArray2(), SYM(triangulate), formal(pairArray(), SYM(z), false, false));
#line 1850 "runarray.in"
addFunc(ve, run::gen_runarray69, primReal(), SYM(norm), formal(realArray(), SYM(a), false, false));
#line 1861 "runarray.in"
addFunc(ve, run::gen_runarray70, primReal(), SYM(norm), formal(realArray2(), SYM(a), false, false));
#line 1876 "runarray.in"
addFunc(ve, run::gen_runarray71, primReal(), SYM(norm), formal(tripleArray2(), SYM(a), false, false));
#line 1891 "runarray.in"
addFunc(ve, run::gen_runarray72, primReal(), SYM(change2), formal(tripleArray2(), SYM(a), false, false));
#line 1913 "runarray.in"
addFunc(ve, run::gen_runarray73, primTriple(), SYM(minbezier), formal(tripleArray2(), SYM(p), false, false), formal(primTriple(), SYM(b), false, false));
#line 1925 "runarray.in"
addFunc(ve, run::gen_runarray74, primTriple(), SYM(maxbezier), formal(tripleArray2(), SYM(p), false, false), formal(primTriple(), SYM(b), false, false));
#line 1937 "runarray.in"
addFunc(ve, run::gen_runarray75, primPair(), SYM(minratio), formal(tripleArray2(), SYM(p), false, false), formal(primPair(), SYM(b), false, false));
#line 1949 "runarray.in"
addFunc(ve, run::gen_runarray76, primPair(), SYM(maxratio), formal(tripleArray2(), SYM(p), false, false), formal(primPair(), SYM(b), false, false));
#line 1961 "runarray.in"
addFunc(ve, run::gen_runarray77, realArray(), SYM(_projection));
}
} // namespace trans
|