1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
/*****
* path.h
* Andy Hammerlindl 2002/05/16
*
* Stores a piecewise cubic spline with known control points.
*
* When changing the path algorithms, also update the corresponding
* three-dimensional algorithms in path3.cc and three.asy.
*****/
#ifndef PATH_H
#define PATH_H
#include <cfloat>
#include "mod.h"
#include "pair.h"
#include "transform.h"
#include "bbox.h"
inline double Intcap(double t) {
if(t <= Int_MIN) return Int_MIN;
if(t >= Int_MAX) return Int_MAX;
return t;
}
// The are like floor and ceil, except they return an integer;
// if the argument cannot be converted to a valid integer, they return
// Int_MAX (for positive arguments) or Int_MIN (for negative arguments).
inline Int Floor(double t) {return (Int) floor(Intcap(t));}
inline Int Ceil(double t) {return (Int) ceil(Intcap(t));}
bool simpson(double& integral, double (*)(double), double a, double b,
double acc, double dxmax);
bool unsimpson(double integral, double (*)(double), double a, double& b,
double acc, double& area, double dxmax, double dxmin=0);
namespace camp {
void checkEmpty(Int n);
inline Int adjustedIndex(Int i, Int n, bool cycles)
{
checkEmpty(n);
if(cycles)
return imod(i,n);
else if(i < 0)
return 0;
else if(i >= n)
return n-1;
else
return i;
}
// Used in the storage of solved path knots.
struct solvedKnot : public gc {
pair pre;
pair point;
pair post;
bool straight;
solvedKnot() : straight(false) {}
friend bool operator== (const solvedKnot& p, const solvedKnot& q)
{
return p.pre == q.pre && p.point == q.point && p.post == q.post;
}
};
extern const double Fuzz;
extern const double Fuzz2;
extern const double Fuzz4;
extern const double sqrtFuzz;
extern const double BigFuzz;
extern const double fuzzFactor;
class path : public gc {
bool cycles; // If the path is closed in a loop
Int n; // The number of knots
mem::vector<solvedKnot> nodes;
mutable double cached_length; // Cache length since path is immutable.
mutable bbox box;
mutable bbox times; // Times where minimum and maximum extents are attained.
public:
path()
: cycles(false), n(0), nodes(), cached_length(-1) {}
// Create a path of a single point
path(pair z, bool = false)
: cycles(false), n(1), nodes(1), cached_length(-1)
{
nodes[0].pre = nodes[0].point = nodes[0].post = z;
nodes[0].straight = false;
}
// Creates path from a list of knots. This will be used by camp
// methods such as the guide solver, but should probably not be used by a
// user of the system unless he knows what he is doing.
path(mem::vector<solvedKnot>& nodes, Int n, bool cycles = false)
: cycles(cycles), n(n), nodes(nodes), cached_length(-1)
{
}
friend bool operator== (const path& p, const path& q)
{
return p.cycles == q.cycles && p.nodes == q.nodes;
}
public:
path(solvedKnot n1, solvedKnot n2)
: cycles(false), n(2), nodes(2), cached_length(-1)
{
nodes[0] = n1;
nodes[1] = n2;
nodes[0].pre = nodes[0].point;
nodes[1].post = nodes[1].point;
}
// Copy constructor
path(const path& p)
: cycles(p.cycles), n(p.n), nodes(p.nodes), cached_length(p.cached_length),
box(p.box)
{}
path unstraighten() const
{
path P=path(*this);
for(int i=0; i < n; ++i)
P.nodes[i].straight=false;
return P;
}
virtual ~path()
{
}
// Getting control points
Int size() const
{
return n;
}
bool empty() const
{
return n == 0;
}
Int length() const
{
return cycles ? n : n-1;
}
bool cyclic() const
{
return cycles;
}
mem::vector<solvedKnot>& Nodes() {
return nodes;
}
bool straight(Int t) const
{
if (cycles) return nodes[imod(t,n)].straight;
return (t >= 0 && t < n) ? nodes[t].straight : false;
}
bool piecewisestraight() const
{
Int L=length();
for(Int i=0; i < L; ++i)
if(!straight(i)) return false;
return true;
}
pair point(Int t) const
{
return nodes[adjustedIndex(t,n,cycles)].point;
}
pair point(double t) const;
pair precontrol(Int t) const
{
return nodes[adjustedIndex(t,n,cycles)].pre;
}
pair precontrol(double t) const;
pair postcontrol(Int t) const
{
return nodes[adjustedIndex(t,n,cycles)].post;
}
pair postcontrol(double t) const;
inline double norm(const pair& z0, const pair& c0, const pair& c1,
const pair& z1) const {
return Fuzz2*camp::max((c0-z0).abs2(),
camp::max((c1-z0).abs2(),(z1-z0).abs2()));
}
pair predir(Int t, bool normalize=true) const {
if(!cycles && t <= 0) return pair(0,0);
pair z1=point(t);
pair c1=precontrol(t);
pair dir=3.0*(z1-c1);
if(!normalize) return dir;
pair z0=point(t-1);
pair c0=postcontrol(t-1);
double epsilon=norm(z0,c0,c1,z1);
if(dir.abs2() > epsilon) return unit(dir);
dir=2.0*c1-c0-z1;
if(dir.abs2() > epsilon) return unit(dir);
return unit(z1-z0+3.0*(c0-c1));
}
pair postdir(Int t, bool normalize=true) const {
if(!cycles && t >= n-1) return pair(0,0);
pair c0=postcontrol(t);
pair z0=point(t);
pair dir=3.0*(c0-z0);
if(!normalize) return dir;
pair z1=point(t+1);
pair c1=precontrol(t+1);
double epsilon=norm(z0,c0,c1,z1);
if(dir.abs2() > epsilon) return unit(dir);
dir=z0-2.0*c0+c1;
if(dir.abs2() > epsilon) return unit(dir);
return unit(z1-z0+3.0*(c0-c1));
}
pair dir(Int t, Int sign, bool normalize=true) const {
if(sign == 0) {
pair v=predir(t,normalize)+postdir(t,normalize);
return normalize ? unit(v) : 0.5*v;
}
if(sign > 0) return postdir(t,normalize);
return predir(t,normalize);
}
pair dir(double t, bool normalize=true) const {
if(!cycles) {
if(t <= 0) return postdir((Int) 0,normalize);
if(t >= n-1) return predir(n-1,normalize);
}
Int i=Floor(t);
t -= i;
if(t == 0) return dir(i,0,normalize);
pair z0=point(i);
pair c0=postcontrol(i);
pair c1=precontrol(i+1);
pair z1=point(i+1);
pair a=3.0*(z1-z0)+9.0*(c0-c1);
pair b=6.0*(z0+c1)-12.0*c0;
pair c=3.0*(c0-z0);
pair dir=a*t*t+b*t+c;
if(!normalize) return dir;
double epsilon=norm(z0,c0,c1,z1);
if(dir.abs2() > epsilon) return unit(dir);
dir=2.0*a*t+b;
if(dir.abs2() > epsilon) return unit(dir);
return unit(a);
}
pair postaccel(Int t) const {
if(!cycles && t >= n-1) return pair(0,0);
pair z0=point(t);
pair c0=postcontrol(t);
pair c1=precontrol(t+1);
return 6.0*(z0+c1)-12.0*c0;
}
pair preaccel(Int t) const {
if(!cycles && t <= 0) return pair(0,0);
pair c0=postcontrol(t-1);
pair c1=precontrol(t);
pair z1=point(t);
return 6.0*(z1+c0)-12.0*c1;
}
pair accel(Int t, Int sign) const {
if(sign == 0) return 0.5*(preaccel(t)+postaccel(t));
if(sign > 0) return postaccel(t);
return preaccel(t);
}
pair accel(double t) const {
if(!cycles) {
if(t <= 0) return postaccel((Int) 0);
if(t >= n-1) return preaccel(n-1);
}
Int i=Floor(t);
t -= i;
if(t == 0) return 0.5*(postaccel(i)+preaccel(i));
pair z0=point(i);
pair c0=postcontrol(i);
pair c1=precontrol(i+1);
pair z1=point(i+1);
return 6.0*t*(z1-z0+3.0*(c0-c1))+6.0*(z0+c1)-12.0*c0;
}
// Returns the path traced out in reverse.
path reverse() const;
// Generates a path that is a section of the old path, using the time
// interval given.
path subpath(Int start, Int end) const;
path subpath(double start, double end) const;
// Special case of subpath used by intersect.
void halve(path &first, path &second) const;
// Used by picture to determine bounding box.
bbox bounds() const;
pair mintimes() const {
checkEmpty(n);
bounds();
return camp::pair(times.left,times.bottom);
}
pair maxtimes() const {
checkEmpty(n);
bounds();
return camp::pair(times.right,times.top);
}
template<class T>
void addpoint(bbox& box, T i) const {
box.addnonempty(point(i),times,(double) i);
}
template<class T>
void addpoint(bbox& box, T i, double min, double max) const {
static const pair I(0,1);
pair v=I*dir(i);
pair z=point(i);
box.add(z+min*v);
box.addnonempty(z+max*v);
}
// Return bounding box accounting for padding perpendicular to path.
bbox bounds(double min, double max) const;
// Return bounding box accounting for internal pen padding (but not pencap).
bbox internalbounds(const bbox &padding) const;
double cubiclength(Int i, double goal=-1) const;
double arclength () const;
double arctime (double l) const;
double directiontime(const pair& z) const;
pair max() const {
checkEmpty(n);
return bounds().Max();
}
pair min() const {
checkEmpty(n);
return bounds().Min();
}
// Debugging output
friend std::ostream& operator<< (std::ostream& out, const path& p);
// Increment count if the path has a vertical component at t.
bool Count(Int& count, double t) const;
// Count if t is in (begin,end] and z lies to the left of point(i+t).
void countleft(Int& count, double x, Int i, double t,
double begin, double end, double& mint, double& maxt) const;
// Return the winding number of the region bounded by the (cyclic) path
// relative to the point z.
Int windingnumber(const pair& z) const;
// Transformation
path transformed(const transform& t) const;
};
double arcLength(const pair& z0, const pair& c0, const pair& c1,
const pair& z1);
extern path nullpath;
extern const unsigned maxdepth;
extern const unsigned mindepth;
extern const char *nopoints;
bool intersect(double& S, double& T, path& p, path& q, double fuzz,
unsigned depth=maxdepth);
bool intersections(double& s, double& t, std::vector<double>& S,
std::vector<double>& T, path& p, path& q,
double fuzz, bool single, bool exact,
unsigned depth=maxdepth);
void intersections(std::vector<double>& S, path& g,
const pair& p, const pair& q, double fuzz);
// Concatenates two paths into a new one.
path concat(const path& p1, const path& p2);
// Applies a transformation to the path
path transformed(const transform& t, const path& p);
inline double quadratic(double a, double b, double c, double x)
{
return a*x*x+b*x+c;
}
class quadraticroots {
public:
enum {NONE=0, ONE=1, TWO=2, MANY} distinct; // Number of distinct real roots.
unsigned roots; // Total number of real roots.
double t1,t2; // Real roots
quadraticroots(double a, double b, double c);
};
class Quadraticroots {
public:
unsigned roots; // Total number of roots.
pair z1,z2; // Complex roots
Quadraticroots(pair a, pair b, pair c);
};
class cubicroots {
public:
unsigned roots; // Total number of real roots.
double t1,t2,t3;
cubicroots(double a, double b, double c, double d);
};
path nurb(pair z0, pair z1, pair z2, pair z3,
double w0, double w1, double w2, double w3, Int m);
double orient2d(const pair& a, const pair& b, const pair& c);
void roots(std::vector<double> &roots, double a, double b, double c, double d);
void roots(std::vector<double> &r, double x0, double c0, double c1, double x1,
double x);
inline bool goodroot(double t)
{
return 0.0 <= t && t <= 1.0;
}
extern const double third;
}
#ifndef BROKEN_COMPILER
// Delete the following line to work around problems with old broken compilers.
GC_DECLARE_PTRFREE(camp::solvedKnot);
#endif
#endif
|