1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
|
// Introduction to Asymptote
orientation=Landscape;
settings.tex="pdflatex";
import slide;
import three;
import animate;
usersetting();
viewportsize=pagewidth-2pagemargin;
// To generate bibliographic references:
// asy -k goysr
// bibtex goysr_
bibliographystyle("alpha");
itempen=fontsize(22pt);
titlepage("Asymptote: The Vector Graphics Language",
"Andy Hammerlindl and John Bowman",
"University of Toronto and University of Alberta","August 16, 2007",
"http://asymptote.sf.net");
title("History");
item("\TeX\ and METAFONT (Knuth, 1979)");
item("MetaPost (Hobby, 1989): 2D Bezier Control Point Selection");
item("Asymptote (Hammerlindl, Bowman, Prince, 2004): 2D \& 3D Graphics");
title("Statistics (as of April, 2007)");
item("Runs on Windows, Mac OS X, Linux, etc.");
item("1800 downloads a month from {\tt asymptote.sourceforge.net}.");
item("33\ 000 lines of C++ code.");
item("18\ 000 lines of Asymptote code.");
title("Vector Graphics");
item("Raster graphics assign colors to a grid of pixels.");
figure("pixel.pdf");
item("Vector graphics are graphics which still maintain their look when
inspected at arbitrarily small scales.");
asyfigure(asywrite("
picture pic;
path zoombox(real h) {
return box((-h,-h/2),(min(10,h),min(10,h)/2));
}
frame zoom(real h, real next=0) {
frame f;
draw(f, (0,-100){W}..{E}(0,0), Arrow);
clip(f, zoombox(h));
if(next > 0)
draw(f, zoombox(next));
return scale(100/h)*f;
}
add(zoom(100), (0,0));
add(zoom(10), (200,0));
add(zoom(1), (400,0));
"));
title("Cartesian Coordinates");
asyfilecode("diagonal");
item("units are {\tt PostScript} {\it big points\/} (1 {\tt bp} =
1/72 {\tt inch})");
item("{\tt --} means join the points with a linear segment to create
a {\it path}");
item("cyclic path:");
asyfilecode("square");
title("Scaling to a Given Size");
item("{\tt PostScript} units are often inconvenient.");
item("Instead, scale user coordinates to a specified final size:");
code("
size(101,101);
draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);
");
asyfigure("square");
item("One can also specify the size in {\tt cm}:");
asycode("
size(3cm,3cm);
draw(unitsquare);
");
title("Labels");
item("Adding and aligning \LaTeX\ labels is easy:");
asyfilecode("labelsquare","height=6cm");
title("2D Bezier Splines");
item("Using {\tt ..} instead of {\tt --} specifies a {\it Bezier cubic
spline}:");
code("
draw(z0 .. controls c0 and c1 .. z1,blue);
");
asyfigure("beziercurve","height=7cm");
equation("(1-t)^3 z_0+3t(1-t)^2 c_0+3t^2(1-t) c_1+t^3 z_1, \qquad t\in [0,1].");
title("Smooth Paths");
item("Asymptote can choose control points for you, using the algorithms of
Hobby and Knuth \cite{Hobby86,Knuth86b}:");
string bean="
pair[] z={(0,0), (0,1), (2,1), (2,0), (1,0)};
";
asycode(preamble="size(130,0);",bean+"
draw(z[0]..z[1]..z[2]..z[3]..z[4]..cycle,
grey+linewidth(5));
dot(z,linewidth(7));
");
item("First, linear equations involving the curvature are solved to find the
direction through each knot. Then, control points along those directions
are chosen:");
asyfigure(asywrite(preamble="size(130,0);",bean+"
path p=z[0]..z[1]..z[2]..z[3]..z[4]..cycle;
dot(z);
draw(p,lightgrey+linewidth(5));
dot(z);
picture output;
save();
for (int i=0; i<length(p); ++i) {
pair z=point(p,i), dir=dir(p,i);
draw((z-0.3dir)--(z+0.3dir), Arrow);
}
add(output, currentpicture.fit(), (-0.5inch, 0), W);
restore();
save();
guide g;
for (int i=0; i<length(p); ++i) {
dot(precontrol(p,i));
dot(postcontrol(p,i));
g=g--precontrol(p,i)--point(p,i)--postcontrol(p,i);
}
draw(g--cycle,dashed);
add(output, currentpicture.fit(), (+0.5inch, 0), E);
restore();
shipout(output);
"));
title("Filling");
item("Use {\tt fill} to fill the inside of a path:");
asycode(preamble="size(0,200);","
path star;
for (int i=0; i<5; ++i)
star=star--dir(90+144i);
star=star--cycle;
fill(shift(-1,0)*star,orange+zerowinding);
draw(shift(-1,0)*star,linewidth(3));
fill(shift(1,0)*star,blue+evenodd);
draw(shift(1,0)*star,linewidth(3));
");
title("Filling");
item("Use a list of paths to fill a region with holes:");
asycode(preamble="size(0,300);","
path[] p={scale(2)*unitcircle, reverse(unitcircle)};
fill(p,green+zerowinding);
");
title("Clipping");
item("Pictures can be clipped to lie inside a path:");
asycode(preamble="
size(0,200);
guide star;
for (int i=0; i<5; ++i)
star=star--dir(90+144i);
star=star--cycle;","
fill(star,orange+zerowinding);
clip(scale(0.7)*unitcircle);
draw(scale(0.7)*unitcircle);
");
item("All of Asymptote's graphical capabilities are based on four primitive
commands: {\tt draw}, {\tt fill}, {\tt clip}, and {\tt label}.");
title("Affine Transforms");
item("Affine transformations: shifts, rotations, reflections, and scalings.");
code("
transform t=rotate(90);
write(t*(1,0)); // Writes (0,1).
");
item("Pairs, paths, pens, strings, and whole pictures can be transformed.");
code("
fill(P,blue);
fill(shift(2,0)*reflect((0,0),(0,1))*P, red);
fill(shift(4,0)*rotate(30)*P, yellow);
fill(shift(6,0)*yscale(0.7)*xscale(2)*P, green);
");
asyfigure(asywrite("
size(500,0);
real bw=0.15;
real sw=0.2;
real r=0.15;
path outside=(0,0)--(0,1)--
(bw+sw,1)..(bw+sw+r+bw,1-(r+bw))..(bw+sw,1-2(r+bw))--
(bw,1-2(r+bw))--(bw,0)--cycle;
path inside=(bw,1-bw-2r)--(bw,1-bw)--
(bw+sw,1-bw)..(bw+sw+r,1-bw-r)..(bw+sw,1-bw-2r)--cycle;
//fill(new path[] {outside, reverse(inside)},yellow);
path[] P={outside, reverse(inside)};
fill(P,blue);
fill(shift(2,0)*reflect((0,0),(0,1))*P, red);
fill(shift(4,0)*rotate(30)*P, yellow);
fill(shift(6,0)*yscale(0.7)*xscale(2)*P, green);
"));
title("C++/Java-like Programming Syntax");
code("// Declaration: Declare x to be real:
real x;
// Assignment: Assign x the value 1.
x=1.0;
// Conditional: Test if x equals 1 or not.
if(x == 1.0) {
write(\"x equals 1.0\");
} else {
write(\"x is not equal to 1.0\");
}
// Loop: iterate 10 times
for(int i=0; i < 10; ++i) {
write(i);
}");
title("Helpful Math Notation");
item("Integer division returns a {\tt real}. Use {\tt quotient} for an integer
result:");
code("3/4==0.75 quotient(3,4)==0");
item("Caret for real and integer exponentiation:");
code("2^3 2.7^3 2.7^3.2");
item("Many expressions can be implicitly scaled by a numeric constant:");
code("2pi 10cm 2x^2 3sin(x) 2(a+b)");
item("Pairs are complex numbers:");
code("(0,1)*(0,1)==(-1,0)");
title("Function Calls");
item("Functions can take default arguments in any position. Arguments are
matched to the first possible location:");
string unitsize="unitsize(0.65cm);";
string preamble="void drawEllipse(real xsize=1, real ysize=xsize, pen p=blue) {
draw(xscale(xsize)*yscale(ysize)*unitcircle, p);
}
";
asycode(preamble=unitsize,preamble+"
drawEllipse(2);
drawEllipse(red);
");
item("Arguments can be given by name:");
asycode(preamble=unitsize+preamble,"
drawEllipse(xsize=2, ysize=1);
drawEllipse(ysize=2, xsize=3, green);
");
title("Rest Arguments");
item("Rest arguments allow one to write a function that takes an arbitrary
number of arguments:");
code("
int sum(... int[] nums) {
int total=0;
for (int i=0; i < nums.length; ++i)
total += nums[i];
return total;
}
sum(1,2,3,4); // returns 10
sum(); // returns 0
sum(1,2,3 ... new int[] {4,5,6}); // returns 21
int subtract(int start ... int[] subs) {
return start - sum(... subs);
}
");
title("Higher-Order Functions");
item("Functions are first-class values. They can be passed to other
functions:");
code("real f(real x) {
return x*sin(10x);
}
draw(graph(f,-3,3,300),red);");
asyfigure(asywrite("
import graph;
size(300,0);
real f(real x) {
return x*sin(10x);
}
draw(graph(f,-3,3,300),red);
"));
title("Higher-Order Functions");
item("Functions can return functions:");
equation("f_n(x)=n\sin\left(\frac{x}{n}\right).");
skip();
string preamble="
import graph;
size(300,0);
";
string graphfunc2="
typedef real func(real);
func f(int n) {
real fn(real x) {
return n*sin(x/n);
}
return fn;
}
func f1=f(1);
real y=f1(pi);
for (int i=1; i<=5; ++i)
draw(graph(f(i),-10,10),red);
";
code(graphfunc2);
string name=asywrite(graphfunc2,preamble=preamble);
asy(nativeformat(),name+".asy");
label(graphic(name+"."+nativeformat()),(0.5,0),
Fill(figureborder,figuremattpen));
title("Anonymous Functions");
item("Create new functions with {\tt new}:");
code("
path p=graph(new real (real x) { return x*sin(10x); },-3,3,red);
func f(int n) {
return new real (real x) { return n*sin(x/n); };
}");
item("Function definitions are just syntactic sugar for assigning function
objects to variables.");
code("
real square(real x) {
return x^2;
}
");
remark("is equivalent to");
code("
real square(real x);
square=new real (real x) {
return x^2;
};
");
title("Structures");
item("As in other languages, structures group together data.");
code("
struct Person {
string firstname, lastname;
int age;
}
Person bob=new Person;
bob.firstname=\"Bob\";
bob.lastname=\"Chesterton\";
bob.age=24;
");
item("Any code in the structure body will be executed every time a new structure
is allocated...");
code("
struct Person {
write(\"Making a person.\");
string firstname, lastname;
int age=18;
}
Person eve=new Person; // Writes \"Making a person.\"
write(eve.age); // Writes 18.
");
title("Object-Oriented Programming");
item("Functions are defined for each instance of a structure.");
code("
struct Quadratic {
real a,b,c;
real discriminant() {
return b^2-4*a*c;
}
real eval(real x) {
return a*x^2 + b*x + c;
}
}
");
item("This allows us to construct ``methods'' which are just normal functions
declared in the environment of a particular object:");
code("
Quadratic poly=new Quadratic;
poly.a=-1; poly.b=1; poly.c=2;
real f(real x)=poly.eval;
real y=f(2);
draw(graph(poly.eval, -5, 5));
");
title("Specialization");
item("Can create specialized objects just by redefining methods:");
code("
struct Shape {
void draw();
real area();
}
Shape rectangle(real w, real h) {
Shape s=new Shape;
s.draw = new void () {
fill((0,0)--(w,0)--(w,h)--(0,h)--cycle); };
s.area = new real () { return w*h; };
return s;
}
Shape circle(real radius) {
Shape s=new Shape;
s.draw = new void () { fill(scale(radius)*unitcircle); };
s.area = new real () { return pi*radius^2; }
return s;
}
");
title("Overloading");
item("Consider the code:");
code("
int x1=2;
int x2() {
return 7;
}
int x3(int y) {
return 2y;
}
write(x1+x2()); // Writes 9.
write(x3(x1)+x2()); // Writes 11.
");
title("Overloading");
item("{\tt x1}, {\tt x2}, and {\tt x3} are never used in the same context, so
they can all be renamed {\tt x} without ambiguity:");
code("
int x=2;
int x() {
return 7;
}
int x(int y) {
return 2y;
}
write(x+x()); // Writes 9.
write(x(x)+x()); // Writes 11.
");
item("Function definitions are just variable definitions, but variables are
distinguished by their signatures to allow overloading.");
title("Operators");
item("Operators are just syntactic sugar for functions, and can be addressed or
defined as functions with the {\tt operator} keyword.");
code("
int add(int x, int y)=operator +;
write(add(2,3)); // Writes 5.
// Don't try this at home.
int operator +(int x, int y) {
return add(2x,y);
}
write(2+3); // Writes 7.
");
item("This allows operators to be defined for new types.");
title("Operators");
item("Operators for constructing paths are also functions:");
code("a.. controls b and c .. d--e");
remark("is equivalent to");
code(
"operator --(operator ..(a, operator controls(b,c), d), e)");
item("This allowed us to redefine all of the path operators for 3D paths.");
asyfigure("helix","height=10cm");
title("Packages");
item("Function and structure definitions can be grouped into packages:");
code("
// powers.asy
real square(real x) { return x^2; }
real cube(real x) { return x^3; }
");
remark("and imported:");
code("
import powers;
real eight=cube(2.0);
draw(graph(powers.square, -1, 1));
");
title("Packages");
item("There are packages for Feynman diagrams,");
asyfigure("eetomumu","height=6cm");
remark("data structures,");
asyfigure(asywrite("
import binarytree;
binarytree bt=binarytree(1,2,4,nil,5,nil,nil,0,nil,nil,3,6,nil,nil,7);
draw(bt);
"),"height=6cm");
newslide();
remark("algebraic knot theory:");
asyfigure("knots");
equations("\Phi\Phi(x_1,x_2,x_3,x_4,x_5)
= &\rho_{4b}(x_1+x_4,x_2,x_3,x_5) + \rho_{4b}(x_1,x_2,x_3,x_4) \\
+ &\rho_{4a}(x_1,x_2+x_3,x_4,x_5) - \rho_{4b}(x_1,x_2,x_3,x_4+x_5) \\
- &\rho_{4a}(x_1+x_2,x_3,x_4,x_5) - \rho_{4a}(x_1,x_2,x_4,x_5).");
title("Textbook Graph");
asy(nativeformat(),"exp");
filecode("exp.asy");
label(graphic("exp."+nativeformat(),"height=10cm"),(0.5,0),
Fill(figureborder,figuremattpen));
title("Scientific Graph");
asyfilecode("lineargraph","height=13cm",newslide=true);
title("Data Graph");
asyfilecode("datagraph","height=13cm",newslide=true);
title("Imported Data Graph");
asyfilecode("filegraph","height=15cm",newslide=true);
title("Logarithmic Graph");
asyfilecode("loggraph","height=15cm",newslide=true);
title("Secondary Axis");
asyfigure("secondaryaxis","height=15cm");
title("Images");
asyfigure("imagecontour","height=17cm");
title("Multiple Graphs");
asyfigure("diatom","height=17cm");
title("Hobby's 2D Direction Algorithm");
item("A tridiagonal system of linear equations is solved to determine any unspecified directions $\theta_k$ and $\phi_k$ through each knot $z_k$:");
equation("\frac{\theta_{k-1}-2\phi_k}{\ell_k}=
\frac{\phi_{k+1}-2\theta_k}{\ell_{k+1}}.");
asyfigure("Hobbydir","height=9cm");
item("The resulting shape may be adjusted by modifying optional {\it tension\/} parameters and {\it curl\/} boundary conditions.");
//involving the curvature
title("Hobby's 2D Control Point Algorithm");
item("Having prescribed outgoing and incoming path directions $e^{i\theta}$
at node~$z_0$ and $e^{i\phi}$ at node $z_1$ relative to the
vector $z_1-z_0$, the control points are determined as:");
equations("u&=&z_0+e^{i\theta}(z_1-z_0)f(\theta,-\phi),\nonumber\\
v&=&z_1-e^{i\phi}(z_1-z_0)f(-\phi,\theta),");
remark("where the relative distance function $f(\theta,\phi)$ is given by Hobby [1986].");
asyfigure("Hobbycontrol","height=9cm");
title("Bezier Curves in 3D");
item("Apply an affine transformation");
equation("x'_i=A_{ij} x_j+C_i");
remark("to a Bezier curve:");
equation("x(t)=\sum_{k=0}^3 B_k(t) P_k, \qquad t\in [0,1].");
item("The resulting curve is also a Bezier curve:");
equations("x'_i(t)&=&\sum_{k=0}^3 B_k(t) A_{ij}(P_k)_j+C_i\nonumber\\
&=&\sum_{k=0}^3 B_k(t) P'_k,");
remark("where $P'_k$ is the transformed $k^{\rm th}$ control point, noting
$\displaystyle\sum_{k=0}^3 B_k(t)=1.$");
title("3D Generalization of Hobby's algorithm");
item("Must reduce to 2D algorithm in planar case.");
item("Determine directions by applying Hobby's algorithm in the plane containing $z_{k-1}$, $z_k$, $z_{k+1}$.");
// Reformulate Hobby's equations in terms of the angle $\psi_k=$
item("The only ambiguity that can arise is the overall sign of the angles, which relates to viewing each 2D plane from opposing normal directions.");
item("A reference vector based on the mean unit normal of successive segments can be used to resolve such ambiguities.");
title("3D Control Point Algorithm");
item("Hobby's control point algorithm can be generalized to 3D by expressing it in terms of the absolute directions $\omega_0$ and $\omega_1$:");
equation("u=z_0+\omega_0\left|z_1-z_0\right|f(\theta,-\phi),");
equation("v=z_1-\omega_1\left|z_1-z_0\right|f(-\phi,\theta),");
asyfigure("Hobbycontrol");
remark("interpreting $\theta$ and $\phi$ as the angle between the corresponding path direction vector and $z_1-z_0$.");
item("In this case there is an unambiguous reference vector for determining the relative sign of the angles $\phi$ and $\theta$.");
viewportmargin=(0,0.5cm);
defaultpen(1.0);
title("Interactive 3D Saddle");
item("A unit circle in the $X$--$Y$ plane may be filled and drawn with:
(1,0,0)..(0,1,0)..(-1,0,0)..(0,-1,0)..cycle");
asyinclude("unitcircle3",8cm);
remark("and then distorted into a saddle:\\ (1,0,0)..(0,1,1)..(-1,0,0)..(0,-1,1)..cycle");
asyinclude("saddle",8cm);
viewportmargin=(0,2cm);
title("Smooth 3D surfaces");
asyinclude("GaussianSurface",15cm);
defaultpen(0.5);
title("Slide Presentations");
item("Asymptote has a package for preparing slides.");
item("It even supports embedded high-resolution PDF movies.");
code('
title("Slide Presentations");
item("Asymptote has a package for preparing slides.");
item("It even supports embedded high-resolution PDF movies.");
');
remark("\quad\ldots");
import graph;
pen p=linewidth(1);
pen dotpen=linewidth(5);
pair wheelpoint(real t) {return (t+cos(t),-sin(t));}
guide wheel(guide g=nullpath, real a, real b, int n)
{
real width=(b-a)/n;
for(int i=0; i <= n; ++i) {
real t=a+width*i;
g=g--wheelpoint(t);
}
return g;
}
real t1=0;
real t2=t1+2*pi;
picture base;
draw(base,circle((0,0),1),p);
draw(base,wheel(t1,t2,100),p+linetype("0 2"));
yequals(base,Label("$y=-1$",1.0),-1,extend=true,p+linetype("4 4"));
xaxis(base,Label("$x$",align=3SW),0,p);
yaxis(base,"$y$",0,1.3,p);
pair z1=wheelpoint(t1);
pair z2=wheelpoint(t2);
dot(base,z1,dotpen);
dot(base,z2,dotpen);
animation a;
int n=25;
real dt=(t2-t1)/n;
for(int i=0; i <= n; ++i) {
picture pic;
size(pic,24cm);
real t=t1+dt*i;
add(pic,base);
draw(pic,circle((t,0),1),p+red);
dot(pic,wheelpoint(t),dotpen);
a.add(pic);
}
display(a.pdf(delay=150,"controls"));
title("Automatic Sizing");
item("Figures can be specified in user coordinates, then
automatically scaled to the desired final size.");
asyfigure(asywrite("
import graph;
size(0,100);
frame cardsize(real w=0, real h=0, bool keepAspect=Aspect) {
picture pic;
pic.size(w,h,keepAspect);
real f(real t) {return 1+cos(t);}
guide g=polargraph(f,0,2pi,operator ..)--cycle;
filldraw(pic,g,pink);
xaxis(pic,\"$x$\");
yaxis(pic,\"$y$\");
dot(pic,\"$(a,0)$\",(1,0),N);
dot(pic,\"$(2a,0)$\",(2,0),N+E);
frame f=pic.fit();
label(f,\"{\tt size(\"+string(w)+\",\"+string(h)+\");}\",point(f,S),align=S);
return f;
}
add(cardsize(0,50), (0,0));
add(cardsize(0,100), (230,0));
add(cardsize(0,200), (540,0));
"));
title("Deferred Drawing");
item("We can't draw a graphical object until we know the scaling
factors for the user coordinates.");
item("Instead, store a function that when given the scaling information, draws
the scaled object.");
code("
void draw(picture pic=currentpicture, path g, pen p=currentpen) {
pic.add(new void(frame f, transform t) {
draw(f,t*g,p);
});
pic.addPoint(min(g),min(p));
pic.addPoint(max(g),max(p));
}
");
title("Coordinates");
item("Store bounding box information as the sum of user and true-size
coordinates:");
asyfigure(asywrite("
size(0,150);
path q=(0,0){dir(70)}..{dir(70)}(100,50);
pen p=rotate(30)*yscale(0.7)*(lightblue+linewidth(20));
draw(q,p);
draw((90,10),p);
currentpicture.add(new void(frame f, transform t) {
draw(f,box(min(t*q)+min(p),max(t*q)+max(p)), dashed);
});
draw(box(min(q),max(q)));
frame f;
draw(f,box(min(p),max(p)));
add(f,min(q));
add(f,max(q));
draw(q);
"));
code("pic.addPoint(min(g),min(p));
pic.addPoint(max(g),max(p));");
item("Filling ignores the pen width:");
code("pic.addPoint(min(g),(0,0));
pic.addPoint(max(g),(0,0));");
item("Communicate with \LaTeX\ to determine label sizes:");
asyfigure(asywrite("
size(0,100);
pen p=fontsize(30pt);
frame f;
label(f, \"$E=mc^2$\", p);
draw(f, box(min(f),max(f)));
shipout(f);
"));
title("Sizing");
item("When scaling the final figure to a given size $S$, we first need to
determine a scaling factor $a>0$ and a shift $b$ so that all of the
coordinates when transformed will lie in the interval $[0,S]$. That is, if
$u$ and $t$ are the user and truesize components:");
equation("0\le au+t+b \le S.");
item("We are maximizing the variable $a$ subject to a number of inequalities.
This is a linear programming problem that can be solved by the simplex
method.");
title("Sizing");
item("Every addition of a coordinate $(t,u)$ adds two restrictions");
equation("au+t+b\ge 0,");
equation("au+t+b\le S,");
remark("and each drawing component adds two coordinates.");
item("A figure could easily produce thousands of restrictions, making the
simplex method impractical.");
item("Most of these restrictions are redundant, however. For instance, with
concentric circles, only the largest circle needs to be accounted for.");
asyfigure(asywrite("
import palette;
size(160,0);
pen[] p=Rainbow(NColors=11);
for (int i=1; i<10; ++i) {
draw(scale(i)*unitcircle, p[i]+linewidth(2));
}
"));
title("Redundant Restrictions");
item("In general, if $u\le u'$ and $t\le t'$ then");
equation("au+t+b\le au'+t'+b");
remark("for all choices of $a>0$ and $b$, so");
equation("0\le au+t+b\le au'+t'+b\le S.");
item("This defines a partial ordering on coordinates. When sizing a picture,
the program first computes which coordinates are maximal (or minimal) and
only sends effective constraints to the simplex algorithm.");
item("In practice, the linear programming problem will have less than a dozen
restraints.");
item("All picture sizing is implemented in Asymptote code.");
title("Infinite Lines");
item("Deferred drawing allows us to draw infinite lines.");
code("drawline(P, Q);");
asyfigure("elliptic","height=12cm");
title("A Final Example: Quilting");
asyfigure(asywrite("
import math;
int n=8, skip=3;
pair r(int k) { return unityroot(n,k); }
pen col=blue, col2=purple;
guide square=box((1,1),(-1,-1));
guide step(int mult)
{
guide g;
for (int k=0; k<n; ++k)
g=g--r(mult*k);
g=g--cycle;
return g;
}
guide oct=step(1), star=step(skip);
guide wedge(pair z, pair v, real r, real a)
{
pair w=expi(a/2.0);
v=unit(v)*r;
return shift(z)*((0,0)--v*w--v*conj(w)--cycle);
}
filldraw(square, col);
filldraw(oct, yellow);
// The interior angle of the points of the star.
real intang=pi*(1-((real)2skip)/((real)n));
for (int k=0; k<n; ++k) {
pair z=midpoint(r(k)--r(k+1));
guide g=wedge(z,-z,1,intang);
filldraw(g,col2);
}
fill(star,yellow);
filldraw(star,evenodd+col);
size(5inch,0);
"));
bibliography("refs");
viewportsize=viewportmargin=0;
title("\mbox{Asymptote: 2D \& 3D Vector Graphics Language}");
asyinclude("../examples/logo3");
skip();
center("\tt http://asymptote.sf.net");
center("(freely available under the GNU public license)");
|