summaryrefslogtreecommitdiff
path: root/Build/source/utils/asymptote/base/tube.asy
blob: cfaf458db422a345651529fafce65483c608e2f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
// Author: Philippe Ivaldi
// http://www.piprime.fr/
// Based on this paper:
// http://www.cs.hku.hk/research/techreps/document/TR-2007-07.pdf
// Note: the additional rotation for a cyclic smooth spine curve is not
// yet properly determined.
// TODO: Implement variational principles for RMF with boundary conditions:
//       minimum total angular speed OR minimum total squared angular speed

import three;

real tubegranularity=1e-7;

void render(path3 s, real r, void f(path3, real))
{
  void Split(triple z0, triple c0, triple c1, triple z1, real t0=0, real t1=1,
             real depth=mantissaBits) {
    if(depth > 0) {
      real S=straightness(z0,c0,c1,z1);
      if(S > max(tubegranularity*max(abs(z0),abs(c0),abs(c1),abs(z1)))) {
        --depth;
        triple m0=0.5*(z0+c0);
        triple m1=0.5*(c0+c1);
        triple m2=0.5*(c1+z1);
        triple m3=0.5*(m0+m1);
        triple m4=0.5*(m1+m2);
        triple m5=0.5*(m3+m4);
        real tm=0.5*(t0+t1);
        Split(z0,m0,m3,m5,t0,tm,depth);
        Split(m5,m4,m2,z1,tm,t1,depth);
        return;
      }
    }
    f(z0..controls c0 and c1..z1,t0);
  }
  Split(point(s,0),postcontrol(s,0),precontrol(s,1),point(s,1));
}

// A 3D version of roundedpath(path, real).
path3 roundedpath(path3 A, real r)
{
  // Author of this routine: Jens Schwaiger
  guide3 rounded;
  triple before, after, indir, outdir;
  int len=length(A);
  bool cyclic=cyclic(A);
  if(len < 2) {return A;};
  if(cyclic) {rounded=point(point(A,0)--point(A,1),r);}
  else {rounded=point(A,0);}
  for(int i=1; i < len; i=i+1) {
    before=point(point(A,i)--point(A,i-1),r);
    after=point(point(A,i)--point(A,i+1),r);
    indir=dir(point(A,i-1)--point(A,i),1);
    outdir=dir(point(A,i)--point(A,i+1),1);
    rounded=rounded--before{indir}..{outdir}after;
  }
  if(cyclic) {
    before=point(point(A,0)--point(A,len-1),r);
    indir=dir(point(A,len-1)--point(A,0),1);
    outdir=dir(point(A,0)--point(A,1),1);
    rounded=rounded--before{indir}..{outdir}cycle;
  } else rounded=rounded--point(A,len);

  return rounded;
}

real[] sample(path3 g, real r, real relstep=0)
{
  real[] t;
  int n=length(g);
  if(relstep <= 0) {
    for(int i=0; i < n; ++i)
      render(subpath(g,i,i+1),r,new void(path3, real s) {t.push(i+s);});
    t.push(n);
  } else {
    int nb=ceil(1/relstep);
    relstep=n/nb;
    for(int i=0; i <= nb; ++i)
      t.push(i*relstep);
  }
  return t;
}

real degrees(rmf a, rmf b)
{
  real d=degrees(acos1(dot(a.r,b.r)));
  real dt=dot(cross(a.r,b.r),a.t);
  d=dt > 0 ? d : 360-d;
  return d%360;
}

restricted int coloredNodes=1;
restricted int coloredSegments=2;

struct coloredpath
{
  path p;
  pen[] pens(real);
  bool usepens=false;
  int colortype=coloredSegments;

  void operator init(path p, pen[] pens=new pen[] {currentpen},
		     int colortype=coloredSegments)
  {
    this.p=p;
    this.pens=new pen[] (real t) {return pens;};
    this.usepens=true;
    this.colortype=colortype;
  }

  void operator init(path p, pen[] pens(real), int colortype=coloredSegments)
  {
    this.p=p;
    this.pens=pens;
    this.usepens=true;
    this.colortype=colortype;
  }

  void operator init(path p, pen pen(real))
  {
    this.p=p;
    this.pens=new pen[] (real t) {return new pen[] {pen(t)};};
    this.usepens=true;
    this.colortype=coloredSegments;
  }
}

coloredpath operator cast(path p)
{
  coloredpath cp=coloredpath(p);
  cp.usepens=false;
  return cp;
}

coloredpath operator cast(guide p)
{
  return coloredpath(p);
}

private surface surface(rmf[] R, real[] t, coloredpath cp, transform T(real),
			bool cyclic)
{
  path g=cp.p;
  int l=length(g);
  bool[] planar;
  for(int i=0; i < l; ++i)
    planar[i]=straight(g,i);

  surface s;
  path3 sec=path3(T(t[0]/l)*g);
  real adjust=0;
  if(cyclic) adjust=-degrees(R[0],R[R.length-1])/(R.length-1);
  path3 sec1=shift(R[0].p)*transform3(R[0].r,R[0].s,R[0].t)*sec,
    sec2;

  for(int i=1; i < R.length; ++i) {
    sec=path3(T(t[i]/l)*g);
    sec2=shift(R[i].p)*transform3(R[i].r,cross(R[i].t,R[i].r),R[i].t)*
      rotate(i*adjust,Z)*sec;
    for(int j=0; j < l; ++j) {
      surface st=surface(subpath(sec1,j,j+1)--subpath(sec2,j+1,j)--cycle,
			 planar=planar[j]);
      if(cp.usepens) {
        pen[] tp1=cp.pens(t[i-1]/l), tp2=cp.pens(t[i]/l);
        tp1.cyclic=true; tp2.cyclic=true;
        if(cp.colortype == coloredSegments) {
          st.colors(new pen[][] {{tp1[j],tp1[j],tp2[j],tp2[j]}});
	} else {
          st.colors(new pen[][] {{tp1[j],tp1[j+1],tp2[j+1],tp2[j]}});
	}
      }
      s.append(st);
    }
    sec1=sec2;
  }
  return s;
}

surface tube(path3 g, coloredpath section,
             transform T(real)=new transform(real t) {return identity();},
             real corner=1, real relstep=0)
{
  pair M=max(section.p), m=min(section.p);
  real[] t=sample(g,max(M.x-m.x,M.y-m.y)/max(realEpsilon,abs(corner)),
                  min(abs(relstep),1));
  bool cyclic=cyclic(g);
  t.cyclic=cyclic;
  return surface(rmf(g,t),t,section,T,cyclic);
}