1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
|
import three;
import graph3;
pen defaultbackpen=linetype("4 4",4,scale=false);
// A solid geometry package.
// Try to find a bounding tangent line between two paths.
real[] tangent(path p, path q, bool side)
{
static real fuzz=1.0e-5;
if((cyclic(p) && inside(p,point(q,0)) ||
cyclic(q) && inside(q,point(p,0))) &&
intersect(p,q,fuzz).length == 0) return new real[];
for(int i=0; i < 100; ++i) {
real ta=side ? mintimes(p)[1] : maxtimes(p)[1];
real tb=side ? mintimes(q)[1] : maxtimes(q)[1];
pair a=point(p,ta);
pair b=point(q,tb);
real angle=angle(b-a,warn=false);
if(abs(angle) <= sqrtEpsilon || abs(abs(0.5*angle)-pi) <= sqrtEpsilon)
return new real[] {ta,tb};
transform t=rotate(-degrees(angle));
p=t*p;
q=t*q;
}
return new real[];
}
path line(path p, path q, real[] t)
{
return point(p,t[0])--point(q,t[1]);
}
// Return the projection of a generalized cylinder of height h constructed
// from area base in the XY plane and aligned with axis.
path[] cylinder(path3 base, real h, triple axis=Z,
projection P=currentprojection)
{
base=rotate(-colatitude(axis),cross(axis,Z))*base;
path3 top=shift(h*axis)*base;
path Base=project(base,P);
path Top=project(top,P);
real[] t1=tangent(Base,Top,true);
real[] t2=tangent(Base,Top,false);
path p=subpath(Base,t1[0]/P.ninterpolate,t2[0]/P.ninterpolate);
path q=subpath(Base,t2[0]/P.ninterpolate,t1[0]/P.ninterpolate);
return Base^^Top^^line(Base,Top,t1)^^line(Base,Top,t2);
}
// The three-dimensional "wireframe" used to visualize a volume of revolution
struct skeleton {
struct curve {
path3[] front;
path3[] back;
}
// transverse skeleton (perpendicular to axis of revolution)
curve transverse;
// longitudinal skeleton (parallel to axis of revolution)
curve longitudinal;
}
// A surface of revolution generated by rotating a planar path3 g
// from angle1 to angle2 about c--c+axis.
struct revolution {
triple c;
path3 g;
triple axis;
real angle1,angle2;
triple M;
triple m;
static real epsilon=10*sqrtEpsilon;
void operator init(triple c=O, path3 g, triple axis=Z, real angle1=0,
real angle2=360) {
this.c=c;
this.g=g;
this.axis=unit(axis);
this.angle1=angle1;
this.angle2=angle2;
M=max(g);
m=min(g);
}
// Return the surface of rotation obtain by rotating the path3 (x,0,f(x))
// sampled n times between x=a and x=b about an axis lying in the XZ plane.
void operator init(triple c=O, real f(real x), real a, real b, int n=ngraph,
interpolate3 join=operator --, triple axis=Z,
real angle1=0, real angle2=360) {
operator init(c,graph(new triple(real x) {return (x,0,f(x));},a,b,n,
join),axis,angle1,angle2);
}
revolution copy() {
return revolution(c,g,axis,angle1,angle2);
}
triple vertex(int i, real j) {
triple v=point(g,i);
triple center=c+dot(v-c,axis)*axis;
triple perp=v-center;
triple normal=cross(axis,perp);
return center+Cos(j)*perp+Sin(j)*normal;
}
// Construct the surface of rotation generated by rotating g
// from angle1 to angle2 sampled n times about the line c--c+axis.
// An optional surface pen color(int i, real j) may be specified
// to override the color at vertex(i,j).
surface surface(int n=nslice, pen color(int i, real j)=null) {
return surface(c,g,axis,n,angle1,angle2,color);
}
path3 slice(real position, int n=nCircle) {
triple v=point(g,position);
triple center=c+dot(v-c,axis)*axis;
triple perp=v-center;
if(abs(perp) <= epsilon*max(abs(m),abs(M))) return center;
triple v1=center+rotate(angle1,axis)*perp;
triple v2=center+rotate(angle2,axis)*perp;
path3 p=Arc(center,v1,v2,axis,n);
return (angle2-angle1) % 360 == 0 ? p&cycle : p;
}
triple camera(projection P) {
triple camera=P.camera;
if(P.infinity) {
real s=abs(M-m)+abs(m-P.target);
camera=P.target+camerafactor*s*unit(P.vector());
}
return camera;
}
// add transverse slice to skeleton s;
// must be recomputed if camera is adjusted
void transverse(skeleton s, real t, int n=nslice,
projection P=currentprojection) {
skeleton.curve s=s.transverse;
path3 S=slice(t,n);
triple camera=camera(P);
int L=length(g);
real midtime=0.5*L;
real sign=sgn(dot(axis,camera-P.target))*sgn(dot(axis,dir(g,midtime)));
if(dot(M-m,axis) == 0 || (t <= epsilon && sign < 0) ||
(t >= L-epsilon && sign > 0))
s.front.push(S);
else {
path3 Sp=slice(t+epsilon,n);
path3 Sm=slice(t-epsilon,n);
path sp=project(Sp,P);
path sm=project(Sm,P);
real[] t1=tangent(sp,sm,true);
real[] t2=tangent(sp,sm,false);
if(t1.length > 1 && t2.length > 1) {
real t1=t1[0]/P.ninterpolate;
real t2=t2[0]/P.ninterpolate;
int len=length(S);
if(t2 < t1) {
real temp=t1;
t1=t2;
t2=temp;
}
path3 p1=subpath(S,t1,t2);
path3 p2=subpath(S,t2,len);
path3 P2=subpath(S,0,t1);
if(abs(midpoint(p1)-camera) <= abs(midpoint(p2)-camera)) {
s.front.push(p1);
if(cyclic(S))
s.back.push(p2 & P2);
else {
s.back.push(p2);
s.back.push(P2);
}
} else {
if(cyclic(S))
s.front.push(p2 & P2);
else {
s.front.push(p2);
s.front.push(P2);
}
s.back.push(p1);
}
} else {
if((t <= midtime && sign < 0) || (t >= midtime && sign > 0))
s.front.push(S);
else
s.back.push(S);
}
}
}
// add m evenly spaced transverse slices to skeleton s
void transverse(skeleton s, int m=0, int n=nslice,
projection P=currentprojection) {
if(m == 0) {
int N=size(g);
for(int i=0; i < N; ++i)
transverse(s,(real) i,n,P);
} else if(m == 1)
transverse(s,reltime(g,0.5),n,P);
else {
real factor=1/(m-1);
for(int i=0; i < m; ++i)
transverse(s,reltime(g,i*factor),n,P);
}
}
// return approximate silhouette based on m evenly spaced transverse slices;
// must be recomputed if camera is adjusted
path3[] silhouette(int m=64, projection P=currentprojection) {
if(is3D())
warning("2Dsilhouette",
"silhouette routine is intended only for 2d projections");
path3 G,H;
int N=size(g);
int M=(m == 0) ? N : m;
real factor=m == 1 ? 0 : 1/(m-1);
int n=nslice;
real tfirst=-1;
real tlast;
for(int i=0; i < M; ++i) {
real t=(m == 0) ? i : reltime(g,i*factor);
path3 S=slice(t,n);
triple camera=camera(P);
path3 Sp=slice(t+epsilon,n);
path3 Sm=slice(t-epsilon,n);
path sp=project(Sp,P);
path sm=project(Sm,P);
real[] t1=tangent(sp,sm,true);
real[] t2=tangent(sp,sm,false);
if(t1.length > 1 && t2.length > 1) {
real t1=t1[0]/P.ninterpolate;
real t2=t2[0]/P.ninterpolate;
if(t1 != t2) {
G=G..point(S,t1);
H=point(S,t2)..H;
if(tfirst < 0) tfirst=t;
tlast=t;
}
}
}
int L=length(g);
real midtime=0.5*L;
triple camera=camera(P);
real sign=sgn(dot(axis,camera-P.target))*sgn(dot(axis,dir(g,midtime)));
skeleton sfirst;
transverse(sfirst,tfirst,n,P);
triple delta=this.M-this.m;
path3 cap;
if(dot(delta,axis) == 0 || (tfirst <= epsilon && sign < 0)) {
cap=sfirst.transverse.front[0];
} else {
if(sign > 0) {
if(sfirst.transverse.front.length > 0)
G=reverse(sfirst.transverse.front[0])..G;
} else {
if(sfirst.transverse.back.length > 0)
G=sfirst.transverse.back[0]..G;
}
}
skeleton slast;
transverse(slast,tlast,n,P);
if(dot(delta,axis) == 0 || (tlast >= L-epsilon && sign > 0)) {
cap=slast.transverse.front[0];
} else {
if(sign > 0) {
if(slast.transverse.back.length > 0)
H=reverse(slast.transverse.back[0])..H;
} else {
if(slast.transverse.front.length > 0)
H=slast.transverse.front[0]..H;
}
}
return size(cap) == 0 ? G^^H : G^^H^^cap;
}
// add longitudinal curves to skeleton;
// must be recomputed if camera is adjusted
void longitudinal(skeleton s, int n=nslice, projection P=currentprojection) {
real t, d=0;
// Find a point on g of maximal distance from the axis.
int N=size(g);
for(int i=0; i < N; ++i) {
triple v=point(g,i);
triple center=c+dot(v-c,axis)*axis;
real r=abs(v-center);
if(r > d) {
t=i;
d=r;
}
}
path3 S=slice(t,n);
path3 Sm=slice(t+epsilon,n);
path3 Sp=slice(t-epsilon,n);
path sp=project(Sp,P);
path sm=project(Sm,P);
real[] t1=tangent(sp,sm,true);
real[] t2=tangent(sp,sm,false);
transform3 T=transpose(align(axis));
real Longitude(triple v) {return longitude(T*(v-c),warn=false);}
real ref=Longitude(point(g,t));
real angle(real t) {return Longitude(point(S,t/P.ninterpolate))-ref;}
triple camera=camera(P);
void push(real[] T) {
if(T.length > 1) {
path3 p=rotate(angle(T[0]),c,c+axis)*g;
path3 p1=subpath(p,0,t);
path3 p2=subpath(p,t,length(p));
if(length(p1) > 0 &&
abs(midpoint(p1)-camera) <= abs(midpoint(p2)-camera)) {
s.longitudinal.front.push(p1);
s.longitudinal.back.push(p2);
} else {
s.longitudinal.back.push(p1);
s.longitudinal.front.push(p2);
}
}
}
push(t1);
push(t2);
}
skeleton skeleton(int m=0, int n=nslice, projection P=currentprojection) {
skeleton s;
transverse(s,m,n,P);
longitudinal(s,n,P);
return s;
}
}
surface surface(revolution r, int n=nslice, pen color(int i, real j)=null)
{
return r.surface(n,color);
}
// Draw on picture pic the skeleton of the surface of revolution r.
// Draw the front portion of each of the m transverse slices with pen p and
// the back portion with pen backpen. Rotational arcs are based on
// n-point approximations to the unit circle.
void draw(picture pic=currentpicture, revolution r, int m=0, int n=nslice,
pen frontpen=currentpen, pen backpen=frontpen,
pen longitudinalpen=frontpen, pen longitudinalbackpen=backpen,
light light=currentlight, projection P=currentprojection)
{
pen thin=is3D() ? thin() : defaultpen;
skeleton s=r.skeleton(m,n,P);
begingroup3(pic);
if(frontpen != nullpen) {
draw(pic,s.transverse.back,thin+defaultbackpen+backpen,light);
draw(pic,s.transverse.front,thin+frontpen,light);
}
if(longitudinalpen != nullpen) {
draw(pic,s.longitudinal.back,thin+defaultbackpen+longitudinalbackpen,light);
draw(pic,s.longitudinal.front,thin+longitudinalpen,light);
}
endgroup3(pic);
}
revolution operator * (transform3 t, revolution r)
{
triple trc=t*r.c;
return revolution(trc,t*r.g,t*(r.c+r.axis)-trc,r.angle1,r.angle2);
}
// Return a right circular cylinder of height h in the direction of axis
// based on a circle centered at c with radius r.
revolution cylinder(triple c=O, real r, real h, triple axis=Z)
{
triple C=c+r*perp(axis);
axis=h*unit(axis);
return revolution(c,C--C+axis,axis);
}
// Return a right circular cone of height h in the direction of axis
// based on a circle centered at c with radius r. The parameter n
// controls the accuracy near the degenerate point at the apex.
revolution cone(triple c=O, real r, real h, triple axis=Z, int n=nslice)
{
axis=unit(axis);
return revolution(c,approach(c+r*perp(axis)--c+h*axis,n),axis);
}
// Return an approximate sphere of radius r centered at c obtained by rotating
// an (n+1)-point approximation to a half circle about the Z axis.
// Note: unitsphere provides a smoother and more efficient surface.
revolution sphere(triple c=O, real r, int n=nslice)
{
return revolution(c,Arc(c,r,180,0,0,0,Y,n),Z);
}
|