summaryrefslogtreecommitdiff
path: root/Build/source/utils/asymptote/base/plain_prethree.asy
blob: cfc0c3c741110abf2287ea793d62a01cad8ce283 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
// Critical definitions for transform3 needed by projection and picture.

pair viewportmargin=(0.1,0.1);  // Horizontal and vertical 3D viewport margins.

typedef real[][] transform3;
restricted transform3 identity4=identity(4);

// A uniform 3D scaling.
transform3 scale3(real s)
{
  transform3 t=identity(4);
  t[0][0]=t[1][1]=t[2][2]=s;
  return t;
}

// Simultaneous 3D scalings in the x, y, and z directions.
transform3 scale(real x, real y, real z)
{
  transform3 t=identity(4);
  t[0][0]=x;
  t[1][1]=y;
  t[2][2]=z;
  return t;
}

transform3 shiftless(transform3 t)
{
  transform3 T=copy(t);
  T[0][3]=T[1][3]=T[2][3]=0;
  return T;
}

real camerafactor=2;       // Factor used for camera adjustment.

struct transformation {
  transform3 modelview;  // For orientation and positioning
  transform3 projection; // For 3D to 2D projection
  bool infinity;
  void operator init(transform3 modelview) {
    this.modelview=modelview;
    this.projection=identity4;
    infinity=true;
  }
  void operator init(transform3 modelview, transform3 projection) {
    this.modelview=modelview;
    this.projection=projection;
    infinity=false;
  }
  transform3 compute() {
    return infinity ? modelview : projection*modelview;
  }
  transformation copy() {
    transformation T=new transformation;
    T.modelview=copy(modelview);
    T.projection=copy(projection);
    T.infinity=infinity;
    return T;
  }
}

struct projection {
  transform3 t;         // projection*modelview (cached)
  bool infinity;
  bool absolute=false;
  triple camera;        // Position of camera.
  triple up;            // A vector that should be projected to direction (0,1).
  triple target;        // Point where camera is looking at.
  triple normal;        // Normal vector from target to projection plane.
  pair viewportshift;   // Fractional viewport shift.
  real zoom=1;          // Zoom factor.
  real angle;           // Lens angle (for perspective projection).
  bool showtarget=true; // Expand bounding volume to include target?
  typedef transformation projector(triple camera, triple up, triple target);
  projector projector;
  bool autoadjust=true; // Adjust camera to lie outside bounding volume?
  bool center=false;    // Center target within bounding volume?
  int ninterpolate;     // Used for projecting nurbs to 2D Bezier curves.
  bool bboxonly=true;   // Typeset label bounding box only.
  
  transformation T;

  void calculate() {
    T=projector(camera,up,target);
    t=T.compute();
    infinity=T.infinity;
    ninterpolate=infinity ? 1 : 16;
  }

  triple vector() {
    return camera-target;
  }

  void operator init(triple camera, triple up=(0,0,1), triple target=(0,0,0),
                     triple normal=camera-target,
                     real zoom=1, real angle=0, pair viewportshift=0,
                     bool showtarget=true, bool autoadjust=true,
                     bool center=false, projector projector) {
    this.camera=camera;
    this.up=up;
    this.target=target;
    this.normal=normal;
    this.zoom=zoom;
    this.angle=angle;
    this.viewportshift=viewportshift;
    this.showtarget=showtarget;
    this.autoadjust=autoadjust;
    this.center=center;
    this.projector=projector;
    calculate();
  }

  projection copy() {
    projection P=new projection;
    P.t=t;
    P.infinity=infinity;
    P.absolute=absolute;
    P.camera=camera;
    P.up=up;
    P.target=target;
    P.normal=normal;
    P.zoom=zoom;
    P.angle=angle;
    P.viewportshift=viewportshift;
    P.showtarget=showtarget;
    P.autoadjust=autoadjust;
    P.center=center;
    P.projector=projector;
    P.ninterpolate=ninterpolate;
    P.bboxonly=bboxonly;
    P.T=T.copy();
    return P;
  }

  // Return the maximum distance of box(m,M) from target.
  real distance(triple m, triple M) {
    triple[] c={m,(m.x,m.y,M.z),(m.x,M.y,m.z),(m.x,M.y,M.z),
                (M.x,m.y,m.z),(M.x,m.y,M.z),(M.x,M.y,m.z),M};
    return max(abs(c-target));
  }
   
  
  // This is redefined here to make projection as self-contained as possible.
  static private real sqrtEpsilon = sqrt(realEpsilon);

  // Move the camera so that the box(m,M) rotated about target will always
  // lie in front of the clipping plane.
  bool adjust(triple m, triple M) {
    triple v=camera-target;
    real d=distance(m,M);
    static real lambda=camerafactor*(1-sqrtEpsilon);
    if(lambda*d >= abs(v)) {
      camera=target+camerafactor*d*unit(v);
      calculate();
      return true;
    }
    return false;
  }
}

projection currentprojection;

struct light {
  real[][] diffuse;
  real[][] ambient;
  real[][] specular;
  pen background=nullpen; // Background color of the 3D canvas.
  real specularfactor;
  bool viewport; // Are the lights specified (and fixed) in the viewport frame?
  triple[] position; // Only directional lights are currently implemented.

  transform3 T=identity(4); // Transform to apply to normal vectors.

  bool on() {return position.length > 0;}
  
  void operator init(pen[] diffuse,
                     pen[] ambient=array(diffuse.length,black),
                     pen[] specular=diffuse, pen background=nullpen,
                     real specularfactor=1,
                     bool viewport=false, triple[] position) {
    int n=diffuse.length;
    assert(ambient.length == n && specular.length == n && position.length == n);
    
    this.diffuse=new real[n][];
    this.ambient=new real[n][];
    this.specular=new real[n][];
    this.background=background;
    this.position=new triple[n];
    for(int i=0; i < position.length; ++i) {
      this.diffuse[i]=rgba(diffuse[i]);
      this.ambient[i]=rgba(ambient[i]);
      this.specular[i]=rgba(specular[i]);
      this.position[i]=unit(position[i]);
    }
    this.specularfactor=specularfactor;
    this.viewport=viewport;
  }

  void operator init(pen diffuse=white, pen ambient=black, pen specular=diffuse,
                     pen background=nullpen, real specularfactor=1,
                     bool viewport=false...triple[] position) {
    int n=position.length;
    operator init(array(n,diffuse),array(n,ambient),array(n,specular),
                  background,specularfactor,viewport,position);
  }

  void operator init(pen diffuse=white, pen ambient=black, pen specular=diffuse,
                     pen background=nullpen, bool viewport=false,
                     real x, real y, real z) {
    operator init(diffuse,ambient,specular,background,viewport,(x,y,z));
  }

  void operator init(explicit light light) {
    diffuse=copy(light.diffuse);
    ambient=copy(light.ambient);
    specular=copy(light.specular);
    background=light.background;
    specularfactor=light.specularfactor;
    viewport=light.viewport;
    position=copy(light.position);
  }

  real[] background() {return rgba(background == nullpen ? white : background);}
}

light currentlight;