1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
/*****
* application.cc
* Andy Hammerlindl 2005/05/20
*
* An application is a matching of arguments in a call expression to formal
* parameters of a function. Since the language allows default arguments,
* keyword arguments, rest arguments, and anything else we think of, this
* is not a simple mapping.
*****/
#include "application.h"
#include "exp.h"
#include "coenv.h"
#include "runtime.h"
using namespace types;
using absyntax::varinit;
using absyntax::arrayinit;
using absyntax::arglist;
namespace trans {
// Lower scores are better. Packed is added onto the other qualifiers so
// we may score both exact and casted packed arguments.
const score FAIL=0, EXACT=1, CAST=2;
const score PACKED=2;
bool castable(env &e, formal& target, formal& source) {
return target.Explicit ? equivalent(target.t,source.t)
: e.castable(target.t,source.t, symbol::castsym);
}
score castScore(env &e, formal& target, formal& source) {
return equivalent(target.t,source.t) ? EXACT :
(!target.Explicit &&
e.castable(target.t,source.t, symbol::castsym)) ? CAST : FAIL;
}
void restArg::transMaker(coenv &e, Int size, bool rest) {
// Push the number of cells and call the array maker.
e.c.encode(inst::intpush, size);
e.c.encode(inst::builtin, rest ? run::newAppendedArray :
run::newInitializedArray);
}
void restArg::trans(coenv &e, temp_vector &temps)
{
// Push the values on the stack.
for (mem::list<arg *>::iterator p = inits.begin(); p != inits.end(); ++p)
(*p)->trans(e, temps);
if (rest)
rest->trans(e, temps);
transMaker(e, (Int)inits.size(), (bool)rest);
}
class maximizer {
app_list l;
// Tests if x is as good (or better) an application as y.
bool asgood(application *x, application *y) {
// Matches to open signatures are always worse than matches to normal
// signatures.
if (x->sig->isOpen)
return y->sig->isOpen;
else if (y->sig->isOpen)
return true;
assert (x->scores.size() == y->scores.size());
// Test if each score in x is no higher than the corresponding score in
// y.
return std::equal(x->scores.begin(), x->scores.end(), y->scores.begin(),
std::less_equal<score>());
}
bool better(application *x, application *y) {
return asgood(x,y) && !asgood(y,x);
}
// Add an application that has already been determined to be maximal.
// Remove any other applications that are now not maximal because of its
// addition.
void addMaximal(application *x) {
app_list::iterator y=l.begin();
while (y!=l.end())
if (better(x,*y))
y=l.erase(y);
else
++y;
l.push_front(x);
}
// Tests if x is maximal.
bool maximal(application *x) {
for (app_list::iterator y=l.begin(); y!=l.end(); ++y)
if (better(*y,x))
return false;
return true;
}
public:
maximizer() {}
void add(application *x) {
if (maximal(x))
addMaximal(x);
}
app_list result() {
return l;
}
};
void application::initRest() {
types::formal& f=sig->getRest();
if (f.t) {
types::array *a=dynamic_cast<types::array *>(f.t);
if(!a)
vm::error("formal rest argument must be an array");
static symbol *null=0;
rf=types::formal(a->celltype, null, false, f.Explicit);
}
if (f.t || sig->isOpen) {
rest=new restArg();
}
}
//const Int REST=-1;
const Int NOMATCH=-2;
Int application::find(symbol *name) {
formal_vector &f=sig->formals;
for (size_t i=index; i<f.size(); ++i)
if (f[i].name==name && args[i]==0)
return (Int)i;
return NOMATCH;
}
bool application::matchDefault() {
if (index==args.size())
return false;
else {
formal &target=getTarget();
if (target.defval) {
args[index]=new defaultArg(target.t);
advanceIndex();
return true;
}
else
return false;
}
}
bool application::matchArgumentToRest(env &e, formal &source,
varinit *a, size_t evalIndex)
{
if (rest) {
score s=castScore(e, rf, source);
if (s!=FAIL) {
rest->add(seq.addArg(a, rf.t, evalIndex));
scores.push_back(s+PACKED);
return true;
}
}
return false;
}
bool application::matchAtSpot(size_t spot, env &e, formal &source,
varinit *a, size_t evalIndex)
{
formal &target=sig->getFormal(spot);
score s=castScore(e, target, source);
if (s!=FAIL) {
// The argument matches.
args[spot]=seq.addArg(a, target.t, evalIndex);
if (spot==index)
advanceIndex();
scores.push_back(s);
return true;
}
else
return false;
}
bool application::matchArgument(env &e, formal &source,
varinit *a, size_t evalIndex)
{
assert(source.name==0);
if (index==args.size())
// Try to pack into the rest array.
return matchArgumentToRest(e, source, a, evalIndex);
else
// Match here, or failing that use a default and try to match at the next
// spot.
return matchAtSpot(index, e, source, a, evalIndex) ||
(matchDefault() && matchArgument(e, source, a, evalIndex));
}
bool application::matchNamedArgument(env &e, formal &source,
varinit *a, size_t evalIndex)
{
assert(source.name!=0);
Int spot=find(source.name);
return spot!=NOMATCH && matchAtSpot(spot, e, source, a, evalIndex);
}
bool application::complete() {
if (index==args.size())
return true;
else if (matchDefault())
return complete();
else
return false;
}
bool application::matchRest(env &e, formal &source, varinit *a) {
// First make sure all non-rest arguments are matched (matching to defaults
// if necessary).
if (complete())
// Match rest to rest.
if (rest) {
formal &target=sig->getRest();
score s=castScore(e, target, source);
if (s!=FAIL) {
rest->addRest(new varinitArg(a, target.t));
scores.push_back(s);
return true;
}
}
return false;
}
bool application::matchSignature(env &e, types::signature *source,
arglist &al) {
formal_vector &f=source->formals;
// First, match all of the named (non-rest) arguments.
for (size_t i=0; i<f.size(); ++i)
if (f[i].name)
if (!matchNamedArgument(e, f[i], al[i].val, i))
return false;
// Then, the unnamed.
for (size_t i=0; i<f.size(); ++i)
if (!f[i].name)
if (!matchArgument(e, f[i], al[i].val, i))
return false;
// Then, the rest argument.
if (source->hasRest())
if (!matchRest(e, source->getRest(), al.rest.val))
return false;
// Fill in any remaining arguments with their defaults.
return complete();
}
#if 0
application *application::matchHelper(env &e,
application *app,
signature *source)
{
return app->matchSignature(e, source) ? app : 0;
}
application *application::match(env &e, signature *target, signature *source) {
application *app=new application(target);
return matchHelper(e, app, source);
}
#endif
bool application::matchOpen(env &e, signature *source, arglist &al) {
assert(rest);
// Pack all given parameters into the rest argument.
formal_vector &f=source->formals;
for (size_t i = 0; i < f.size(); ++i)
if (al[i].name)
// Named arguments are not handled by open signatures.
return false;
else
rest->add(seq.addArg(al[i].val, f[i].t, i));
if (source->hasRest())
rest->addRest(new varinitArg(al.rest.val, source->getRest().t));
return true;
}
application *application::match(env &e, function *t, signature *source,
arglist &al) {
assert(t->kind==ty_function);
application *app=new application(t);
if (t->getSignature()->isOpen)
return app->matchOpen(e, source, al) ? app : 0;
else
return app->matchSignature(e, source, al) ? app : 0;
}
void application::transArgs(coenv &e) {
temp_vector temps;
for(arg_vector::iterator a=args.begin(); a != args.end(); ++a)
(*a)->trans(e,temps);
if (rest)
rest->trans(e,temps);
}
app_list multimatch(env &e,
types::overloaded *o,
types::signature *source,
arglist &al)
{
assert(source);
app_list l;
for(ty_vector::iterator t=o->sub.begin(); t!=o->sub.end(); ++t) {
if ((*t)->kind==ty_function) {
application *a=application::match(e, (function *)(*t), source, al);
if (a)
l.push_back(a);
}
}
if (l.size() > 1) {
// Return the most specific candidates.
maximizer m;
for (app_list::iterator x=l.begin(); x!=l.end(); ++x) {
assert(*x);
m.add(*x);
}
return m.result();
}
else
return l;
}
#if 0
app_list resolve(env &e,
types::ty *t,
types::signature *source)
{
if (t->kind == ty_overloaded)
return multimatch(e, (overloaded *)t, source);
else {
overloaded o;
o.add(t);
return multimatch(e, &o, source);
}
}
#endif
} // namespace trans
|