summaryrefslogtreecommitdiff
path: root/Build/source/utils/asymptote/application.cc
blob: 6a3ce6f24d81c37d3f52f7baba9f0a93d7e5a679 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
/*****
 * application.cc
 * Andy Hammerlindl 2005/05/20
 *
 * An application is a matching of arguments in a call expression to formal
 * parameters of a function.  Since the language allows default arguments,
 * keyword arguments, rest arguments, and anything else we think of, this
 * is not a simple mapping.
 *****/

#include "application.h"
#include "exp.h"
#include "coenv.h"
#include "runtime.h"
#include "runarray.h"

using namespace types;
using absyntax::varinit;
using absyntax::arrayinit;
using absyntax::arglist;

namespace trans {

// Lower scores are better.  Packed is added onto the other qualifiers so
// we may score both exact and casted packed arguments.
const score FAIL=0, EXACT=1, CAST=2;
const score PACKED=2;

bool castable(env &e, formal& target, formal& source) {
  return target.Explicit ? equivalent(target.t,source.t)
    : e.castable(target.t,source.t, symbol::castsym);
}

score castScore(env &e, formal& target, formal& source) {
  return equivalent(target.t,source.t) ? EXACT :
    (!target.Explicit &&
     e.fastCastable(target.t,source.t)) ? CAST : FAIL;
}


void restArg::transMaker(coenv &e, Int size, bool rest) {
  // Push the number of cells and call the array maker.
  e.c.encode(inst::intpush, size);
  e.c.encode(inst::builtin, rest ? run::newAppendedArray :
             run::newInitializedArray);
}

void restArg::trans(coenv &e, temp_vector &temps)
{
  // Push the values on the stack.
  for (mem::list<arg *>::iterator p = inits.begin(); p != inits.end(); ++p)
    (*p)->trans(e, temps);

  if (rest)
    rest->trans(e, temps);
  
  transMaker(e, (Int)inits.size(), (bool)rest);
}

class maximizer {
  app_list l;

  // Tests if x is as good (or better) an application as y.
  bool asgood(application *x, application *y) {
    // Matches to open signatures are always worse than matches to normal
    // signatures.
    if (x->sig->isOpen)
      return y->sig->isOpen;
    else if (y->sig->isOpen)
      return true;

    assert (x->scores.size() == y->scores.size());

    // Test if each score in x is no higher than the corresponding score in
    // y.
    return std::equal(x->scores.begin(), x->scores.end(), y->scores.begin(),
                      std::less_equal<score>());
  }

  bool better(application *x, application *y) {
    return asgood(x,y) && !asgood(y,x);
  }

  // Add an application that has already been determined to be maximal.
  // Remove any other applications that are now not maximal because of its
  // addition.
  void addMaximal(application *x) {
    app_list::iterator y=l.begin();
    while (y!=l.end())
      if (better(x,*y))
        y=l.erase(y);
      else
        ++y;
    l.push_front(x);
  }
  
  // Tests if x is maximal.
  bool maximal(application *x) {
    for (app_list::iterator y=l.begin(); y!=l.end(); ++y)
      if (better(*y,x))
        return false;
    return true;
  }

public:
  maximizer() {}

  void add(application *x) {
    if (maximal(x))
      addMaximal(x);
  }

  app_list result() {
    return l;
  }
};

ty *restCellType(signature *sig) {
  formal& f=sig->getRest();
  if (f.t) {
    array *a=dynamic_cast<array *>(f.t);
    if (a)
      return a->celltype;
  }

  return 0;
}

void application::initRest() {
  formal& f=sig->getRest();
  if (f.t) {
    ty *ct = restCellType(sig);
    if (!ct)
      vm::error("formal rest argument must be an array");

    rf=formal(ct, symbol::nullsym, false, f.Explicit);
  }
  if (f.t || sig->isOpen) {
    rest=new restArg();
  }
}

//const Int REST=-1; 
const Int NOMATCH=-2;

Int application::find(symbol name) {
  formal_vector &f=sig->formals;
  for (size_t i=index; i<f.size(); ++i)
    if (f[i].name==name && args[i]==0)
      return (Int)i;
  return NOMATCH;
}

bool application::matchDefault() {
  if (index==args.size())
    return false;
  else {
    formal &target=getTarget();
    if (target.defval) {
      args[index]=new defaultArg(target.t);
      advanceIndex();
      return true;
    }
    else
      return false;
  }
}

bool application::matchArgumentToRest(env &e, formal &source,
                                      varinit *a, size_t evalIndex)
{
  if (rest) {
    score s=castScore(e, rf, source);
    if (s!=FAIL) {
      rest->add(seq.addArg(a, rf.t, evalIndex));
      scores.push_back(s+PACKED);
      return true;
    }
  }
  return false;
}

bool application::matchAtSpot(size_t spot, env &e, formal &source,
                              varinit *a, size_t evalIndex)
{
  formal &target=sig->getFormal(spot);
  score s=castScore(e, target, source);

  if (s == FAIL)
    return false;
  else if (sig->formalIsKeywordOnly(spot) && source.name == symbol::nullsym)
    return false;
  else {
    // The argument matches.
    args[spot]=seq.addArg(a, target.t, evalIndex);
    if (spot==index)
      advanceIndex();
    scores.push_back(s);
    return true;
  }
}

bool application::matchArgument(env &e, formal &source,
                                varinit *a, size_t evalIndex)
{
  assert(!source.name);

  if (index==args.size())
    // Try to pack into the rest array.
    return matchArgumentToRest(e, source, a, evalIndex);
  else
    // Match here, or failing that use a default and try to match at the next
    // spot.
    return matchAtSpot(index, e, source, a, evalIndex) ||
      (matchDefault() && matchArgument(e, source, a, evalIndex));
}

bool application::matchNamedArgument(env &e, formal &source,
                                     varinit *a, size_t evalIndex)
{
  assert(source.name);

  Int spot=find(source.name);
  return spot!=NOMATCH && matchAtSpot(spot, e, source, a, evalIndex);
}

bool application::complete() {
  if (index==args.size())
    return true;
  else if (matchDefault())
    return complete();
  else
    return false;
}

bool application::matchRest(env &e, formal &source, varinit *a,
                            size_t evalIndex) {
  // First make sure all non-rest arguments are matched (matching to defaults
  // if necessary).
  if (complete())
    // Match rest to rest.
    if (rest) {
      formal &target=sig->getRest();
      score s=castScore(e, target, source);
      if (s!=FAIL) {
        rest->addRest(seq.addArg(a, target.t, evalIndex));
        scores.push_back(s);
        return true;
      }
    }
  return false;
}
  
// When the argument should be evaluated, possibly adjusting for a rest
// argument which occurs before named arguments.
size_t adjustIndex(size_t i, size_t ri)
{
  return i < ri ? i : i+1;
}

bool application::matchSignature(env &e, types::signature *source,
                                 arglist &al) {
  formal_vector &f=source->formals;

#if 0
  cout << "num args: " << f.size() << endl;
  cout << "num keyword-only: " << sig->numKeywordOnly << endl;
#endif

  size_t ri = al.rest.val ? al.restPosition : f.size();

  // First, match all of the named (non-rest) arguments.
  for (size_t i=0; i<f.size(); ++i)
    if (f[i].name)
      if (!matchNamedArgument(e, f[i], al[i].val, adjustIndex(i,ri)))
        return false;

  // Then, the unnamed.
  for (size_t i=0; i<f.size(); ++i)
    if (!f[i].name)
      if (!matchArgument(e, f[i], al[i].val, adjustIndex(i,ri)))
        return false;

  // Then, the rest argument.
  if (source->hasRest())
    if (!matchRest(e, source->getRest(), al.rest.val, ri))
      return false;

  // Fill in any remaining arguments with their defaults.
  return complete();
}
       
bool application::matchOpen(env &e, signature *source, arglist &al) {
  assert(rest);

  // Pack all given parameters into the rest argument.
  formal_vector &f=source->formals;
  for (size_t i = 0; i < f.size(); ++i)
    if (al[i].name)
      // Named arguments are not handled by open signatures.
      return false;
    else
      rest->add(seq.addArg(al[i].val, f[i].t, i));

  if (source->hasRest())
    rest->addRest(new varinitArg(al.rest.val, source->getRest().t));

  return true;
}

application *application::match(env &e, function *t, signature *source,
                                arglist &al) {
  assert(t->kind==ty_function);
  application *app=new application(t);

  bool success = t->getSignature()->isOpen ?
                     app->matchOpen(e, source, al) :
                     app->matchSignature(e, source, al);

  //cout << "MATCH " << success << endl;

  return success ? app : 0;
}

void application::transArgs(coenv &e) {
  temp_vector temps;

  for(arg_vector::iterator a=args.begin(); a != args.end(); ++a)
    (*a)->trans(e,temps);

  if (rest)
    rest->trans(e,temps);
}

bool application::exact() {
  if (sig->isOpen)
    return false;
  for (score_vector::iterator p = scores.begin(); p != scores.end(); ++p)
    if (*p != EXACT)
      return false;
  return true;
}

bool application::halfExact() {
  if (sig->isOpen)
    return false;
  if (scores.size() != 2)
    return false;
  if (scores[0] == EXACT && scores[1] == CAST)
    return true;
  if (scores[0] == CAST && scores[1] == EXACT)
    return true;
  return false;
}

// True if any of the formals have names.
bool namedFormals(signature *sig)
{
  formal_vector& formals = sig->formals;
  size_t n = formals.size();
  for (size_t i = 0; i < n; ++i) {
    if (formals[i].name)
      return true;
  }
  return false;
}

// Tests if arguments in the source signature can be matched to the formals
// in the target signature with no casting or packing.
// This allows overloaded args, but not named args.
bool exactMightMatch(signature *target, signature *source)
{
  // Open signatures never exactly match.
  if (target->isOpen)
    return false;

#if 0
  assert(!namedFormals(source));
#endif

  formal_vector& formals = target->formals;
  formal_vector& args = source->formals;

  // Sizes of the two lists.
  size_t fn = formals.size(), an = args.size();

  // Indices for the two lists.
  size_t fi = 0, ai = 0;

  while (fi < fn && ai < an) {
    if (equivalent(formals[fi].t, args[ai].t)) {
      // Arguments match, move to the next.
      ++fi; ++ai;
    } else if (formals[fi].defval) {
      // Match formal to default value.
      ++fi;
    } else {
      // Failed to match formal.
      return false;
    }
  }

  assert(fi == fn || ai == an);

  // Packing array arguments into the rest formal is inexact.  Do not allow it
  // here.
  if (ai < an)
    return false;

  assert(ai == an);

  // Match any remaining formal to defaults.
  while (fi < fn)
    if (formals[fi].defval) {
      // Match formal to default value.
      ++fi;
    } else {
      // Failed to match formal.
      return false;
    }

  // Non-rest arguments have matched.
  assert(fi == fn && ai == an);

  // Try to match the rest argument if given.
  if (source->hasRest()) {
    if (!target->hasRest())
      return false;
    
    if (!equivalent(source->getRest().t, target->getRest().t))
      return false;
  }

  // All arguments have matched.
  return true;
}

// Tries to match applications without casting.  If an application matches
// here, we need not attempt to match others with the slower, more general
// techniques.
app_list exactMultimatch(env &e,
                         types::overloaded *o,
                         types::signature *source,
                         arglist &al)
{
  assert(source);

  app_list l;

  // This can't handle named arguments.
  if (namedFormals(source))
    return l; /* empty */

  for (ty_vector::iterator t=o->sub.begin(); t!=o->sub.end(); ++t)
  {
    if ((*t)->kind != ty_function)
      continue;

    function *ft = (function *)*t;

    // First we run a test to see if all arguments could be exactly matched.
    // If this returns false, no such match is possible.
    // If it returns true, an exact match may or may not be possible.
    if (!exactMightMatch(ft->getSignature(), source))
      continue;

    application *a=application::match(e, ft, source, al);

    // Consider calling
    //   void f(A a=new A, int y)
    // with
    //   f(3)
    // This matches exactly if there is no implicit cast from int to A.
    // Otherwise, it does not match.
    // Thus, there is no way to know if the
    // match truly is exact without looking at the environment.
    // In such a case, exactMightMatch() must return true, but there is no
    // exact match.  Such false positives are eliminated here.
    // 
    // Consider calling
    //   void f(int x, real y=0.0, int z=0)
    // with
    //   f(1,2)
    // exactMightMatch() will return true, matching 1 to x and 2 to z, but the
    // application::match will give an inexact match of 1 to x to 2 to y, due
    // to the cast from int to real.  Therefore, we must test for exactness
    // even after matching.
    if (a && a->exact())
      l.push_back(a);
  }

  //cout << "EXACTMATCH " << (!l.empty()) << endl;
  return l;
}

bool halfExactMightMatch(env &e,
                         signature *target, types::ty *t1, types::ty *t2)
{
  formal_vector& formals = target->formals;
  if (formals.size() < 2)
    return false;
  if (formals.size() > 2) {
    // We should probably abort the whole matching in this case.  For now,
    // return true and let the usual matching handle it.
    return true;
  }

  assert(formals[0].t);
  assert(formals[1].t);

  // These casting tests if successful will be repeated again by
  // application::match.  It would be nice to avoid this somehow, but the
  // additional complexity is probably not worth the minor speed improvement.
  if (equivalent(formals[0].t, t1))
     return e.fastCastable(formals[1].t, t2);
  else 
    return equivalent(formals[1].t, t2) && e.fastCastable(formals[0].t, t1);
}

// Most common after exact matches are cases such as
//   2 + 3.4   (int, real) --> (real, real)
// that is, binary operations where one of the operands matches exactly and the
// other does not.  This function searches for these so-called "half-exact"
// matches.  This should only be called after exactMultimatch has failed.
app_list halfExactMultimatch(env &e,
                             types::overloaded *o,
                             types::signature *source,
                             arglist &al)
{
  assert(source);

  app_list l;


  // Half exact is only in the case of two arguments.
  formal_vector& formals = source->formals;
  if (formals.size() != 2 || source->hasRest())
    return l; /* empty */

  // This can't handle named arguments.
  if (namedFormals(source))
    return l; /* empty */

  // Alias the two argument types.
  types::ty *t1 = formals[0].t;
  types::ty *t2 = formals[1].t;

  assert(t1); assert(t2);

  for (ty_vector::iterator t=o->sub.begin(); t!=o->sub.end(); ++t)
  {
    if ((*t)->kind != ty_function)
      continue;

    function *ft = (function *)*t;

#if 1
    if (!halfExactMightMatch(e, ft->getSignature(), t1, t2))
      continue;
#endif

    application *a=application::match(e, ft, source, al);

#if 1
    if (a && a->halfExact())
      l.push_back(a);
#endif
  }

  return l;
}

// Simple check if there are too many arguments to match the candidate
// function.
// A "tooFewArgs" variant was also implemented at some point, but did
// not give any speed-up.
bool tooManyArgs(types::signature *target, types::signature *source) {
  return source->getNumFormals() > target->getNumFormals() &&
         !target->hasRest();
}

// The full overloading resolution system, which handles casting of arguments,
// packing into rest arguments, named arguments, etc.
app_list inexactMultimatch(env &e,
                           types::overloaded *o,
                           types::signature *source,
                           arglist &al)
{
  assert(source);

  app_list l;


#define DEBUG_GETAPP 0
#if DEBUG_GETAPP
  //cout << "source: " << *source << endl;
  //cout << "ARGS: " << source->getNumFormals() << endl;
  bool perfect=false;
  bool exact=false;
  bool halfExact=false;
#endif

  for(ty_vector::iterator t=o->sub.begin(); t!=o->sub.end(); ++t) {
    if ((*t)->kind==ty_function) {
#if DEBUG_GETAPP
      function *ft = dynamic_cast<function *>(*t);
      signature *target = ft->getSignature();
      if (equivalent(target, source))
        perfect = true;
#endif

      // Check if there are two many arguments to match.
      if (tooManyArgs((*t)->getSignature(), source))
        continue;

      application *a=application::match(e, (function *)(*t), source, al);
      if (a)
        l.push_back(a);

#if DEBUG_GETAPP
      if (a && !namedFormals(source)) {
        assert(a->exact() == exactlyMatchable(ft->getSignature(), source));
        if (a->halfExact() && !namedFormals(source)) {
          assert(halfExactMightMatch(e, target, source->getFormal(0).t,
                                                source->getFormal(1).t));
        }
          
      }
      if (a && a->exact())
        exact = true;
      if (a && a->halfExact())
        halfExact = true;
#endif
    }
  }

#if DEBUG_GETAPP
  cout << (perfect     ? "PERFECT" :
           exact       ? "EXACT" :
           halfExact   ? "HALFEXACT" :
                         "IMPERFECT")
       << endl;
#endif

  if (l.size() > 1) {
    // Return the most specific candidates.
    maximizer m;
    for (app_list::iterator x=l.begin(); x!=l.end(); ++x) {
      assert(*x);
      m.add(*x);
    }
    return m.result();
  }
  else
    return l;
}

enum testExactType {
  TEST_EXACT,
  DONT_TEST_EXACT,
};

// Sanity check for multimatch optimizations.
void sameApplications(app_list a, app_list b, testExactType te) {
  assert(a.size() == b.size());

  if (te == TEST_EXACT) {
    for (app_list::iterator i = a.begin(); i != a.end(); ++i) {
      if (!(*i)->exact()) {
        cout << *(*i)->getType() << endl;
      }
      assert((*i)->exact());
    }
    for (app_list::iterator i = b.begin(); i != b.end(); ++i)
      assert((*i)->exact());
  }

  if (a.size() == 1)
    assert(equivalent(a.front()->getType(), b.front()->getType()));
}

app_list multimatch(env &e,
                    types::overloaded *o,
                    types::signature *source,
                    arglist &al)
{
  app_list a = exactMultimatch(e, o, source, al);
  if (!a.empty()) {
#if DEBUG_CACHE
    // Make sure that exactMultimatch and the fallback return the same
    // application(s).
    sameApplications(a, inexactMultimatch(e, o, source, al), TEST_EXACT);
#endif

    return a;
  }

  a = halfExactMultimatch(e, o, source, al);
  if (!a.empty()) {
#if DEBUG_CACHE
    sameApplications(a, inexactMultimatch(e, o, source, al), DONT_TEST_EXACT);
#endif

    return a;
  }

  // Slow but most general method.
  return inexactMultimatch(e, o, source, al);
}

} // namespace trans