summaryrefslogtreecommitdiff
path: root/Build/source/utils/asymptote/GUI/CubicBezier.py
blob: 6455b700a7924df2578b400b0c53524a02f4b2d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/env python
###########################################################################
#
# Convert a Bezier curve to a polyline
#
# Once Tk supports "RawCurves" this will not be needed.
#
#
# Author: Orest Shardt
# Created: June 29, 2007
#
###########################################################################
import math

def norm(vector):
  """Return the norm of a vector"""
  return math.sqrt(vector[0]**2+vector[1]**2)

def splitLine(end0,end1,t):
  """Split a line at the distance t, with t in (0,1)"""
  return (end0[0]+t*(end1[0]-end0[0]),end0[1]+t*(end1[1]-end0[1]))

def splitBezier(node0,control0,control1,node1,t):
  """Find the nodes and control points for the segments of a Bezier curve split at t"""
  a = splitLine(node0,control0,t)
  b = splitLine(control0,control1,t)
  c = splitLine(control1,node1,t)
  d = splitLine(a,b,t)
  e = splitLine(b,c,t)
  f = splitLine(d,e,t)#this is the point on the curve at t
  return ([node0,a,d,f],[f,e,c,node1])

def BezierWidth(node0,control0,control1,node1):
  """Compute the distance of the control points from the node-node axis"""
  deltax = node1[0] - node0[0]
  deltay = node1[1] - node0[1]
  length = norm((deltax,deltay))
  if length == 0:
    y1 = control0[1]-node0[1]
    y2 = control1[1]-node0[1]
  else:
    cosine = deltax/length
    sine = deltay/length
    y1 = cosine*(control0[1]-node0[1])-sine*(control0[0]-node0[0])
    y2 = cosine*(control1[1]-node0[1])-sine*(control1[0]-node0[0])
  if y1*y2 >= 0:
    #same sign
    return max(abs(y1),abs(y2))
  else:
    #opposite sign
    return abs(y1)+abs(y2)

#If the above algorithm fails, this one will work, but it is far from elegant
#def computeIntermediates(steps,node0,control0,control1,node1):
  #pointList = []
  #for a in range(0,100,100/steps)+[100]:
   #t = a/100.0
   #t1 = 1-t
   #x = node0[0]*t1**3+3*control0[0]*t*t1**2+3*control1[0]*t**2*t1+node1[0]*t**3
   #y = node0[1]*t1**3+3*control0[1]*t*t1**2+3*control1[1]*t**2*t1+node1[1]*t**3
   #pointList.append((x,y))
  #return pointList
#def makeBezier(steps,node0,control0,control1,node1):
 #if len(node0)!=2 or len(control0)!=2 or len(control1)!=2 or len(node1)!=2:
  #return -1
 #else:
  #return [node0]+computeIntermediates(steps,node0,control0,control1,node1)+[node1]

def makeBezierIntermediates(node0,control0,control1,node1,epsilon):
  """Find the points, excluding node0, to be used as the line segment endpoints"""
  if(BezierWidth(node0,control0,control1,node1) <= epsilon):
    return [node1]
  else:
    splitUp = splitBezier(node0,control0,control1,node1,0.5)
    return makeBezierIntermediates(*splitUp[0]+[epsilon])+makeBezierIntermediates(*splitUp[1]+[epsilon])

def makeBezier(node0,control0,control1,node1,epsilon=1):
  """Return the vertices to be used in the polyline representation of a Bezier curve"""
  return [node0]+makeBezierIntermediates(node0,control0,control1,node1,epsilon)

if __name__ == '__main__':
  pointList = makeBezier((-80,0),(-150,40),(150,120),(80,0),0.5)
  from timeit import Timer
  t = Timer('makeBezier((-80,0),(-40,-40),(40,120),(80,0),1)','from __main__ import makeBezier')
  print pointList
  print len(pointList)
  iterations = 1000
  time = t.timeit(iterations)
  print "%d iterations took %f seconds (%f ms for each)."%(iterations,time,1000.0*time/iterations)
  points = []
  for point in pointList:
    points.append(point[0])
    points.append(-point[1])
  from Tkinter import *
  root = Tk()
  canv = Canvas(root,scrollregion=(-100,-100,100,100))
  canv.pack()
  canv.create_line(points)
  for point in pointList:
   canv.create_oval(point[0],-point[1],point[0],-point[1],fill='red',outline='red')
  root.mainloop()