summaryrefslogtreecommitdiff
path: root/Build/source/texk/xdvipdfmx/src/pdfencrypt.c
blob: 7f358082cc35bb2a6acef4d94ab795a5817aa03d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/*  $Header: /home/cvsroot/dvipdfmx/src/pdfencrypt.c,v 1.10 2008/02/12 18:44:40 matthias Exp $
 
    This is dvipdfmx, an eXtended version of dvipdfm by Mark A. Wicks.

    Copyright (C) 2002 by Jin-Hwan Cho and Shunsaku Hirata,
    the dvipdfmx project team <dvipdfmx@project.ktug.or.kr>
    
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.
    
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
    
    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/

#if HAVE_CONFIG_H
#include "config.h"
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#ifdef WIN32
#include <conio.h>
#define getch _getch
#else  /* !WIN32 */
#include <unistd.h>
#endif /* WIN32 */

#include "system.h"
#include "mem.h"
#include "error.h"
#include "pdfobj.h"
#include "dpxcrypt.h"

#include "pdfencrypt.h"

#define MAX_KEY_LEN 16
#define MAX_STR_LEN 32

static unsigned char algorithm, revision, key_size;
static unsigned long permission;

static unsigned char key_data[MAX_KEY_LEN], id_string[MAX_KEY_LEN];
static unsigned char opwd_string[MAX_STR_LEN], upwd_string[MAX_STR_LEN];

static unsigned long current_label = 0;
static unsigned current_generation = 0;

static ARC4_KEY key;
static MD5_CONTEXT md5_ctx;

static unsigned char md5_buf[MAX_KEY_LEN], key_buf[MAX_KEY_LEN];
static unsigned char in_buf[MAX_STR_LEN], out_buf[MAX_STR_LEN];

static const unsigned char padding_string[MAX_STR_LEN] = {
  0x28, 0xbf, 0x4e, 0x5e, 0x4e, 0x75, 0x8a, 0x41,
  0x64, 0x00, 0x4e, 0x56, 0xff, 0xfa, 0x01, 0x08,
  0x2e, 0x2e, 0x00, 0xb6, 0xd0, 0x68, 0x3e, 0x80,
  0x2f, 0x0c, 0xa9, 0xfe, 0x64, 0x53, 0x69, 0x7a
};

static char owner_passwd[MAX_PWD_LEN], user_passwd[MAX_PWD_LEN];

static unsigned char verbose = 0;

void pdf_enc_set_verbose (void)
{
  if (verbose < 255) verbose++;
}

#define PRODUCER "%s-%s, Copyright \251 2002-2010 by Jin-Hwan Cho, Matthias Franz, and Shunsaku Hirata"
void pdf_enc_compute_id_string (char *dviname, char *pdfname)
{
  char *date_string, *producer;
  time_t current_time;
  struct tm *bd_time;

  MD5_init(&md5_ctx);

  date_string = NEW (15, char);
  time(&current_time);
  bd_time = localtime(&current_time);
  sprintf (date_string, "%04d%02d%02d%02d%02d%02d",
	   bd_time -> tm_year+1900, bd_time -> tm_mon+1, bd_time -> tm_mday,
	   bd_time -> tm_hour, bd_time -> tm_min, bd_time -> tm_sec);
  MD5_write(&md5_ctx, (unsigned char *)date_string, strlen(date_string));
  RELEASE (date_string);

  producer = NEW (strlen(PRODUCER)+strlen(PACKAGE)+strlen(VERSION), char);
  sprintf(producer, PRODUCER, PACKAGE, VERSION);
  MD5_write(&md5_ctx, (unsigned char *)producer, strlen(producer));
  RELEASE (producer);

  if (dviname)
    MD5_write(&md5_ctx, (unsigned char *)dviname, strlen(dviname));
  if (pdfname)
    MD5_write(&md5_ctx, (unsigned char *)pdfname, strlen(pdfname));
  MD5_final(id_string, &md5_ctx);
}

static void passwd_padding (unsigned char *src, unsigned char *dst)
{
  register int len = strlen((char *)src);

  if (len > MAX_STR_LEN)
    len = MAX_STR_LEN;

  memcpy(dst, src, len);
  memcpy(dst+len, padding_string, MAX_STR_LEN-len);
}

static void compute_owner_password (void)
{
  register unsigned char i, j;
  /*
   * Algorithm 3.3 Computing the encryption dictionary's O (owner password)
   *               value
   *
   * 1. Pad or truncate the owner password string as described in step 1
   *    of Algorithm 3.2. If there is no owner password, use the user
   *    password instead. (See implementation note 17 in Appendix H.)
   */
  passwd_padding((unsigned char *)(strlen(owner_passwd) > 0 ? owner_passwd : user_passwd), in_buf);
  /*
   * 2. Initialize the MD5 hash function and pass the result of step 1
   *    as input to this function.
   */
  MD5_init(&md5_ctx);
  MD5_write(&md5_ctx, in_buf, MAX_STR_LEN);
  MD5_final(md5_buf, &md5_ctx);
  /*
   * 3. (Revision 3 only) Do the following 50 times: Take the output
   *    from the previous MD5 hash and pass it as input into a new
   *    MD5 hash.
   */
  if (revision == 3)
    for (i = 0; i < 50; i++) {
      /*
       * NOTE: We truncate each MD5 hash as in the following step.
       *       Otherwise Adobe Reader won't decrypt the PDF file.
       */
      MD5_init(&md5_ctx);
      MD5_write(&md5_ctx, md5_buf, key_size);
      MD5_final(md5_buf, &md5_ctx);
    }
  /*
   * 4. Create an RC4 encryption key using the first n bytes of the output
   *    from the final MD5 hash, where n is always 5 for revision 2 but
   *    for revision 3 depends on the value of the encryption dictionary's
   *    Length entry.
   */
  ARC4_set_key(&key, key_size, md5_buf);
  /*
   * 5. Pad or truncate the user password string as described in step 1
   *    of Algorithm 3.2.
   */
  passwd_padding((unsigned char *)user_passwd, in_buf);
  /*
   * 6. Encrypt the result of step 5, using an RC4 encryption function
   *    with the encryption key obtained in step 4.
   */
  ARC4(&key, MAX_STR_LEN, in_buf, out_buf);
  /*
   * 7. (Revision 3 only) Do the following 19 times: Take the output
   *    from the previous invocation of the RC4 function and pass it
   *    as input to a new invocation of the function; use an encryption
   *    key generated by taking each byte of the encryption key obtained
   *    in step 4 and performing an XOR (exclusive or) operation between
   *    that byte and the single-byte value of the iteration counter
   *    (from 1 to 19).
   */
  if (revision == 3)
    for (i = 1; i <= 19; i++) {
      memcpy(in_buf, out_buf, MAX_STR_LEN);
      for (j = 0; j < key_size; j++)
        key_buf[j] = md5_buf[j] ^ i;
      ARC4_set_key(&key, key_size, key_buf);
      ARC4(&key, MAX_STR_LEN, in_buf, out_buf);
    }
  /*
   * 8. Store the output from the final invocation of the RC4 function
   *    as the value of the O entry in the encryption dictionary.
   */
  memcpy(opwd_string, out_buf, MAX_STR_LEN);
}

static void compute_encryption_key (unsigned char *pwd)
{
  register unsigned char i;
  /*
   * Algorithm 3.2 Computing an encryption key
   *
   * 1. Pad or truncate the password string to exactly 32 bytes. If the
   *    password string is more than 32 bytes long, use only its first
   *    32 bytes; if it is less than 32 bytes long, pad it by appending
   *    the required number of additional bytes from the beginning of
   *    the following padding string:
   *
   *    < 28 BF 4E 5E 4E 75 8A 41 64 00 4E 56 FF FA 01 08
   *      2E 2E 00 B6 D0 68 3E 80 2F 0C A9 FE 64 53 69 7A >
   *
   *    That is, if the password string is n bytes long, append the
   *    first 32 - n bytes of the padding string to the end of the
   *    password string. If the password string is empty (zero-length),
   *	meaning there is no user password, substitute the entire
   *	padding string in its place.
   */
  passwd_padding(pwd, in_buf);
  /*
   * 2. Initialize the MD5 hash function and pass the result of step 1
   *    as input to this fuction.
   */
  MD5_init(&md5_ctx);
  MD5_write(&md5_ctx, in_buf, MAX_STR_LEN);
  /*
   * 3. Pass the value of the encryption dictionary's O entry to the
   *    MD5 hash function. (Algorithm 3.3 shows how the O value is
   *    computed.)
   */
  MD5_write(&md5_ctx, opwd_string, MAX_STR_LEN);
  /*
   * 4. Treat the value of the P entry as an unsigned 4-byte integer
   *    and pass these bytes to the MD5 hash function, low-order byte
   *    first.
   */
  in_buf[0] = (unsigned char)(permission) & 0xFF;
  in_buf[1] = (unsigned char)(permission >> 8) & 0xFF;
  in_buf[2] = (unsigned char)(permission >> 16) & 0xFF;
  in_buf[3] = (unsigned char)(permission >> 24) & 0xFF;
  MD5_write(&md5_ctx, in_buf, 4);
  /*
   * 5. Pass the first element of the file's file identifier array
   *    (the value of the ID entry in the document's trailer dictionary;
   *    see Table 3.12 on page 68) to the MD5 hash function and
   *    finish the hash.
   */
  MD5_write(&md5_ctx, id_string, MAX_KEY_LEN);
  MD5_final(md5_buf, &md5_ctx);
  /*
   * 6. (Revision 3 only) Do the following 50 times; Take the output from
   *    the previous MD5 hash and pass it as input into a new MD5 hash.
   */
  if (revision == 3)
    for (i = 0; i < 50; i++) {
      /*
       * NOTE: We truncate each MD5 hash as in the following step.
       *       Otherwise Adobe Reader won't decrypt the PDF file.
       */
      MD5_init(&md5_ctx);
      MD5_write(&md5_ctx, md5_buf, key_size);
      MD5_final(md5_buf, &md5_ctx);
    }
  /*
   * 7. Set the encryption key to the first n bytes of the output from
   *    the final MD5 hash, where n is always 5 for revision 2 but for
   *    revision 3 depends on the value of the encryption dictionary's
   *    Length entry.
   */
  memcpy(key_data, md5_buf, key_size);
}

static void compute_user_password (void)
{
  register unsigned char i, j;
  /*
   * Algorithm 3.4 Computing the encryption dictionary's U (user password)
   *               value (Revision 2)
   *
   * 1. Create an encryption key based on the user password string, as
   *    described in Algorithm 3.2.
   *
   * 2. Encrypt the 32-byte padding string shown in step 1 of Algorithm
   *    3.2, using an RC4 encryption fuction with the encryption key from
   *    the preceeding step.
   *
   * 3. Store the result of step 2 as the value of the U entry in the
   *    encryption dictionary.
   */
  /*
   * Algorithm 3.5 Computing the encryption dictionary's U (user password)
   *               value (Revision 3)
   *
   * 1. Create an encryption key based on the user password string, as
   *    described in Algorithm 3.2.
   *
   * 2. Initialize the MD5 hash function and pass the 32-byte padding
   *    string shown in step 1 of Algorithm 3.2 as input to this function.
   *
   * 3. Pass the first element of the file's file identifier array (the
   *    value of the ID entry in the document's trailer dictionary; see
   *    Table 3.12 on page 68) to the hash function and finish the hash.
   *
   * 4. Encrypt the 16-byte result of the hash, using an RC4 encryption
   *    function with the encryption key from step 1.
   *
   * 5. Do the following 19 times: Take the output from the previous
   *    invocation of the RC4 function and pass it as input to a new
   *    invocation of the function; use an encryption key generated by
   *    taking each byte of the original encryption key (obtained in
   *    step 1) and performing an XOR (exclusive or) operation between
   *    that byte and the single-byte value of the iteration counter
   *    (from 1 to 19).
   *
   * 6. Append 16 bytes of arbitrary padding to the output from the
   *    final invocation of the RC4 function and store the 32-byte
   *    result as the value of the U entry in the encryption dictionary.
   */
  compute_encryption_key((unsigned char *)user_passwd);

  switch (revision) {
  case 2:
    ARC4_set_key(&key, key_size, key_data);
    ARC4(&key, MAX_STR_LEN, padding_string, out_buf);
    break;
  case 3:
    MD5_init(&md5_ctx);
    MD5_write(&md5_ctx, padding_string, MAX_STR_LEN);

    MD5_write(&md5_ctx, id_string, MAX_KEY_LEN);
    MD5_final(md5_buf, &md5_ctx);

    ARC4_set_key(&key, key_size, key_data);
    ARC4(&key, MAX_KEY_LEN, md5_buf, out_buf);

    for (i = 1; i <= 19; i++) {
      memcpy(in_buf, out_buf, MAX_KEY_LEN);
      for (j = 0; j < key_size; j++)
        key_buf[j] = key_data[j] ^ i;
      ARC4_set_key(&key, key_size, key_buf);
      ARC4(&key, MAX_KEY_LEN, in_buf, out_buf);
    }
    break;
  default:
    ERROR("Invalid revision number.\n");
  }

  memcpy(upwd_string, out_buf, MAX_STR_LEN);
}

#ifdef WIN32
static char *getpass (const char *prompt)
{
  static char pwd_buf[128];
  size_t i;

  fputs(prompt, stderr);
  fflush(stderr);
  for (i = 0; i < sizeof(pwd_buf)-1; i++) {
    pwd_buf[i] = getch();
    if (pwd_buf[i] == '\r')
      break;
  }
  pwd_buf[i] = '\0';
  fputs("\n", stderr);
  return pwd_buf;
}
#endif

void pdf_enc_set_passwd (unsigned bits, unsigned perm, const char *owner_pw, const char *user_pw)
{
  char *retry_passwd;

  if (owner_pw) {
    strncpy(owner_passwd, owner_pw, MAX_PWD_LEN);
  } else
    while (1) {
      strncpy(owner_passwd, getpass("Owner password: "), MAX_PWD_LEN);
      retry_passwd = getpass("Re-enter owner password: ");
      if (!strncmp(owner_passwd, retry_passwd, MAX_PWD_LEN))
	break;
      fputs("Password is not identical.\nTry again.\n", stderr);
      fflush(stderr);
    }
  
  if (user_pw) {
    strncpy(user_passwd, user_pw, MAX_PWD_LEN);
  } else
    while (1) {
      strncpy(user_passwd, getpass("User password: "), MAX_PWD_LEN);
      retry_passwd = getpass("Re-enter user password: ");
      if (!strncmp(user_passwd, retry_passwd, MAX_PWD_LEN))
	break;
      fputs("Password is not identical.\nTry again.\n", stderr);
      fflush(stderr);
    }

  key_size = (unsigned char)(bits / 8);
  algorithm = (key_size == 5 ? 1 : 2);
  permission = (unsigned long)perm | 0x000000C0;
  revision = ((algorithm == 1 && permission < 0x100) ? 2 : 3);
  if (revision == 3)
    permission |= 0xFFFFF000;

  compute_owner_password();
  compute_user_password();
}

void pdf_encrypt_data (unsigned char *data, unsigned long len)
{
  unsigned char *result;

  memcpy(in_buf, key_data, key_size);
  in_buf[key_size]   = (unsigned char)(current_label) & 0xFF;
  in_buf[key_size+1] = (unsigned char)(current_label >> 8) & 0xFF;
  in_buf[key_size+2] = (unsigned char)(current_label >> 16) & 0xFF;
  in_buf[key_size+3] = (unsigned char)(current_generation) & 0xFF;
  in_buf[key_size+4] = (unsigned char)(current_generation >> 8) & 0xFF;

  MD5_init(&md5_ctx);
  MD5_write(&md5_ctx, in_buf, key_size+5);
  MD5_final(md5_buf, &md5_ctx);
  
  result = NEW (len, unsigned char);
  ARC4_set_key(&key, (key_size > 10 ? MAX_KEY_LEN : key_size+5), md5_buf);
  ARC4(&key, len, data, result);
  memcpy(data, result, len);
  RELEASE (result);
}

pdf_obj *pdf_encrypt_obj (void)
{
  pdf_obj *doc_encrypt;

#ifdef DEBUG
  fprintf (stderr, "(pdf_encrypt_obj)");
#endif

  doc_encrypt = pdf_new_dict ();

  /* KEY  : Filter
   * TYPE : name
   * VALUE: (Required) The name of the security handler for this document;
   *        see below. Default value: Standard, for the built-in security
   *        handler.
   */
  pdf_add_dict (doc_encrypt, 
		pdf_new_name ("Filter"),
		pdf_new_name ("Standard"));
  /* KEY  : V
   * TYPE : number
   * VALUE: (Optional but strongly recommended) A code specifying the
   *        algorithm to be used in encrypting and decrypting the document:
   *        0  An algorithm that is undocumented and no longer supported,
   *           and whose use is strongly discouraged.
   *        1  Algorithm 3.1 on page 73, with an encryption key length
   *           of 40 bits; see below.
   *        2  (PDF 1.4) Algorithm 3.1 on page 73, but allowing encryption
   *           key lengths greater than 40 bits.
   *        3  (PDF 1.4) An unpublished algorithm allowing encryption key
   *           lengths ranging from 40 to 128 bits. (This algorithm is
   *           unpublished as an export requirement of the U.S. Department
   *           of Commerce.)
   *        The default value if this entry is omitted is 0, but a value
   *        of 1 or greater is strongly recommended.
   */
  pdf_add_dict (doc_encrypt, 
		pdf_new_name ("V"),
		pdf_new_number (algorithm));
  /* KEY  : Length
   * TYPE : integer
   * VALUE: (Optional; PDF 1.4; only if V is 2 or 3) The length of the
   *        encryption key, in bits. The value must be a multiple of 8,
   *        in the range 40 to 128. Default value: 40.
   */
  if (algorithm > 1)
    pdf_add_dict (doc_encrypt, 
		  pdf_new_name ("Length"),
		  pdf_new_number (key_size * 8));
  /* KEY  : R
   * TYPE : number
   * VALUE: (Required) A number specifying which revision of the standard
   *        security handler should be used to interpret this dictionary.
   *        The revison number should be 2 if the document is encrypted
   *        with a V value less than 2; otherwise this value should be 3.
   */
  pdf_add_dict (doc_encrypt, 
		pdf_new_name ("R"),
		pdf_new_number (revision));
  /* KEY  : O
   * TYPE : string
   * VALUE: (Required) A 32-byte string, based on both the owner and
   *        user passwords, that is used in computing the encryption
   *        key and in determining whether a valid owner password was
   *        entered.
   */
  pdf_add_dict (doc_encrypt, 
		pdf_new_name ("O"),
		pdf_new_string (opwd_string, 32));
  /* KEY  : U
   * TYPE : string
   * VALUE: (Required) A 32-byte string, based on the user password,
   *        that is used in determining whether to prompt the user
   *        for a password and, if so, whether a valid user or owner
   *        password was entered.
   */
  pdf_add_dict (doc_encrypt, 
		pdf_new_name ("U"),
		pdf_new_string (upwd_string, 32));
  /* KEY  : P
   * TYPE : integer
   * VALUE: (Required) A set of flags specifying which operations are
   *        permitted when the document is opened with user access.
   */
  pdf_add_dict (doc_encrypt, 
		pdf_new_name ("P"),
		pdf_new_number (permission));

  return doc_encrypt;
}

pdf_obj *pdf_enc_id_array (void)
{
  pdf_obj *id = pdf_new_array();
  pdf_add_array(id, pdf_new_string(id_string, MAX_KEY_LEN));
  pdf_add_array(id, pdf_new_string(id_string, MAX_KEY_LEN));
  return id;
}

void pdf_enc_set_label (unsigned long label)
{
  current_label = label;
}

void pdf_enc_set_generation (unsigned generation)
{
  current_generation = generation;
}