1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
|
% This program by D. E. Knuth is not copyrighted and can be used freely.
% Version 0 was implemented in January 1982.
% In February 1982 a new restriction on ligature steps was added.
% In June 1982 the routines were divided into smaller pieces for IBM people,
% and the result was designated "Version 1" in September 1982.
% Slight changes were made in October, 1982, for version 0.6 of TeX.
% Version 2 (July 1983) was released with TeX version 0.999.
% Version 2.1 (September 1983) changed TEXINFO to FONTDIMEN.
% Version 2.2 (February 1984) simplified decimal fraction output.
% Version 2.3 (May 1984) fixed a bug when lh=17.
% Version 2.4 (July 1984) fixed a bug involving unused ligature code.
% Version 2.5 (September 1985) updated the standard codingscheme names.
% Version 3 (October 1989) introduced new ligature capabilities.
% Version 3.1 (November 1989) renamed z[] to lig_z[] for better portability.
% Version 3.2 (February 2008) added a newline after a warning message.
% Version 3.3 (January 2014) added a space to an error message (Breitenlohner),
% and tests nl>lig_size not 4*lig_size (C. M. Connelly, Melissa O'Neill).
% Here is TeX material that gets inserted after \input webmac
\def\hang{\hangindent 3em\indent\ignorespaces}
\font\ninerm=cmr9
\let\mc=\ninerm % medium caps for names like SAIL
\def\PASCAL{Pascal}
\def\(#1){} % this is used to make section names sort themselves better
\def\9#1{} % this is used for sort keys in the index
\def\title{TF\lowercase{to}PL}
\def\contentspagenumber{201}
\def\topofcontents{\null
\def\titlepage{F} % include headline on the contents page
\def\rheader{\mainfont\hfil \contentspagenumber}
\vfill
\centerline{\titlefont The {\ttitlefont TFtoPL} processor}
\vskip 15pt
\centerline{(Version 3.3, January 2014)}
\vfill}
\def\botofcontents{\vfill
\centerline{\hsize 5in\baselineskip9pt
\vbox{\ninerm\noindent
The preparation of this report
was supported in part by the National Science
Foundation under grants IST-8201926 and MCS-8300984,
and by the System Development Foundation. `\TeX' is a
trademark of the American Mathematical Society.}}}
\pageno=\contentspagenumber \advance\pageno by 1
@* Introduction.
The \.{TFtoPL} utility program converts \TeX\ font metric (``\.{TFM}'')
files into equivalent property-list (``\.{PL}'') files. It also
makes a thorough check of the given \.{TFM} file, using essentially the
same algorithm as \TeX. Thus if \TeX\ complains that a \.{TFM}
file is ``bad,'' this program will pinpoint the source or sources of
badness. A \.{PL} file output by this program can be edited with
a normal text editor, and the result can be converted back to \.{TFM}
format using the companion program \.{PLtoTF}.
The first \.{TFtoPL} program was designed by Leo Guibas in the summer of
1978. Contributions by Frank Liang, Doug Wyatt, and Lyle Ramshaw
also had a significant effect on the evolution of the present code.
Extensions for an enhanced ligature mechanism were added by the author in 1989.
The |banner| string defined here should be changed whenever \.{TFtoPL}
gets modified.
@d banner=='This is TFtoPL, Version 3.3' {printed when the program starts}
@ This program is written entirely in standard \PASCAL, except that
it occasionally has lower case letters in strings that are output.
Such letters can be converted to upper case if necessary. The input is read
from |tfm_file|, and the output is written on |pl_file|; error messages and
other remarks are written on the |output| file, which the user may
choose to assign to the terminal if the system permits it.
@^system dependencies@>
The term |print| is used instead of |write| when this program writes on
the |output| file, so that all such output can be easily deflected.
@d print(#)==write(#)
@d print_ln(#)==write_ln(#)
@p program TFtoPL(@!tfm_file,@!pl_file,@!output);
label @<Labels in the outer block@>@/
const @<Constants in the outer block@>@/
type @<Types in the outer block@>@/
var @<Globals in the outer block@>@/
procedure initialize; {this procedure gets things started properly}
begin print_ln(banner);@/
@<Set initial values@>@/
end;
@ If the program has to stop prematurely, it goes to the
`|final_end|'.
@d final_end=9999 {label for the end of it all}
@<Labels...@>=final_end;
@ The following parameters can be changed at compile time to extend or
reduce \.{TFtoPL}'s capacity.
@<Constants...@>=
@!tfm_size=30000; {maximum length of |tfm| data, in bytes}
@!lig_size=5000; {maximum length of |lig_kern| program, in words}
@!hash_size=5003; {preferably a prime number, a bit larger than the number
of character pairs in lig/kern steps}
@ Here are some macros for common programming idioms.
@d incr(#) == #:=#+1 {increase a variable by unity}
@d decr(#) == #:=#-1 {decrease a variable by unity}
@d do_nothing == {empty statement}
@* Font metric data.
The idea behind \.{TFM} files is that typesetting routines like \TeX\
need a compact way to store the relevant information about several
dozen fonts, and computer centers need a compact way to store the
relevant information about several hundred fonts. \.{TFM} files are
compact, and most of the information they contain is highly relevant,
so they provide a solution to the problem.
The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
Since the number of bytes is always a multiple of 4, we could
also regard the file as a sequence of 32-bit words; but \TeX\ uses the
byte interpretation, and so does \.{TFtoPL}. Note that the bytes
are considered to be unsigned numbers.
@<Glob...@>=
@!tfm_file:packed file of 0..255;
@ On some systems you may have to do something special to read a
packed file of bytes. For example, the following code didn't work
when it was first tried at Stanford, because packed files have to be
opened with a special switch setting on the \PASCAL\ that was used.
@^system dependencies@>
@<Set init...@>=
reset(tfm_file);
@ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
integers that give the lengths of the various subsequent portions
of the file. These twelve integers are, in order:
$$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
|@!lf|&length of the entire file, in words;\cr
|@!lh|&length of the header data, in words;\cr
|@!bc|&smallest character code in the font;\cr
|@!ec|&largest character code in the font;\cr
|@!nw|&number of words in the width table;\cr
|@!nh|&number of words in the height table;\cr
|@!nd|&number of words in the depth table;\cr
|@!ni|&number of words in the italic correction table;\cr
|@!nl|&number of words in the lig/kern table;\cr
|@!nk|&number of words in the kern table;\cr
|@!ne|&number of words in the extensible character table;\cr
|@!np|&number of font parameter words.\cr}}$$
They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
|ne<=256|, and
$$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
and as few as 0 characters (if |bc=ec+1|).
Incidentally, when two or more 8-bit bytes are combined to form an integer of
16 or more bits, the most significant bytes appear first in the file.
This is called BigEndian order.
@<Glob...@>=
@!lf,@!lh,@!bc,@!ec,@!nw,@!nh,@!nd,@!ni,@!nl,@!nk,@!ne,@!np:0..@'77777;
{subfile sizes}
@ The rest of the \.{TFM} file may be regarded as a sequence of ten data
arrays having the informal specification
$$\def\arr$[#1]#2${\&{array} $[#1]$ \&{of} #2}
\vbox{\halign{\hfil\\{#}&$\,:\,$\arr#\hfil\cr
header&|[0..lh-1]stuff|\cr
char\_info&|[bc..ec]char_info_word|\cr
width&|[0..nw-1]fix_word|\cr
height&|[0..nh-1]fix_word|\cr
depth&|[0..nd-1]fix_word|\cr
italic&|[0..ni-1]fix_word|\cr
lig\_kern&|[0..nl-1]lig_kern_command|\cr
kern&|[0..nk-1]fix_word|\cr
exten&|[0..ne-1]extensible_recipe|\cr
param&|[1..np]fix_word|\cr}}$$
The most important data type used here is a |@!fix_word|, which is
a 32-bit representation of a binary fraction. A |fix_word| is a signed
quantity, with the two's complement of the entire word used to represent
negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
the smallest is $-2048$. We will see below, however, that all but one of
the |fix_word| values will lie between $-16$ and $+16$.
@ The first data array is a block of header information, which contains
general facts about the font. The header must contain at least two words,
and for \.{TFM} files to be used with Xerox printing software it must
contain at least 18 words, allocated as described below. When different
kinds of devices need to be interfaced, it may be necessary to add further
words to the header block.
\yskip\hang|header[0]| is a 32-bit check sum that \TeX\ will copy into the
\.{DVI} output file whenever it uses the font. Later on when the \.{DVI}
file is printed, possibly on another computer, the actual font that gets
used is supposed to have a check sum that agrees with the one in the
\.{TFM} file used by \TeX. In this way, users will be warned about
potential incompatibilities. (However, if the check sum is zero in either
the font file or the \.{TFM} file, no check is made.) The actual relation
between this check sum and the rest of the \.{TFM} file is not important;
the check sum is simply an identification number with the property that
incompatible fonts almost always have distinct check sums.
@^check sum@>
\yskip\hang|header[1]| is a |fix_word| containing the design size of the
font, in units of \TeX\ points (7227 \TeX\ points = 254 cm). This number
must be at least 1.0; it is fairly arbitrary, but usually the design size
is 10.0 for a ``10 point'' font, i.e., a font that was designed to look
best at a 10-point size, whatever that really means. When a \TeX\ user
asks for a font `\.{at} $\delta$ \.{pt}', the effect is to override the
design size and replace it by $\delta$, and to multiply the $x$ and~$y$
coordinates of the points in the font image by a factor of $\delta$
divided by the design size. {\sl All other dimensions in the\/\ \.{TFM}
file are |fix_word|\kern-1pt\ numbers in design-size units.} Thus, for example,
the value of |param[6]|, one \.{em} or \.{\\quad}, is often the |fix_word|
value $2^{20}=1.0$, since many fonts have a design size equal to one em.
The other dimensions must be less than 16 design-size units in absolute
value; thus, |header[1]| and |param[1]| are the only |fix_word| entries in
the whole \.{TFM} file whose first byte might be something besides 0 or
255. @^design size@>
\yskip\hang|header[2..11]|, if present, contains 40 bytes that identify
the character coding scheme. The first byte, which must be between 0 and
39, is the number of subsequent ASCII bytes actually relevant in this
string, which is intended to specify what character-code-to-symbol
convention is present in the font. Examples are \.{ASCII} for standard
ASCII, \.{TeX text} for fonts like \.{cmr10} and \.{cmti9}, \.{TeX math
extension} for \.{cmex10}, \.{XEROX text} for Xerox fonts, \.{GRAPHIC} for
special-purpose non-alphabetic fonts, \.{UNSPECIFIED} for the default case
when there is no information. Parentheses should not appear in this name.
(Such a string is said to be in {\mc BCPL} format.)
@^coding scheme@>
\yskip\hang|header[12..16]|, if present, contains 20 bytes that name the
font family (e.g., \.{CMR} or \.{HELVETICA}), in {\mc BCPL} format.
This field is also known as the ``font identifier.''
@^family name@>
@^font identifier@>
\yskip\hang|header[17]|, if present, contains a first byte called the
|seven_bit_safe_flag|, then two bytes that are ignored, and a fourth byte
called the |face|. If the value of the fourth byte is less than 18, it has
the following interpretation as a ``weight, slope, and expansion'': Add 0
or 2 or 4 (for medium or bold or light) to 0 or 1 (for roman or italic) to
0 or 6 or 12 (for regular or condensed or extended). For example, 13 is
0+1+12, so it represents medium italic extended. A three-letter code
(e.g., \.{MIE}) can be used for such |face| data.
\yskip\hang|header[18..@twhatever@>]| might also be present; the individual
words are simply called |header[18]|, |header[19]|, etc., at the moment.
@ Next comes the |char_info| array, which contains one |char_info_word|
per character. Each |char_info_word| contains six fields packed into
four bytes as follows.
\yskip\hang first byte: |width_index| (8 bits)\par
\hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
(4~bits)\par
\hang third byte: |italic_index| (6 bits) times 4, plus |tag|
(2~bits)\par
\hang fourth byte: |remainder| (8 bits)\par
\yskip\noindent
The actual width of a character is |width[width_index]|, in design-size
units; this is a device for compressing information, since many characters
have the same width. Since it is quite common for many characters
to have the same height, depth, or italic correction, the \.{TFM} format
imposes a limit of 16 different heights, 16 different depths, and
64 different italic corrections.
Incidentally, the relation |width[0]=height[0]=depth[0]=italic[0]=0|
should always hold, so that an index of zero implies a value of zero.
The |width_index| should never be zero unless the character does
not exist in the font, since a character is valid if and only if it lies
between |bc| and |ec| and has a nonzero |width_index|.
@ The |tag| field in a |char_info_word| has four values that explain how to
interpret the |remainder| field.
\yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
\hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
program starting at |lig_kern[remainder]|.\par
\hang|tag=2| (|list_tag|) means that this character is part of a chain of
characters of ascending sizes, and not the largest in the chain. The
|remainder| field gives the character code of the next larger character.\par
\hang|tag=3| (|ext_tag|) means that this character code represents an
extensible character, i.e., a character that is built up of smaller pieces
so that it can be made arbitrarily large. The pieces are specified in
|exten[remainder]|.\par
@d no_tag=0 {vanilla character}
@d lig_tag=1 {character has a ligature/kerning program}
@d list_tag=2 {character has a successor in a charlist}
@d ext_tag=3 {character is extensible}
@ The |lig_kern| array contains instructions in a simple programming language
that explains what to do for special letter pairs. Each word is a
|lig_kern_command| of four bytes.
\yskip\hang first byte: |skip_byte|, indicates that this is the final program
step if the byte is 128 or more, otherwise the next step is obtained by
skipping this number of intervening steps.\par
\hang second byte: |next_char|, ``if |next_char| follows the current character,
then perform the operation and stop, otherwise continue.''\par
\hang third byte: |op_byte|, indicates a ligature step if less than~128,
a kern step otherwise.\par
\hang fourth byte: |remainder|.\par
\yskip\noindent
In a kern step, an
additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
between the current character and |next_char|. This amount is
often negative, so that the characters are brought closer together
by kerning; but it might be positive.
There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
$0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
|remainder| is inserted between the current character and |next_char|;
then the current character is deleted if $b=0$, and |next_char| is
deleted if $c=0$; then we pass over $a$~characters to reach the next
current character (which may have a ligature/kerning program of its own).
Notice that if $a=0$ and $b=1$, the current character is unchanged; if
$a=b$ and $c=1$, the current character is changed but the next character is
unchanged. \.{TFtoPL} will check to see that infinite loops are avoided.
If the very first instruction of the |lig_kern| array has |skip_byte=255|,
the |next_char| byte is the so-called right boundary character of this font;
the value of |next_char| need not lie between |bc| and~|ec|.
If the very last instruction of the |lig_kern| array has |skip_byte=255|,
there is a special ligature/kerning program for a left boundary character,
beginning at location |256*op_byte+remainder|.
The interpretation is that \TeX\ puts implicit boundary characters
before and after each consecutive string of characters from the same font.
These implicit characters do not appear in the output, but they can affect
ligatures and kerning.
If the very first instruction of a character's |lig_kern| program has
|skip_byte>128|, the program actually begins in location
|256*op_byte+remainder|. This feature allows access to large |lig_kern|
arrays, because the first instruction must otherwise
appear in a location |<=255|.
Any instruction with |skip_byte>128| in the |lig_kern| array must have
|256*op_byte+remainder<nl|. If such an instruction is encountered during
normal program execution, it denotes an unconditional halt; no ligature
command is performed.
@d stop_flag=128 {value indicating `\.{STOP}' in a lig/kern program}
@d kern_flag=128 {op code for a kern step}
@ Extensible characters are specified by an |extensible_recipe|,
which consists of four bytes called |top|, |mid|,
|bot|, and |rep| (in this order). These bytes are the character codes
of individual pieces used to build up a large symbol.
If |top|, |mid|, or |bot| are zero,
they are not present in the built-up result. For example, an extensible
vertical line is like an extensible bracket, except that the top and
bottom pieces are missing.
@ The final portion of a \.{TFM} file is the |param| array, which is another
sequence of |fix_word| values.
\yskip\hang|param[1]=@!slant| is the amount of italic slant, which is used
to help position accents. For example, |slant=.25| means that when you go
up one unit, you also go .25 units to the right. The |slant| is a pure
number; it's the only |fix_word| other than the design size itself that is
not scaled by the design size.
\hang|param[2]=space| is the normal spacing between words in text.
Note that character |" "| in the font need not have anything to do with
blank spaces.
\hang|param[3]=space_stretch| is the amount of glue stretching between words.
\hang|param[4]=space_shrink| is the amount of glue shrinking between words.
\hang|param[5]=x_height| is the height of letters for which accents don't
have to be raised or lowered.
\hang|param[6]=quad| is the size of one em in the font.
\hang|param[7]=extra_space| is the amount added to |param[2]| at the
ends of sentences.
When the character coding scheme is \.{TeX math symbols}, the font is
supposed to have 15 additional parameters called |num1|, |num2|, |num3|,
|denom1|, |denom2|, |sup1|, |sup2|, |sup3|, |sub1|, |sub2|, |supdrop|,
|subdrop|, |delim1|, |delim2|, and |axis_height|, respectively. When the
character coding scheme is \.{TeX math extension}, the font is supposed to
have six additional parameters called |default_rule_thickness| and
|big_op_spacing1| through |big_op_spacing5|.
@ So that is what \.{TFM} files hold. The next question is, ``What about
\.{PL} files?'' A complete answer to that question appears in the
documentation of the companion program, \.{PLtoTF}, so it will not
be repeated here. Suffice it to say that a \.{PL} file is an ordinary
\PASCAL\ text file, and that the output of \.{TFtoPL} uses only a
subset of the possible constructions that might appear in a \.{PL} file.
Furthermore, hardly anybody really wants to look at the formal
definition of \.{PL} format, because it is almost self-explanatory when
you see an example or two.
@<Glob...@>=
@!pl_file:text;
@ @<Set init...@>=
rewrite(pl_file);
@* Unpacked representation.
The first thing \.{TFtoPL} does is read the entire |tfm_file| into an array of
bytes, |tfm[0..(4*lf-1)]|.
@<Types...@>=
@!byte=0..255; {unsigned eight-bit quantity}
@!index=0..tfm_size; {address of a byte in |tfm|}
@ @<Glob...@>=
@!tfm:array [-1000..tfm_size] of byte; {the input data all goes here}
{the negative addresses avoid range checks for invalid characters}
@ The input may, of course, be all screwed up and not a \.{TFM} file
at all. So we begin cautiously.
@d abort(#)==begin print_ln(#);
print_ln('Sorry, but I can''t go on; are you sure this is a TFM?');
goto final_end;
end
@<Read the whole input file@>=
read(tfm_file,tfm[0]);
if tfm[0]>127 then abort('The first byte of the input file exceeds 127!');
@.The first byte...@>
if eof(tfm_file) then abort('The input file is only one byte long!');
@.The input...one byte long@>
read(tfm_file,tfm[1]); lf:=tfm[0]*@'400+tfm[1];
if lf=0 then
abort('The file claims to have length zero, but that''s impossible!');
@.The file claims...@>
if 4*lf-1>tfm_size then abort('The file is bigger than I can handle!');
@.The file is bigger...@>
for tfm_ptr:=2 to 4*lf-1 do
begin if eof(tfm_file) then
abort('The file has fewer bytes than it claims!');
@.The file has fewer bytes...@>
read(tfm_file,tfm[tfm_ptr]);
end;
if not eof(tfm_file) then
begin print_ln('There''s some extra junk at the end of the TFM file,');
@.There's some extra junk...@>
print_ln('but I''ll proceed as if it weren''t there.');
end
@ After the file has been read successfully, we look at the subfile sizes
to see if they check out.
@d eval_two_bytes(#)==begin if tfm[tfm_ptr]>127 then
abort('One of the subfile sizes is negative!');
@.One of the subfile sizes...@>
#:=tfm[tfm_ptr]*@'400+tfm[tfm_ptr+1];
tfm_ptr:=tfm_ptr+2;
end
@<Set subfile sizes |lh|, |bc|, \dots, |np|@>=
begin tfm_ptr:=2;@/
eval_two_bytes(lh);
eval_two_bytes(bc);
eval_two_bytes(ec);
eval_two_bytes(nw);
eval_two_bytes(nh);
eval_two_bytes(nd);
eval_two_bytes(ni);
eval_two_bytes(nl);
eval_two_bytes(nk);
eval_two_bytes(ne);
eval_two_bytes(np);
if lh<2 then abort('The header length is only ',lh:1,'!');
@.The header length...@>
if nl>lig_size then
abort('The lig/kern program is longer than I can handle!');
@.The lig/kern program...@>
if (bc>ec+1)or(ec>255) then abort('The character code range ',
@.The character code range...@>
bc:1,'..',ec:1,' is illegal!');
if (nw=0)or(nh=0)or(nd=0)or(ni=0) then
abort('Incomplete subfiles for character dimensions!');
@.Incomplete subfiles...@>
if ne>256 then abort('There are ',ne:1,' extensible recipes!');
@.There are ... recipes@>
if lf<>6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np then
abort('Subfile sizes don''t add up to the stated total!');
@.Subfile sizes don't add up...@>
end
@ Once the input data successfully passes these basic checks,
\.{TFtoPL} believes that it is a \.{TFM} file, and the conversion
to \.{PL} format will take place. Access to the various subfiles
is facilitated by computing the following base addresses. For example,
the |char_info| for character |c| will start in location
|4*(char_base+c)| of the |tfm| array.
@<Globals...@>=
@!char_base,@!width_base,@!height_base,@!depth_base,@!italic_base,
@!lig_kern_base,@!kern_base,@!exten_base,@!param_base:integer;
{base addresses for the subfiles}
@ @<Compute the base addresses@>=
begin char_base:=6+lh-bc;
width_base:=char_base+ec+1;
height_base:=width_base+nw;
depth_base:=height_base+nh;
italic_base:=depth_base+nd;
lig_kern_base:=italic_base+ni;
kern_base:=lig_kern_base+nl;
exten_base:=kern_base+nk;
param_base:=exten_base+ne-1;
end
@ Of course we want to define macros that suppress the detail of how the
font information is actually encoded. Each word will be referred to by
the |tfm| index of its first byte. For example, if |c| is a character
code between |bc| and |ec|, then |tfm[char_info(c)]| will be the
first byte of its |char_info|, i.e., the |width_index|; furthermore
|width(c)| will point to the |fix_word| for |c|'s width.
@d check_sum=24
@d design_size=check_sum+4
@d scheme=design_size+4
@d family=scheme+40
@d random_word=family+20
@d char_info(#)==4*(char_base+#)
@d width_index(#)==tfm[char_info(#)]
@d nonexistent(#)==((#<bc)or(#>ec)or(width_index(#)=0))
@d height_index(#)==(tfm[char_info(#)+1] div 16)
@d depth_index(#)==(tfm[char_info(#)+1] mod 16)
@d italic_index(#)==(tfm[char_info(#)+2] div 4)
@d tag(#)==(tfm[char_info(#)+2] mod 4)
@d reset_tag(#)==tfm[char_info(#)+2]:=4*italic_index(#)+no_tag
@d remainder(#)==tfm[char_info(#)+3]
@d width(#)==4*(width_base+width_index(#))
@d height(#)==4*(height_base+height_index(#))
@d depth(#)==4*(depth_base+depth_index(#))
@d italic(#)==4*(italic_base+italic_index(#))
@d exten(#)==4*(exten_base+remainder(#))
@d lig_step(#)==4*(lig_kern_base+(#))
@d kern(#)==4*(kern_base+#) {here \#\ is an index, not a character}
@d param(#)==4*(param_base+#) {likewise}
@ One of the things we would like to do is take cognizance of fonts whose
character coding scheme is \.{TeX math symbols} or \.{TeX math extension};
we will set the |font_type| variable to one of the three choices
|vanilla|, |mathsy|, or |mathex|.
@d vanilla=0 {not a special scheme}
@d mathsy=1 {\.{TeX math symbols} scheme}
@d mathex=2 {\.{TeX math extension} scheme}
@<Glob...@>=
@!font_type:vanilla..mathex; {is this font special?}
@* Basic output subroutines.
Let us now define some procedures that will reduce the rest of \.{TFtoPL}'s
work to a triviality.
First of all, it is convenient to have an abbreviation for output to the
\.{PL} file:
@d out(#)==write(pl_file,#)
@ In order to stick to standard \PASCAL, we use three strings called
|ASCII_04|, |ASCII_10|, and |ASCII_14|, in terms of which we can do the
appropriate conversion of ASCII codes. Three other little strings are
used to produce |face| codes like \.{MIE}.
@<Glob...@>=
@!ASCII_04,@!ASCII_10,@!ASCII_14: packed array [1..32] of char;
{strings for output in the user's external character set}
@!MBL_string,@!RI_string,@!RCE_string:packed array [1..3] of char;
{handy string constants for |face| codes}
@ @<Set init...@>=
ASCII_04:=' !"#$%&''()*+,-./0123456789:;<=>?';@/
ASCII_10:='@@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_';@/
ASCII_14:='`abcdefghijklmnopqrstuvwxyz{|}~ ';@/
MBL_string:='MBL'; RI_string:='RI '; RCE_string:='RCE';
@ The array |dig| will hold a sequence of digits to be output.
@<Glob...@>=
@!dig:array[0..11] of 0..9;
@ Here, in fact, are two procedures that output |dig[j-1]|$\,\ldots\,$|dig[0]|,
given $j>0$.
@p procedure out_digs(j:integer); {outputs |j| digits}
begin repeat decr(j); out(dig[j]:1);
until j=0;
end;
@#
procedure print_digs(j:integer); {prints |j| digits}
begin repeat decr(j); print(dig[j]:1);
until j=0;
end;
@ The |print_octal| procedure indicates how |print_digs| can be used.
Since this procedure is used only to print character codes, it always
produces three digits.
@p procedure print_octal(c:byte); {prints octal value of |c|}
var j:0..2; {index into |dig|}
begin print(''''); {an apostrophe indicates the octal notation}
for j:=0 to 2 do
begin dig[j]:=c mod 8; c:=c div 8;
end;
print_digs(3);
end;
@ A \.{PL} file has nested parentheses, and we want to format the output
so that its structure is clear. The |level| variable keeps track of the
depth of nesting.
@<Glob...@>=
@!level:0..5;
@ @<Set init...@>=
level:=0;
@ Three simple procedures suffice to produce the desired structure in the
output.
@p procedure out_ln; {finishes one line, indents the next}
var l:0..5;
begin write_ln(pl_file);
for l:=1 to level do out(' ');
end;
@#
procedure left; {outputs a left parenthesis}
begin incr(level); out('(');
end;
@#
procedure right; {outputs a right parenthesis and finishes a line}
begin decr(level); out(')'); out_ln;
end;
@ The value associated with a property can be output in a variety of
ways. For example, we might want to output a {\mc BCPL} string that
begins in |tfm[k]|:
@p procedure out_BCPL(@!k:index); {outputs a string, preceded by a blank space}
var l:0..39; {the number of bytes remaining}
begin out(' '); l:=tfm[k];
while l>0 do
begin incr(k); decr(l);
case tfm[k] div @'40 of
1: out(ASCII_04[1+(tfm[k] mod @'40)]);
2: out(ASCII_10[1+(tfm[k] mod @'40)]);
3: out(ASCII_14[1+(tfm[k] mod @'40)]);
end;
end;
end;
@ The property value might also be a sequence of |l| bytes, beginning
in |tfm[k]|, that we would like to output in octal notation.
The following procedure assumes that |l<=4|, but larger values of |l|
could be handled easily by enlarging the |dig| array and increasing
the upper bounds on |b| and |j|.
@p procedure out_octal(@!k,@!l:index); {outputs |l| bytes in octal}
var a:0..@'1777; {accumulator for bits not yet output}
@!b:0..32; {the number of significant bits in |a|}
@!j:0..11; {the number of digits of output}
begin out(' O '); {specify octal format}
a:=0; b:=0; j:=0;
while l>0 do @<Reduce \(1)|l| by one, preserving the invariants@>;
while (a>0)or(j=0) do
begin dig[j]:=a mod 8; a:=a div 8; incr(j);
end;
out_digs(j);
end;
@ @<Reduce \(1)|l|...@>=
begin decr(l);
if tfm[k+l]<>0 then
begin while b>2 do
begin dig[j]:=a mod 8; a:=a div 8; b:=b-3; incr(j);
end;
case b of
0: a:=tfm[k+l];
1:a:=a+2*tfm[k+l];
2:a:=a+4*tfm[k+l];
end;
end;
b:=b+8;
end
@ The property value may be a character, which is output in octal
unless it is a letter or a digit. This procedure is the only place
where a lowercase letter will be output to the \.{PL} file.
@^system dependencies@>
@p procedure out_char(@!c:byte); {outputs a character}
begin if font_type>vanilla then
begin tfm[0]:=c; out_octal(0,1)
end
else if (c>="0")and(c<="9") then
out(' C ',c-"0":1)
else if (c>="A")and(c<="Z") then
out(' C ',ASCII_10[c-"A"+2])
else if (c>="a")and(c<="z") then
out(' C ',ASCII_14[c-"a"+2])
else begin tfm[0]:=c; out_octal(0,1);
end;
end;
@ The property value might be a ``face'' byte, which is output in the
curious code mentioned earlier, provided that it is less than 18.
@p procedure out_face(@!k:index); {outputs a |face|}
var s:0..1; {the slope}
@!b:0..8; {the weight and expansion}
begin if tfm[k]>=18 then out_octal(k,1)
else begin out(' F '); {specify face-code format}
s:=tfm[k] mod 2; b:=tfm[k] div 2;
out(MBL_string[1+(b mod 3)]);
out(RI_string[1+s]);
out(RCE_string[1+(b div 3)]);
end;
end;
@ And finally, the value might be a |fix_word|, which is output in
decimal notation with just enough decimal places for \.{PLtoTF}
to recover every bit of the given |fix_word|.
All of the numbers involved in the intermediate calculations of
this procedure will be nonnegative and less than $10\cdot2^{24}$.
@p procedure out_fix(@!k:index); {outputs a |fix_word|}
var a:0..@'7777; {accumulator for the integer part}
@!f:integer; {accumulator for the fraction part}
@!j:0..12; {index into |dig|}
@!delta:integer; {amount if allowable inaccuracy}
begin out(' R '); {specify real format}
a:=(tfm[k]*16)+(tfm[k+1] div 16);
f:=((tfm[k+1] mod 16)*@'400+tfm[k+2])*@'400+tfm[k+3];
if a>@'3777 then @<Reduce \(2)negative to positive@>;
@<Output the integer part, |a|, in decimal notation@>;
@<Output the fraction part, $|f|/2^{20}$, in decimal notation@>;
end;
@ The following code outputs at least one digit even if |a=0|.
@<Output the integer...@>=
begin j:=0;
repeat dig[j]:=a mod 10; a:=a div 10; incr(j);
until a=0;
out_digs(j);
end
@ And the following code outputs at least one digit to the right
of the decimal point.
@<Output the fraction...@>=
begin out('.'); f:=10*f+5; delta:=10;
repeat if delta>@'4000000 then f:=f+@'2000000-(delta div 2);
out(f div @'4000000:1); f:=10*(f mod @'4000000); delta:=delta*10;
until f<=delta;
end;
@ @<Reduce \(2)negative to positive@>=
begin out('-'); a:=@'10000-a;
if f>0 then
begin f:=@'4000000-f; decr(a);
end;
end
@* Doing it.
\TeX\ checks the information of a \.{TFM} file for validity as the
file is being read in, so that no further checks will be needed when
typesetting is going on. And when it finds something wrong, it justs
calls the file ``bad,'' without identifying the nature of the problem,
since \.{TFM} files are supposed to be good almost all of the time.
Of course, a bad file shows up every now and again, and that's where
\.{TFtoPL} comes in. This program wants to catch at least as many errors as
\TeX\ does, and to give informative error messages besides.
All of the errors are corrected, so that the \.{PL} output will
be correct (unless, of course, the \.{TFM} file was so loused up
that no attempt is being made to fathom it).
@ Just before each character is processed, its code is printed in octal
notation. Up to eight such codes appear on a line; so we have a variable
to keep track of how many are currently there. We also keep track of
whether or not any errors have had to be corrected.
@<Glob...@>=
@!chars_on_line:0..8; {the number of characters printed on the current line}
@!perfect:boolean; {was the file free of errors?}
@ @<Set init...@>=
chars_on_line:=0;@/
perfect:=true; {innocent until proved guilty}
@ Error messages are given with the help of the |bad| and |range_error|
and |bad_char| macros:
@d bad(#)==begin perfect:=false; if chars_on_line>0 then print_ln(' ');
chars_on_line:=0; print_ln('Bad TFM file: ',#);
end
@.Bad TFM file@>
@d range_error(#)==begin perfect:=false; print_ln(' ');
print(#,' index for character ');
print_octal(c); print_ln(' is too large;');
print_ln('so I reset it to zero.');
end
@d bad_char_tail(#)==print_octal(#); print_ln('.');
end
@d bad_char(#)==begin perfect:=false; if chars_on_line>0 then print_ln(' ');
chars_on_line:=0; print('Bad TFM file: ',#,' nonexistent character ');
bad_char_tail
@d correct_bad_char_tail(#)==print_octal(tfm[#]); print_ln('.'); tfm[#]:=bc;
end
@d correct_bad_char(#)== begin perfect:=false;
if chars_on_line>0 then print_ln(' ');
chars_on_line:=0; print('Bad TFM file: ',#,' nonexistent character ');
correct_bad_char_tail
@<Glob...@>=
@!i:0..@'77777; {an index to words of a subfile}
@!c:0..256; {a random character}
@!d:0..3; {byte number in a word}
@!k:index; {a random index}
@!r:0..65535; {a random two-byte value}
@!count:0..127; {for when we need to enumerate a small set}
@ There are a lot of simple things to do, and they have to be done one
at a time, so we might as well get down to business. The first things
that \.{TFtoPL} will put into the \.{PL} file appear in the header part.
@<Do the header@>=
begin font_type:=vanilla;
if lh>=12 then
begin @<Set the true |font_type|@>;
if lh>=17 then
begin @<Output the family name@>;
if lh>=18 then @<Output the rest of the header@>;
end;
@<Output the character coding scheme@>;
end;
@<Output the design size@>;
@<Output the check sum@>;
@<Output the |seven_bit_safe_flag|@>;
end
@ @<Output the check sum@>=
left; out('CHECKSUM'); out_octal(check_sum,4);
right
@ Incorrect design sizes are changed to 10 points.
@d bad_design(#)==begin bad('Design size ',#,'!');
@.Design size wrong@>
print_ln('I''ve set it to 10 points.');
out(' D 10');
end
@ @<Output the design size@>=
left; out('DESIGNSIZE');
if tfm[design_size]>127 then bad_design('negative')
else if (tfm[design_size]=0)and(tfm[design_size+1]<16) then
bad_design('too small')
else out_fix(design_size);
right;
out('(COMMENT DESIGNSIZE IS IN POINTS)'); out_ln;
out('(COMMENT OTHER SIZES ARE MULTIPLES OF DESIGNSIZE)'); out_ln
@.DESIGNSIZE IS IN POINTS@>
@ Since we have to check two different {\mc BCPL} strings for validity,
we might as well write a subroutine to make the check.
@p procedure check_BCPL(@!k,@!l:index); {checks a string of length |<l|}
var j:index; {runs through the string}
@!c:byte; {character being checked}
begin if tfm[k]>=l then
begin bad('String is too long; I''ve shortened it drastically.');
@.String is too long...@>
tfm[k]:=1;
end;
for j:=k+1 to k+tfm[k] do
begin c:=tfm[j];
if (c="(")or(c=")") then
begin bad('Parenthesis in string has been changed to slash.');
@.Parenthesis...changed to slash@>
tfm[j]:="/";
end
else if (c<" ")or(c>"~") then
begin bad('Nonstandard ASCII code has been blotted out.');
@.Nonstandard ASCII code...@>
tfm[j]:="?";
end
else if (c>="a")and(c<="z") then tfm[j]:=c+"A"-"a"; {upper-casify letters}
end;
end;
@ The |font_type| starts out |vanilla|; possibly we need to reset it.
@<Set the true |font_type|@>=
begin check_BCPL(scheme,40);
if (tfm[scheme]>=11)and@|(tfm[scheme+1]="T")and@|
(tfm[scheme+2]="E")and@|(tfm[scheme+3]="X")and@|
(tfm[scheme+4]=" ")and@|(tfm[scheme+5]="M")and@|
(tfm[scheme+6]="A")and@|(tfm[scheme+7]="T")and@|
(tfm[scheme+8]="H")and@|(tfm[scheme+9]=" ") then
begin if (tfm[scheme+10]="S")and(tfm[scheme+11]="Y") then font_type:=mathsy
else if (tfm[scheme+10]="E")and(tfm[scheme+11]="X") then font_type:=mathex;
end;
end
@ @<Output the character coding scheme@>=
left; out('CODINGSCHEME');
out_BCPL(scheme);
right
@ @<Output the family name@>=
left; out('FAMILY');
check_BCPL(family,20);
out_BCPL(family);
right
@ @<Output the rest of the header@>=
begin left; out('FACE'); out_face(random_word+3); right;
for i:=18 to lh-1 do
begin left; out('HEADER D ',i:1);
out_octal(check_sum+4*i,@,4); right;
end;
end
@ This program does not check to see if the |seven_bit_safe_flag| has the
correct setting, i.e., if it really reflects the seven-bit-safety of
the \.{TFM} file; the stated value is merely put into the \.{PL} file.
The \.{PLtoTF} program will store a correct value and give a warning
message if a file falsely claims to be safe.
@<Output the |seven_bit_safe_flag|@>=
if (lh>17) and (tfm[random_word]>127) then
begin left; out('SEVENBITSAFEFLAG TRUE'); right;
end
@ The next thing to take care of is the list of parameters.
@<Do the parameters@>=
if np>0 then
begin left; out('FONTDIMEN'); out_ln;
for i:=1 to np do @<Check and output the $i$th parameter@>;
right;
end;
@<Check to see if |np| is complete for this font type@>;
@ @<Check to see if |np|...@>=
if (font_type=mathsy)and(np<>22) then
print_ln('Unusual number of fontdimen parameters for a math symbols font (',
@.Unusual number of fontdimen...@>
np:1,' not 22).')
else if (font_type=mathex)and(np<>13) then
print_ln('Unusual number of fontdimen parameters for an extension font (',
np:1,' not 13).')
@ All |fix_word| values except the design size and the first parameter
will be checked to make sure that they are less than 16.0 in magnitude,
using the |check_fix| macro:
@d check_fix_tail(#)==bad(#,' ',i:1,' is too big;');
print_ln('I have set it to zero.');
end
@d check_fix(#)==if (tfm[#]>0)and(tfm[#]<255) then
begin tfm[#]:=0; tfm[(#)+1]:=0; tfm[(#)+2]:=0; tfm[(#)+3]:=0;
check_fix_tail
@<Check and output the $i$th parameter@>=
begin left;
if i=1 then out('SLANT') {this parameter is not checked}
else begin check_fix(param(i))('Parameter');@/
@.Parameter n is too big@>
@<Output the name of parameter $i$@>;
end;
out_fix(param(i)); right;
end
@ @<Output the name...@>=
if i<=7 then case i of
2:out('SPACE');@+3:out('STRETCH');@+4:out('SHRINK');
5:out('XHEIGHT');@+6:out('QUAD');@+7:out('EXTRASPACE')@+end
else if (i<=22)and(font_type=mathsy) then case i of
8:out('NUM1');@+9:out('NUM2');@+10:out('NUM3');
11:out('DENOM1');@+12:out('DENOM2');
13:out('SUP1');@+14:out('SUP2');@+15:out('SUP3');
16:out('SUB1');@+17:out('SUB2');
18:out('SUPDROP');@+19:out('SUBDROP');
20:out('DELIM1');@+21:out('DELIM2');
22:out('AXISHEIGHT')@+end
else if (i<=13)and(font_type=mathex) then
if i=8 then out('DEFAULTRULETHICKNESS')
else out('BIGOPSPACING',i-8:1)
else out('PARAMETER D ',i:1)
@ We need to check the range of all the remaining |fix_word| values,
and to make sure that |width[0]=0|, etc.
@d nonzero_fix(#)==(tfm[#]>0)or(tfm[#+1]>0)or(tfm[#+2]>0)or(tfm[#+3]>0)
@<Check the |fix_word| entries@>=
if nonzero_fix(4*width_base) then bad('width[0] should be zero.');
@.should be zero@>
if nonzero_fix(4*height_base) then bad('height[0] should be zero.');
if nonzero_fix(4*depth_base) then bad('depth[0] should be zero.');
if nonzero_fix(4*italic_base) then bad('italic[0] should be zero.');
for i:=0 to nw-1 do check_fix(4*(width_base+i))('Width');
@.Width n is too big@>
for i:=0 to nh-1 do check_fix(4*(height_base+i))('Height');
@.Height n is too big@>
for i:=0 to nd-1 do check_fix(4*(depth_base+i))('Depth');
@.Depth n is too big@>
for i:=0 to ni-1 do check_fix(4*(italic_base+i))('Italic correction');
@.Italic correction n is too big@>
if nk>0 then for i:=0 to nk-1 do check_fix(kern(i))('Kern');
@.Kern n is too big@>
@ The ligature/kerning program comes next. Before we can put it out in
\.{PL} format, we need to make a table of ``labels'' that will be inserted
into the program. For each character |c| whose |tag| is |lig_tag| and
whose starting address is |r|, we will store the pair |(c,r)| in the
|label_table| array. If there's a boundary-char program starting at~|r|,
we also store the pair |(256,r)|.
This array is sorted by its second components, using the
simple method of straight insertion.
@<Glob...@>=
@!label_table:array[0..258] of record@t@>@/@!cc:0..256;@!rr:0..lig_size;end;
@!label_ptr: 0..257; {the largest entry in |label_table|}
@!sort_ptr:0..257; {index into |label_table|}
@!boundary_char:0..256; {boundary character, or 256 if none}
@!bchar_label:0..@'77777; {beginning of boundary character program}
@ @<Set init...@>=
boundary_char:=256; bchar_label:=@'77777;@/
label_ptr:=0; label_table[0].rr:=0; {a sentinel appears at the bottom}
@ We'll also identify and remove inaccessible program steps, using the
|activity| array.
@d unreachable=0 {a program step not known to be reachable}
@d pass_through=1 {a program step passed through on initialization}
@d accessible=2 {a program step that can be relevant}
@<Glob...@>=
@!activity:array[0..lig_size] of unreachable..accessible;
@!ai,@!acti:0..lig_size; {indices into |activity|}
@ @<Do the ligatures and kerns@>=
if nl>0 then
begin for ai:=0 to nl-1 do activity[ai]:=unreachable;
@<Check for a boundary char@>;
end;
@<Build the label table@>;
if nl>0 then
begin left; out('LIGTABLE'); out_ln;@/
@<Compute the |activity| array@>;
@<Output and correct the ligature/kern program@>;
right;
@<Check for ligature cycles@>;
end
@ We build the label table even when |nl=0|, because this catches errors
that would not otherwise be detected.
@<Build...@>=
for c:=bc to ec do if tag(c)=lig_tag then
begin r:=remainder(c);
if r<nl then
begin if tfm[lig_step(r)]>stop_flag then
begin r:=256*tfm[lig_step(r)+2]+tfm[lig_step(r)+3];
if r<nl then if activity[remainder(c)]=unreachable then
activity[remainder(c)]:=pass_through;
end;
end;
if r>=nl then
begin perfect:=false; print_ln(' ');
print('Ligature/kern starting index for character '); print_octal(c);
print_ln(' is too large;'); print_ln('so I removed it.'); reset_tag(c);
@.Ligature/kern starting index...@>
end
else @<Insert |(c,r)| into |label_table|@>;
end;
label_table[label_ptr+1].rr:=lig_size; {put ``infinite'' sentinel at the end}
@ @<Insert |(c,r)|...@>=
begin sort_ptr:=label_ptr; {there's a hole at position |sort_ptr+1|}
while label_table[sort_ptr].rr>r do
begin label_table[sort_ptr+1]:=label_table[sort_ptr];
decr(sort_ptr); {move the hole}
end;
label_table[sort_ptr+1].cc:=c;
label_table[sort_ptr+1].rr:=r; {fill the hole}
incr(label_ptr); activity[r]:=accessible;
end
@ @<Check for a bound...@>=
if tfm[lig_step(0)]=255 then
begin left; out('BOUNDARYCHAR');
boundary_char:=tfm[lig_step(0)+1]; out_char(boundary_char); right;
activity[0]:=pass_through;
end;
if tfm[lig_step(nl-1)]=255 then
begin r:=256*tfm[lig_step(nl-1)+2]+tfm[lig_step(nl-1)+3];
if r>=nl then
begin perfect:=false; print_ln(' ');
print('Ligature/kern starting index for boundarychar is too large;');
print_ln('so I removed it.');
@.Ligature/kern starting index...@>
end
else begin label_ptr:=1; label_table[1].cc:=256; label_table[1].rr:=r;
bchar_label:=r; activity[r]:=accessible;
end;
activity[nl-1]:=pass_through;
end
@ @<Compute the |activity| array@>=
for ai:=0 to nl-1 do if activity[ai]=accessible then
begin r:=tfm[lig_step(ai)];
if r<stop_flag then
begin r:=r+ai+1;
if r>=nl then
begin bad('Ligature/kern step ',ai:1,' skips too far;');
@.Lig...skips too far@>
print_ln('I made it stop.'); tfm[lig_step(ai)]:=stop_flag;
end
else activity[r]:=accessible;
end;
end
@ We ignore |pass_through| items, which don't need to be mentioned in
the \.{PL} file.
@<Output and correct the ligature...@>=
sort_ptr:=1; {point to the next label that will be needed}
for acti:=0 to nl-1 do if activity[acti]<>pass_through then
begin i:=acti; @<Take care of commenting out unreachable steps@>;
@<Output any labels for step $i$@>;
@<Output step $i$ of the ligature/kern program@>;
end;
if level=2 then right {the final step was unreachable}
@ @<Output any labels...@>=
while i=label_table[sort_ptr].rr do
begin left; out('LABEL');
if label_table[sort_ptr].cc=256 then out(' BOUNDARYCHAR')
else out_char(label_table[sort_ptr].cc);
right; incr(sort_ptr);
end
@ @<Take care of commenting out...@>=
if activity[i]=unreachable then
begin if level=1 then
begin left; out('COMMENT THIS PART OF THE PROGRAM IS NEVER USED!'); out_ln;
end
end
else if level=2 then right
@ @<Output step $i$...@>=
begin k:=lig_step(i);
if tfm[k]>stop_flag then
begin if 256*tfm[k+2]+tfm[k+3]>=nl then
bad('Ligature unconditional stop command address is too big.');
@.Ligature unconditional stop...@>
end
else if tfm[k+2]>=kern_flag then @<Output a kern step@>
else @<Output a ligature step@>;
if tfm[k]>0 then
if level=1 then @<Output either \.{SKIP} or \.{STOP}@>;
end
@ The \.{SKIP} command is a bit tricky, because we will be omitting all
inaccessible commands.
@<Output either...@>=
begin if tfm[k]>=stop_flag then out('(STOP)')
else begin count:=0;
for ai:=i+1 to i+tfm[k] do if activity[ai]=accessible then incr(count);
out('(SKIP D ',count:1,')'); {possibly $count=0$, so who cares}
end;
out_ln;
end
@ @<Output a kern step@>=
begin if nonexistent(tfm[k+1]) then if tfm[k+1]<>boundary_char then
correct_bad_char('Kern step for')(k+1);
@.Kern step for nonexistent...@>
left; out('KRN'); out_char(tfm[k+1]);
r:=256*(tfm[k+2]-kern_flag)+tfm[k+3];
if r>=nk then
begin bad('Kern index too large.');
@.Kern index too large@>
out(' R 0.0');
end
else out_fix(kern(r));
right;
end
@ @<Output a ligature step@>=
begin if nonexistent(tfm[k+1]) then if tfm[k+1]<>boundary_char then
correct_bad_char('Ligature step for')(k+1);
@.Ligature step for nonexistent...@>
if nonexistent(tfm[k+3]) then
correct_bad_char('Ligature step produces the')(k+3);
@.Ligature step produces...@>
left; r:=tfm[k+2];
if (r=4)or((r>7)and(r<>11)) then
begin print_ln('Ligature step with nonstandard code changed to LIG');
r:=0; tfm[k+2]:=0;
end;
if r mod 4>1 then out('/');
out('LIG');
if odd(r) then out('/');
while r>3 do
begin out('>'); r:=r-4;
end;
out_char(tfm[k+1]); out_char(tfm[k+3]); right;
end
@ The last thing on \.{TFtoPL}'s agenda is to go through the
list of |char_info| and spew out the information about each individual
character.
@<Do the characters@>=
sort_ptr:=0; {this will suppress `\.{STOP}' lines in ligature comments}
for c:=bc to ec do if width_index(c)>0 then
begin if chars_on_line=8 then
begin print_ln(' '); chars_on_line:=1;
end
else begin if chars_on_line>0 then print(' ');
incr(chars_on_line);
end;
print_octal(c); {progress report}
left; out('CHARACTER'); out_char(c); out_ln;
@<Output the character's width@>;
if height_index(c)>0 then @<Output the character's height@>;
if depth_index(c)>0 then @<Output the character's depth@>;
if italic_index(c)>0 then @<Output the italic correction@>;
case tag(c) of
no_tag: do_nothing;
lig_tag: @<Output the applicable part of the ligature/kern
program as a comment@>;
list_tag: @<Output the character link unless there is a problem@>;
ext_tag: @<Output an extensible character recipe@>;
end; {there are no other cases}
right;
end
@ @<Output the character's width@>=
begin left; out('CHARWD');
if width_index(c)>=nw then range_error('Width')
else out_fix(width(c));
right;
end
@ @<Output the character's height@>=
if height_index(c)>=nh then range_error('Height')
@.Height index for char...@>
else begin left; out('CHARHT'); out_fix(height(c)); right;
end
@ @<Output the character's depth@>=
if depth_index(c)>=nd then range_error('Depth')
@.Depth index for char@>
else begin left; out('CHARDP'); out_fix(depth(c)); right;
end
@ @<Output the italic correction@>=
if italic_index(c)>=ni then range_error('Italic correction')
@.Italic correction index for char...@>
else begin left; out('CHARIC'); out_fix(italic(c)); right;
end
@ @<Output the applicable part of the ligature...@>=
begin left; out('COMMENT'); out_ln;@/
i:=remainder(c); r:=lig_step(i);
if tfm[r]>stop_flag then i:=256*tfm[r+2]+tfm[r+3];
repeat @<Output step...@>;
if tfm[k]>=stop_flag then i:=nl
else i:=i+1+tfm[k];
until i>=nl;
right;
end
@ We want to make sure that there is no cycle of characters linked together
by |list_tag| entries, since \TeX\ doesn't want to risk endless loops.
If such a cycle exists, the routine here detects it when processing
the largest character code in the cycle.
@<Output the character link unless there is a problem@>=
begin r:=remainder(c);
if nonexistent(r) then
begin bad_char('Character list link to')(r); reset_tag(c);
@.Character list link...@>
end
else begin while (r<c)and(tag(r)=list_tag) do r:=remainder(r);
if r=c then
begin bad('Cycle in a character list!');
@.Cycle in a character list@>
print('Character '); print_octal(c);
print_ln(' now ends the list.');
reset_tag(c);
end
else begin left; out('NEXTLARGER'); out_char(remainder(c));
right;
end;
end;
end
@ @<Output an extensible character recipe@>=
if remainder(c)>=ne then
begin range_error('Extensible'); reset_tag(c);
@.Extensible index for char@>
end
else begin left; out('VARCHAR'); out_ln;
@<Output the extensible pieces that exist@>;
right;
end
@ @<Output the extensible pieces that...@>=
for k:=0 to 3 do if (k=3)or(tfm[exten(c)+k]>0) then
begin left;
case k of
0:out('TOP');@+1:out('MID');@+2:out('BOT');@+3:out('REP')@+end;
if nonexistent(tfm[exten(c)+k]) then out_char(c)
else out_char(tfm[exten(c)+k]);
right;
end
@ Some of the extensible recipes may not actually be used, but \TeX\ will
complain about them anyway if they refer to nonexistent characters.
Therefore \.{TFtoPL} must check them too.
@<Check the extensible recipes@>=
if ne>0 then for c:=0 to ne-1 do for d:=0 to 3 do
begin k:=4*(exten_base+c)+d;
if (tfm[k]>0)or(d=3) then
begin if nonexistent(tfm[k]) then
begin bad_char('Extensible recipe involves the')(tfm[k]);
@.Extensible recipe involves...@>
if d<3 then tfm[k]:=0;
end;
end;
end
@* Checking for ligature loops.
We have programmed almost everything but the most interesting calculation of
all, which has been saved for last as a special treat. \TeX's extended ligature
mechanism allows unwary users to specify sequences of ligature replacements
that never terminate. For example, the pair of commands
$$\.{(/LIG $x$ $y$) (/LIG $y$ $x$)}$$
alternately replaces character $x$ by character $y$ and vice versa. A similar
loop occurs if \.{(LIG/ $z$ $y$)} occurs in the program for $x$ and
\.{(LIG/ $z$ $x$)} occurs in the program for $y$.
More complicated loops are also possible. For example, suppose the ligature
programs for $x$ and $y$ are
$$\vcenter{\halign{#\hfil\cr
\.{(LABEL $x$)(/LIG/ $z$ $w$)(/LIG/> $w$ $y$)} \dots,\cr
\.{(LABEL $y$)(LIG $w$ $x$)} \dots;\cr}}$$
then the adjacent characters $xz$ change to $xwz$, $xywz$, $xxz$, $xxwz$,
\dots, ad infinitum.
@ To detect such loops, \.{TFtoPL} attempts to evaluate the function
$f(x,y)$ for all character pairs $x$ and~$y$, where $f$ is defined as
follows: If the current character is $x$ and the next character is
$y$, we say the ``cursor'' is between $x$ and $y$; when the cursor
first moves past $y$, the character immediately to its left is
$f(x,y)$. This function is defined if and only if no infinite loop is
generated when the cursor is between $x$ and~$y$.
The function $f(x,y)$ can be defined recursively. It turns out that all pairs
$(x,y)$ belong to one of five classes. The simplest class has $f(x,y)=y$; this
happens if there's no ligature between $x$ and $y$, or in the cases
\.{LIG/>} and \.{/LIG/>>}. Another simple class arises when there's a
\.{LIG} or \.{/LIG>} between $x$ and~$y$, generating the character~$z$;
then $f(x,y)=z$. Otherwise we always have $f(x,y)$ equal to
either $f(x,z)$ or $f(z,y)$ or $f(f(x,z),y)$, where $z$ is the inserted
ligature character.
The first two of these classes can be merged; we can also consider
$(x,y)$ to belong to the simple class when $f(x,y)$ has been evaluated.
For technical reasons we allow $x$ to be 256 (for the boundary character
at the left) or 257 (in cases when an error has been detected).
For each pair $(x,y)$ having a ligature program step, we store
$(x,y)$ in a hash table from which the values $z$ and $class$ can be read.
@d simple=0 {$f(x,y)=z$}
@d left_z=1 {$f(x,y)=f(z,y)$}
@d right_z=2 {$f(x,y)=f(x,z)$}
@d both_z=3 {$f(x,y)=f(f(x,z),y)$}
@d pending=4 {$f(x,y)$ is being evaluated}
@<Glob...@>=
@!hash:array[0..hash_size] of 0..66048; {$256x+y+1$ for $x\le257$ and $y\le255$}
@!class:array[0..hash_size] of simple..pending;
@!lig_z:array[0..hash_size] of 0..257;
@!hash_ptr:0..hash_size; {the number of nonzero entries in |hash|}
@!hash_list:array[0..hash_size] of 0..hash_size; {list of those nonzero entries}
@!h,@!hh:0..hash_size; {indices into the hash table}
@!x_lig_cycle,@!y_lig_cycle:0..256; {problematic ligature pair}
@ @<Check for ligature cycles@>=
hash_ptr:=0; y_lig_cycle:=256;
for hh:=0 to hash_size do hash[hh]:=0; {clear the hash table}
for c:=bc to ec do if tag(c)=lig_tag then
begin i:=remainder(c);
if tfm[lig_step(i)]>stop_flag then
i:=256*tfm[lig_step(i)+2]+tfm[lig_step(i)+3];
@<Enter data for character $c$ starting at location |i| in the hash table@>;
end;
if bchar_label<nl then
begin c:=256; i:=bchar_label;
@<Enter data for character $c$ starting at location |i| in the hash table@>;
end;
if hash_ptr=hash_size then
begin print_ln('Sorry, I haven''t room for so many ligature/kern pairs!');
@.Sorry, I haven't room...@>
goto final_end;
end;
for hh:=1 to hash_ptr do
begin r:=hash_list[hh];
if class[r]>simple then {make sure $f$ is defined}
r:=f(r,(hash[r]-1)div 256,(hash[r]-1)mod 256);
end;
if y_lig_cycle<256 then
begin print('Infinite ligature loop starting with ');
@.Infinite ligature loop...@>
if x_lig_cycle=256 then print('boundary')@+else print_octal(x_lig_cycle);
print(' and '); print_octal(y_lig_cycle); print_ln('!');
out('(INFINITE LIGATURE LOOP MUST BE BROKEN!)'); goto final_end;
end
@ @<Enter data for character $c$...@>=
repeat hash_input; k:=tfm[lig_step(i)];
if k>=stop_flag then i:=nl
else i:=i+1+k;
until i>=nl
@ We use an ``ordered hash table'' with linear probing, because such a table
is efficient when the lookup of a random key tends to be unsuccessful.
@p procedure hash_input; {enter data for character |c| and command |i|}
label 30; {go here for a quick exit}
var @!cc:simple..both_z; {class of data being entered}
@!zz:0..255; {function value or ligature character being entered}
@!y:0..255; {the character after the cursor}
@!key:integer; {value to be stored in |hash|}
@!t:integer; {temporary register for swapping}
begin if hash_ptr=hash_size then goto 30;
@<Compute the command parameters |y|, |cc|, and |zz|@>;
key:=256*c+y+1; h:=(1009*key) mod hash_size;
while hash[h]>0 do
begin if hash[h]<=key then
begin if hash[h]=key then goto 30; {unused ligature command}
t:=hash[h]; hash[h]:=key; key:=t; {do ordered-hash-table insertion}
t:=class[h]; class[h]:=cc; cc:=t; {namely, do a swap}
t:=lig_z[h]; lig_z[h]:=zz; zz:=t;
end;
if h>0 then decr(h)@+else h:=hash_size;
end;
hash[h]:=key; class[h]:=cc; lig_z[h]:=zz;
incr(hash_ptr); hash_list[hash_ptr]:=h;
30:end;
@ We must store kern commands as well as ligature commands, because the former
might make the latter inapplicable.
@<Compute the command param...@>=
k:=lig_step(i); y:=tfm[k+1]; t:=tfm[k+2]; cc:=simple; zz:=tfm[k+3];
if t>=kern_flag then zz:=y
else begin case t of
0,6:do_nothing; {\.{LIG},\.{/LIG>}}
5,11:zz:=y; {\.{LIG/>}, \.{/LIG/>>}}
1,7:cc:=left_z; {\.{LIG/}, \.{/LIG/>}}
2:cc:=right_z; {\.{/LIG}}
3:cc:=both_z; {\.{/LIG/}}
end; {there are no other cases}
end
@ Evaluation of $f(x,y)$ is handled by two mutually recursive procedures.
Kind of a neat algorithm, generalizing a depth-first search.
@p function f(@!h,@!x,@!y:index):index; forward;@t\2@>
{compute $f$ for arguments known to be in |hash[h]|}
function eval(@!x,@!y:index):index; {compute $f(x,y)$ with hashtable lookup}
var @!key:integer; {value sought in hash table}
begin key:=256*x+y+1; h:=(1009*key) mod hash_size;
while hash[h]>key do
if h>0 then decr(h)@+else h:=hash_size;
if hash[h]<key then eval:=y {not in ordered hash table}
else eval:=f(h,x,y);
end;
@ Pascal's beastly convention for |forward| declarations prevents us from
saying |function f(h,x,y:index):index| here.
@p function f;
begin case class[h] of
simple: do_nothing;
left_z: begin class[h]:=pending; lig_z[h]:=eval(lig_z[h],y); class[h]:=simple;
end;
right_z: begin class[h]:=pending; lig_z[h]:=eval(x,lig_z[h]); class[h]:=simple;
end;
both_z: begin class[h]:=pending; lig_z[h]:=eval(eval(x,lig_z[h]),y);
class[h]:=simple;
end;
pending: begin x_lig_cycle:=x; y_lig_cycle:=y; lig_z[h]:=257; class[h]:=simple;
end; {the value 257 will break all cycles, since it's not in |hash|}
end; {there are no other cases}
f:=lig_z[h];
end;
@* The main program.
The routines sketched out so far need to be packaged into separate procedures,
on some systems, since some \PASCAL\ compilers place a strict limit on the
size of a routine. The packaging is done here in an attempt to avoid some
system-dependent changes.
First comes the |organize| procedure, which reads the input data and
gets ready for subsequent events. If something goes wrong, the routine
returns |false|.
@p function organize:boolean;
label final_end, 30;
var tfm_ptr:index; {an index into |tfm|}
begin @<Read the whole input file@>;@/
@<Set subfile sizes |lh|, |bc|, \dots, |np|@>;@/
@<Compute the base addresses@>;@/
organize:=true; goto 30;
final_end: organize:=false;
30: end;
@ Next we do the simple things.
@p procedure do_simple_things;
var i:0..@'77777; {an index to words of a subfile}
begin @<Do the header@>;@/
@<Do the parameters@>;@/
@<Check the |fix_word| entries@>@/
end;
@ And then there's a routine for individual characters.
@p procedure do_characters;
var @!c:byte; {character being done}
@!k:index; {a random index}
@!ai:0..lig_size; {index into |activity|}
begin @<Do the characters@>;@/
end;
@ Here is where \.{TFtoPL} begins and ends.
@p begin initialize;@/
if not organize then goto final_end;
do_simple_things;@/
@<Do the ligatures and kerns@>;
@<Check the extensible recipes@>;
do_characters; print_ln('.');@/
if level<>0 then print_ln('This program isn''t working!');
@.This program isn't working@>
if not perfect then
begin out('(COMMENT THE TFM FILE WAS BAD, SO THE DATA HAS BEEN CHANGED!)');
@.THE TFM FILE WAS BAD...@>
write_ln(pl_file);
end;
final_end:end.
@* System-dependent changes.
This section should be replaced, if necessary, by changes to the program
that are necessary to make \.{TFtoPL} work at a particular installation.
It is usually best to design your change file so that all changes to
previous sections preserve the section numbering; then everybody's version
will be consistent with the printed program. More extensive changes,
which introduce new sections, can be inserted here; then only the index
itself will get a new section number.
@^system dependencies@>
@* Index.
Pointers to error messages appear here together with the section numbers
where each ident\-i\-fier is used.
|