1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
|
% randoms.ch
% Copyright (c) 2005 Han Th\^e\llap{\raise 0.5ex\hbox{\'{}}} Th\`anh, <thanh@pdftex.org>
%
% This file is part of pdfTeX.
%
% pdfTeX is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% pdfTeX is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with pdfTeX; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
%
% $Id: //depot/Build/source.development/TeX/texk/web2c/pdftexdir/pdftex.ch#163 $
%
% This is a WEB change file for pseudo-random numbers in pdftex 1.30 and above.
%
% There are four new primitives:
%
% \pdfuniformdeviate <count>
% Generates a uniformly distributed random integer value
% between 0 (inclusive) and <count> (exclusive).
% This primitive expands to a list of tokens.
%
% \pdfnormaldeviate
% Expands to a random integer value with a mean of 0 and a
% unit of 65536.
% This primitive expands to a list of tokens.
%
% \pdfrandomseed
% You can use \the\pdfrandomseed to query the current seed value,
% so you can e.g. the value to the log file.
%
% The initial value of the seed is derived from the system time,
% and is not more than 1,000,999,999 (this ensures that the value
% can be used with commands like \count).
%
% \pdfsetrandomseed <count>
% This sets the random seed to a specific value, allowing you
% to re-play sequences of semi-randoms at a later moment.
%
% Most of the actual code is taken from metapost, and originally
% written by Knuth, for Metafont. Glue to make it work in TeX is
% by me. If you find an error, it is bound to be in my code,
% not Knuth's :-)
%
% Taco Hoekwater (taco@metatex.org), june 27, 2005. No restrictions.
@x
@* \[8] Packed data.
@y
@* \[7b] Random numbers.
\font\tenlogo=logo10 % font used for the METAFONT logo
\def\MP{{\tenlogo META}\-{\tenlogo POST}}
This section is (almost) straight from MetaPost. I had to change
the types (use |integer| instead of |fraction|), but that should
not have any influence on the actual calculations (the original
comments refer to quantities like |fraction_four| ($2^{30}$), and
that is the same as the numeric representation of |maxdimen|).
I've copied the low-level variables and routines that are needed, but
only those (e.g. |m_log|), not the accompanying ones like |m_exp|. Most
of the following low-level numeric routines are only needed within the
calculation of |norm_rand|. I've been forced to rename |make_fraction|
to |make_frac| because TeX already has a routine by that name with
a wholly different function (it creates a |fraction_noad| for math
typesetting) -- Taco
And now let's complete our collection of numeric utility routines
by considering random number generation.
\MP\ generates pseudo-random numbers with the additive scheme recommended
in Section 3.6 of {\sl The Art of Computer Programming}; however, the
results are random fractions between 0 and |fraction_one-1|, inclusive.
There's an auxiliary array |randoms| that contains 55 pseudo-random
fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
The global variable |j_random| tells which element has most recently
been consumed.
@<Glob...@>=
@!randoms:array[0..54] of integer; {the last 55 random values generated}
@!j_random:0..54; {the number of unused |randoms|}
@!random_seed:scaled; {the default random seed}
@ A small bit of metafont is needed.
@d fraction_half==@'1000000000 {$2^{27}$, represents 0.50000000}
@d fraction_one==@'2000000000 {$2^{28}$, represents 1.00000000}
@d fraction_four==@'10000000000 {$2^{30}$, represents 4.00000000}
@d el_gordo == @'17777777777 {$2^{31}-1$, the largest value that \MP\ likes}
@d halfp(#)==(#) div 2
@d double(#) == #:=#+# {multiply a variable by two}
@ The |make_frac| routine produces the |fraction| equivalent of
|p/q|, given integers |p| and~|q|; it computes the integer
$f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
positive. If |p| and |q| are both of the same scaled type |t|,
the ``type relation'' |make_frac(t,t)=fraction| is valid;
and it's also possible to use the subroutine ``backwards,'' using
the relation |make_frac(t,fraction)=t| between scaled types.
If the result would have magnitude $2^{31}$ or more, |make_frac|
sets |arith_error:=true|. Most of \MP's internal computations have
been designed to avoid this sort of error.
If this subroutine were programmed in assembly language on a typical
machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
double-precision product can often be input to a fixed-point division
instruction. But when we are restricted to \PASCAL\ arithmetic it
is necessary either to resort to multiple-precision maneuvering
or to use a simple but slow iteration. The multiple-precision technique
would be about three times faster than the code adopted here, but it
would be comparatively long and tricky, involving about sixteen
additional multiplications and divisions.
This operation is part of \MP's ``inner loop''; indeed, it will
consume nearly 10\pct! of the running time (exclusive of input and output)
if the code below is left unchanged. A machine-dependent recoding
will therefore make \MP\ run faster. The present implementation
is highly portable, but slow; it avoids multiplication and division
except in the initial stage. System wizards should be careful to
replace it with a routine that is guaranteed to produce identical
results in all cases.
@^system dependencies@>
As noted below, a few more routines should also be replaced by machine-dependent
code, for efficiency. But when a procedure is not part of the ``inner loop,''
such changes aren't advisable; simplicity and robustness are
preferable to trickery, unless the cost is too high.
@^inner loop@>
@p function make_frac(@!p,@!q:integer):integer;
var @!f:integer; {the fraction bits, with a leading 1 bit}
@!n:integer; {the integer part of $\vert p/q\vert$}
@!negative:boolean; {should the result be negated?}
@!be_careful:integer; {disables certain compiler optimizations}
begin if p>=0 then negative:=false
else begin negate(p); negative:=true;
end;
if q<=0 then
begin debug if q=0 then confusion("/");@;@+gubed@;@/
@:this can't happen /}{\quad \./@>
negate(q); negative:=not negative;
end;
n:=p div q; p:=p mod q;
if n>=8 then
begin arith_error:=true;
if negative then make_frac:=-el_gordo@+else make_frac:=el_gordo;
end
else begin n:=(n-1)*fraction_one;
@<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
if negative then make_frac:=-(f+n)@+else make_frac:=f+n;
end;
end;
@ The |repeat| loop here preserves the following invariant relations
between |f|, |p|, and~|q|:
(i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
$p_0$ is the original value of~$p$.
Notice that the computation specifies
|(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
Let us hope that optimizing compilers do not miss this point; a
special variable |be_careful| is used to emphasize the necessary
order of computation. Optimizing compilers should keep |be_careful|
in a register, not store it in memory.
@^inner loop@>
@<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
f:=1;
repeat be_careful:=p-q; p:=be_careful+p;
if p>=0 then f:=f+f+1
else begin double(f); p:=p+q;
end;
until f>=fraction_one;
be_careful:=p-q;
if be_careful+p>=0 then incr(f)
@
@p function take_frac(@!q:integer;@!f:integer):integer;
var @!p:integer; {the fraction so far}
@!negative:boolean; {should the result be negated?}
@!n:integer; {additional multiple of $q$}
@!be_careful:integer; {disables certain compiler optimizations}
begin @<Reduce to the case that |f>=0| and |q>0|@>;
if f<fraction_one then n:=0
else begin n:=f div fraction_one; f:=f mod fraction_one;
if q<=el_gordo div n then n:=n*q
else begin arith_error:=true; n:=el_gordo;
end;
end;
f:=f+fraction_one;
@<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
be_careful:=n-el_gordo;
if be_careful+p>0 then
begin arith_error:=true; n:=el_gordo-p;
end;
if negative then take_frac:=-(n+p)
else take_frac:=n+p;
end;
@ @<Reduce to the case that |f>=0| and |q>0|@>=
if f>=0 then negative:=false
else begin negate(f); negative:=true;
end;
if q<0 then
begin negate(q); negative:=not negative;
end;
@ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
=\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
$f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
@^inner loop@>
@<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
p:=fraction_half; {that's $2^{27}$; the invariants hold now with $k=28$}
if q<fraction_four then
repeat if odd(f) then p:=halfp(p+q)@+else p:=halfp(p);
f:=halfp(f);
until f=1
else repeat if odd(f) then p:=p+halfp(q-p)@+else p:=halfp(p);
f:=halfp(f);
until f=1
@ The subroutines for logarithm and exponential involve two tables.
The first is simple: |two_to_the[k]| equals $2^k$. The second involves
a bit more calculation, which the author claims to have done correctly:
|spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
nearest integer.
@<Glob...@>=
@!two_to_the:array[0..30] of integer; {powers of two}
@!spec_log:array[1..28] of integer; {special logarithms}
@ @<Set init...@>=
two_to_the[0]:=1;
for k:=1 to 30 do two_to_the[k]:=2*two_to_the[k-1];
spec_log[1]:=93032640;
spec_log[2]:=38612034;
spec_log[3]:=17922280;
spec_log[4]:=8662214;
spec_log[5]:=4261238;
spec_log[6]:=2113709;
spec_log[7]:=1052693;
spec_log[8]:=525315;
spec_log[9]:=262400;
spec_log[10]:=131136;
spec_log[11]:=65552;
spec_log[12]:=32772;
spec_log[13]:=16385;
for k:=14 to 27 do spec_log[k]:=two_to_the[27-k];
spec_log[28]:=1;
@
@p function m_log(@!x:integer):integer;
var @!y,@!z:integer; {auxiliary registers}
@!k:integer; {iteration counter}
begin if x<=0 then @<Handle non-positive logarithm@>
else begin y:=1302456956+4-100; {$14\times2^{27}\ln2\approx1302456956.421063$}
z:=27595+6553600; {and $2^{16}\times .421063\approx 27595$}
while x<fraction_four do
begin double(x); y:=y-93032639; z:=z-48782;
end; {$2^{27}\ln2\approx 93032639.74436163$
and $2^{16}\times.74436163\approx 48782$}
y:=y+(z div unity); k:=2;
while x>fraction_four+4 do
@<Increase |k| until |x| can be multiplied by a
factor of $2^{-k}$, and adjust $y$ accordingly@>;
m_log:=y div 8;
end;
end;
@ @<Increase |k| until |x| can...@>=
begin z:=((x-1) div two_to_the[k])+1; {$z=\lceil x/2^k\rceil$}
while x<fraction_four+z do
begin z:=halfp(z+1); k:=k+1;
end;
y:=y+spec_log[k]; x:=x-z;
end
@ @<Handle non-positive logarithm@>=
begin print_err("Logarithm of ");
@.Logarithm...replaced by 0@>
print_scaled(x); print(" has been replaced by 0");
help2("Since I don't take logs of non-positive numbers,")@/
("I'm zeroing this one. Proceed, with fingers crossed.");
error; m_log:=0;
end
@ The following somewhat different subroutine tests rigorously if $ab$ is
greater than, equal to, or less than~$cd$,
given integers $(a,b,c,d)$. In most cases a quick decision is reached.
The result is $+1$, 0, or~$-1$ in the three respective cases.
@d return_sign(#)==begin ab_vs_cd:=#; return;
end
@p function ab_vs_cd(@!a,b,c,d:integer):integer;
label exit;
var @!q,@!r:integer; {temporary registers}
begin @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
loop@+ begin q := a div d; r := c div b;
if q<>r then
if q>r then return_sign(1)@+else return_sign(-1);
q := a mod d; r := c mod b;
if r=0 then
if q=0 then return_sign(0)@+else return_sign(1);
if q=0 then return_sign(-1);
a:=b; b:=q; c:=d; d:=r;
end; {now |a>d>0| and |c>b>0|}
exit:end;
@ @<Reduce to the case that |a...@>=
if a<0 then
begin negate(a); negate(b);
end;
if c<0 then
begin negate(c); negate(d);
end;
if d<=0 then
begin if b>=0 then
if ((a=0)or(b=0))and((c=0)or(d=0)) then return_sign(0)
else return_sign(1);
if d=0 then
if a=0 then return_sign(0)@+else return_sign(-1);
q:=a; a:=c; c:=q; q:=-b; b:=-d; d:=q;
end
else if b<=0 then
begin if b<0 then if a>0 then return_sign(-1);
if c=0 then return_sign(0) else return_sign(-1);
end
@ To consume a random integer, the program below will say `|next_random|'
and then it will fetch |randoms[j_random]|.
@d next_random==if j_random=0 then new_randoms
else decr(j_random)
@p procedure new_randoms;
var @!k:0..54; {index into |randoms|}
@!x:integer; {accumulator}
begin for k:=0 to 23 do
begin x:=randoms[k]-randoms[k+31];
if x<0 then x:=x+fraction_one;
randoms[k]:=x;
end;
for k:=24 to 54 do
begin x:=randoms[k]-randoms[k-24];
if x<0 then x:=x+fraction_one;
randoms[k]:=x;
end;
j_random:=54;
end;
@ To initialize the |randoms| table, we call the following routine.
@p procedure init_randoms(@!seed:integer);
var @!j,@!jj,@!k:integer; {more or less random integers}
@!i:0..54; {index into |randoms|}
begin j:=abs(seed);
while j>=fraction_one do j:=halfp(j);
k:=1;
for i:=0 to 54 do
begin jj:=k; k:=j-k; j:=jj;
if k<0 then k:=k+fraction_one;
randoms[(i*21)mod 55]:=j;
end;
new_randoms; new_randoms; new_randoms; {``warm up'' the array}
end;
@ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
Note that the call of |take_frac| will produce the values 0 and~|x|
with about half the probability that it will produce any other particular
values between 0 and~|x|, because it rounds its answers.
@p function unif_rand(@!x:integer):integer;
var @!y:integer; {trial value}
begin next_random; y:=take_frac(abs(x),randoms[j_random]);
if y=abs(x) then unif_rand:=0
else if x>0 then unif_rand:=y
else unif_rand:=-y;
end;
@ Finally, a normal deviate with mean zero and unit standard deviation
can readily be obtained with the ratio method (Algorithm 3.4.1R in
{\sl The Art of Computer Programming\/}).
@p function norm_rand:integer;
var @!x,@!u,@!l:integer; {what the book would call $2^{16}X$, $2^{28}U$,
and $-2^{24}\ln U$}
begin repeat
repeat next_random;
x:=take_frac(112429,randoms[j_random]-fraction_half);
{$2^{16}\sqrt{8/e}\approx 112428.82793$}
next_random; u:=randoms[j_random];
until abs(x)<u;
x:=make_frac(x,u);
l:=139548960-m_log(u); {$2^{24}\cdot12\ln2\approx139548959.6165$}
until ab_vs_cd(1024,l,x,x)>=0;
norm_rand:=x;
end;
@* \[8] Packed data.
@z
@x l.388
@d pdftex_last_item_codes = pdftex_first_rint_code + 11 {end of \pdfTeX's command codes}
@y
@d random_seed_code = pdftex_first_rint_code + 12 {code for \.{\\pdfrandomseed}}
@d pdftex_last_item_codes = pdftex_first_rint_code + 12 {end of \pdfTeX's command codes}
@z
@x l.417
primitive("pdfelapsedtime",last_item,elapsed_time_code);
@!@:elapsed_time_}{\.{\\pdfelapsedtime} primitive@>
@y
primitive("pdfelapsedtime",last_item,elapsed_time_code);
@!@:elapsed_time_}{\.{\\pdfelapsedtime} primitive@>
primitive("pdfrandomseed",last_item,random_seed_code);
@!@:random_seed_}{\.{\\pdfrandomseed} primitive@>
@z
@x l.434
elapsed_time_code: print_esc("pdfelapsedtime");
@y
elapsed_time_code: print_esc("pdfelapsedtime");
random_seed_code: print_esc("pdfrandomseed");
@z
@x l.461
elapsed_time_code: cur_val := get_microinterval;
@y
elapsed_time_code: cur_val := get_microinterval;
random_seed_code: cur_val := random_seed;
@z
@x
@d pdftex_convert_codes = pdftex_first_expand_code + 21 {end of \pdfTeX's command codes}
@y
@d uniform_deviate_code = pdftex_first_expand_code + 21 {end of \pdfTeX's command codes}
@d normal_deviate_code = pdftex_first_expand_code + 22 {end of \pdfTeX's command codes}
@d pdftex_convert_codes = pdftex_first_expand_code + 23 {end of \pdfTeX's command codes}
@z
@x
primitive("jobname",convert,job_name_code);@/
@y
primitive("pdfuniformdeviate",convert,uniform_deviate_code);@/
@!@:uniform_deviate_}{\.{\\pdfuniformdeviate} primitive@>
primitive("pdfnormaldeviate",convert,normal_deviate_code);@/
@!@:normal_deviate_}{\.{\\pdfnormaldeviate} primitive@>
primitive("jobname",convert,job_name_code);@/
@z
@x
othercases print_esc("jobname")
@y
uniform_deviate_code: print_esc("pdfuniformdeviate");
normal_deviate_code: print_esc("pdfnormaldeviate");
othercases print_esc("jobname")
@z
@x
pdf_strcmp_code:
begin
save_scanner_status := scanner_status;
save_warning_index := warning_index;
save_def_ref := def_ref;
compare_strings;
def_ref := save_def_ref;
warning_index := save_warning_index;
scanner_status := save_scanner_status;
end;
job_name_code: if job_name=0 then open_log_file;
@y
pdf_strcmp_code:
begin
save_scanner_status := scanner_status;
save_warning_index := warning_index;
save_def_ref := def_ref;
compare_strings;
def_ref := save_def_ref;
warning_index := save_warning_index;
scanner_status := save_scanner_status;
end;
job_name_code: if job_name=0 then open_log_file;
uniform_deviate_code: scan_int;
normal_deviate_code: do_nothing;
@z
@x
job_name_code: print(job_name);
@y
uniform_deviate_code: print_int(unif_rand(cur_val));
normal_deviate_code: print_int(norm_rand);
job_name_code: print(job_name);
@z
@x
@<Compute the magic offset@>;
@y
random_seed :=(microseconds*1000)+(epochseconds mod 1000000);@/
init_randoms(random_seed);@/
@<Compute the magic offset@>;
@z
@x l. 4562
@d pdftex_last_extension_code == pdftex_first_extension_code + 25
@y
@d set_random_seed_code == pdftex_first_extension_code + 26
@d pdftex_last_extension_code == pdftex_first_extension_code + 26
@z
@x l.4625
primitive("pdfresettimer",extension,reset_timer_code);@/
@!@:reset_timer_}{\.{\\pdfresettimer} primitive@>
@y
primitive("pdfresettimer",extension,reset_timer_code);@/
@!@:reset_timer_}{\.{\\pdfresettimer} primitive@>
primitive("pdfsetrandomseed",extension,set_random_seed_code);@/
@!@:set_random_seed_code}{\.{\\pdfsetrandomseed} primitive@>
@z
@x
reset_timer_code: print_esc("pdfresettimer");
@y
reset_timer_code: print_esc("pdfresettimer");
set_random_seed_code: print_esc("pdfsetrandomseed");
@z
@x
reset_timer_code: @<Implement \.{\\pdfresettimer}@>;
@y
reset_timer_code: @<Implement \.{\\pdfresettimer}@>;
set_random_seed_code: @<Implement \.{\\pdfsetrandomseed}@>;
@z
@x
@ @<Implement \.{\\pdfresettimer}@>=
@y
@ Negative random seed values are silently converted to positive ones
@<Implement \.{\\pdfsetrandomseed}@>=
begin
scan_int;
if cur_val<0 then negate(cur_val);
random_seed := cur_val;
init_randoms(random_seed);
end
@ @<Implement \.{\\pdfresettimer}@>=
@z
|