summaryrefslogtreecommitdiff
path: root/Build/source/texk/web2c/mfluadir/otfcc/lib/libcff/subr.c
blob: 5886d1bc5d6d43b1d42bd608a41f9027cfdd6ead (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
#include "subr.h"
/**
Type 2 CharString subroutinizer.
This program uses SEQUITUR (Nevill-Manning algorithm) to construct a CFG from the input sequence of
opcodes (in the minimum unit of a operator call. That is, operand* operator special*.)
Kieffer-Yang optimization is unnecessary, given that in almost all payloads, there are no repeating
subroutines.
*/

#ifdef DEBUG
static int nodesCreated = 0;
static int nodesRemoved = 0;
static int rulesCreated = 0;
static int rulesRemoved = 0;
#endif

static cff_SubrNode *cff_new_Node() {
	cff_SubrNode *n;
	NEW(n);
	n->rule = NULL;
	n->terminal = NULL;
	n->guard = false;
	n->hard = false;
	n->prev = NULL;
	n->next = NULL;
#ifdef DEBUG
	nodesCreated += 1;
#endif
	return n;
}

static cff_SubrRule *cff_new_Rule() {
	cff_SubrRule *r;
	NEW(r);
	r->refcount = 0;
	r->guard = cff_new_Node();
	r->guard->prev = r->guard;
	r->guard->next = r->guard;
	r->guard->terminal = 0;
	r->guard->guard = true;
	r->guard->rule = r;
	r->next = NULL;
#ifdef DEBUG
	rulesCreated += 1;
#endif
	return r;
}

static void initSubrGraph(cff_SubrGraph *g) {
	g->root = cff_new_Rule();
	g->last = g->root;
	g->diagramIndex = NULL;
	g->totalRules = 0;
	g->totalCharStrings = 0;
	g->doSubroutinize = false;
}

static void clean_Node(cff_SubrNode *x) {
	if (x->rule) { x->rule->refcount -= 1; }
	x->rule = NULL;
	buffree(x->terminal);
	x->terminal = NULL;
}
static void delete_Node(cff_SubrNode *x) {
	if (!x) return;
	clean_Node(x);
#ifdef DEBUG
	nodesRemoved += 1;
#endif
	FREE(x);
}

static void deleteFullRule(cff_SubrRule *r) {
	if (r->guard) {
		for (cff_SubrNode *e = r->guard->next; e != r->guard;) {
			cff_SubrNode *next = e->next;
			if (e->terminal) buffree(e->terminal);
			FREE(e);
#ifdef DEBUG
			nodesRemoved += 1;
#endif
			e = next;
		}
		{
			FREE(r->guard);
#ifdef DEBUG
			nodesRemoved += 1;
#endif
		}
	}

	FREE(r);
#ifdef DEBUG
	rulesRemoved += 1;
#endif
}

static void disposeSubrGraph(cff_SubrGraph *g) {
	{
		cff_SubrRule *r = g->root;
		while (r) {
			cff_SubrRule *next = r->next;
			deleteFullRule(r);
			r = next;
		}
	}
	cff_SubrDiagramIndex *s, *tmp;
	HASH_ITER(hh, g->diagramIndex, s, tmp) {
		HASH_DEL(g->diagramIndex, s);
		FREE(s->key);
		FREE(s);
	}
#ifdef DEBUG
	fprintf(stderr, "ALLOC: %d >< %d nodes\n", nodesCreated, nodesRemoved);
	fprintf(stderr, "ALLOC: %d >< %d rules\n", rulesCreated, rulesRemoved);
#endif
}

caryll_standardRefType(cff_SubrGraph, cff_iSubrGraph, initSubrGraph, disposeSubrGraph);

// Subroutinizer

static void joinNodes(cff_SubrGraph *g, cff_SubrNode *m, cff_SubrNode *n);

static uint8_t *getSingletHashKey(cff_SubrNode *n, size_t *len) {
	size_t l1;
	if (n->rule) {
		l1 = sizeof(n->rule->uniqueIndex);
	} else {
		l1 = buflen(n->terminal) * sizeof(uint8_t);
	}

	*len = 3 + l1 + 1;
	uint8_t *key;
	NEW(key, *len);
	key[0] = '1';
	key[1] = (n->rule ? '1' : '0');
	key[2] = '0';
	key[*len - 1] = 0;

	if (n->rule) {
		memcpy(key + 3, &(n->rule->uniqueIndex), l1);
	} else {
		memcpy(key + 3, n->terminal->data, l1);
	}
	return key;
}

static uint8_t *getDoubletHashKey(cff_SubrNode *n, size_t *len) {
	size_t l1, l2;
	if (n->rule) {
		l1 = sizeof(n->rule->uniqueIndex);
	} else {
		l1 = buflen(n->terminal) * sizeof(uint8_t);
	}
	if (n->next->rule) {
		l2 = sizeof(n->next->rule->uniqueIndex);
	} else {
		l2 = buflen(n->next->terminal) * sizeof(uint8_t);
	}
	*len = 3 + l1 + l2 + 1;
	uint8_t *key;
	NEW(key, *len);
	key[0] = '2';
	key[1] = (n->rule ? '1' : '0');
	key[2] = (n->next->rule ? '1' : '0');
	key[*len - 1] = 0;
	if (n->rule) {
		memcpy(key + 3, &(n->rule->uniqueIndex), l1);
	} else {
		memcpy(key + 3, n->terminal->data, l1);
	}
	if (n->next->rule) {
		memcpy(key + 3 + l1, &(n->next->rule->uniqueIndex), l2);
	} else {
		memcpy(key + 3 + l1, n->next->terminal->data, l2);
	}
	return key;
}

static cff_SubrNode *lastNodeOf(cff_SubrRule *r) {
	return r->guard->prev;
}

static cff_SubrNode *copyNode(cff_SubrNode *n) {
	cff_SubrNode *m = cff_new_Node();
	if (n->rule) {
		m->rule = n->rule;
		m->rule->refcount += 1;
	} else {
		m->terminal = bufnew();
		bufwrite_buf(m->terminal, n->terminal);
	}
	m->last = n->last;
	return m;
}

// checkNode: check whether node N is shrinkable
static bool checkDoubletMatch(cff_SubrGraph *g, cff_SubrNode *n);

static void unlinkNode(cff_SubrGraph *g, cff_SubrNode *a) {
	if (a->hard || a->guard) return;
	size_t len;
	uint8_t *key = getDoubletHashKey(a, &len);
	cff_SubrDiagramIndex *di = NULL;
	HASH_FIND(hh, g->diagramIndex, key, len, di);
	if (di && di->start == a) {
		HASH_DEL(g->diagramIndex, di);
		FREE(di->key);
		FREE(di);
	}
	FREE(key);
	key = getSingletHashKey(a, &len);
	di = NULL;
	HASH_FIND(hh, g->diagramIndex, key, len, di);
	if (di && di->start == a) {
		HASH_DEL(g->diagramIndex, di);
		FREE(di->key);
		FREE(di);
	}
	FREE(key);
	return;
}

static void addDoublet(cff_SubrGraph *g, cff_SubrNode *n) {
	if (!n || !n->next || n->guard || n->hard || n->next->hard || n->next->guard) return;
	size_t len;
	uint8_t *key = getDoubletHashKey(n, &len);
	cff_SubrDiagramIndex *di = NULL;
	HASH_FIND(hh, g->diagramIndex, key, len, di);
	if (!di) {
		NEW(di);
		di->arity = 2;
		di->key = key;
		di->start = n;
		HASH_ADD_KEYPTR(hh, g->diagramIndex, key, len, di);
	} else {
		di->start = n;
		FREE(key);
	}
}
static void addSinglet(cff_SubrGraph *g, cff_SubrNode *n) {
	if (!n || n->guard || n->hard) return;
	size_t len;
	uint8_t *key = getSingletHashKey(n, &len);
	cff_SubrDiagramIndex *di = NULL;
	HASH_FIND(hh, g->diagramIndex, key, len, di);
	if (!di) {
		NEW(di);
		di->arity = 1;
		di->key = key;
		di->start = n;
		HASH_ADD_KEYPTR(hh, g->diagramIndex, key, len, di);
	} else {
		di->start = n;
		FREE(key);
	}
}

static bool identNode(cff_SubrNode *m, cff_SubrNode *n) {
	if (m->rule)
		return (m->rule == n->rule);
	else if (n->rule)
		return false;
	else
		return (m->terminal->size == n->terminal->size &&
		        strncmp((char *)m->terminal->data, (char *)n->terminal->data, m->terminal->size) == 0);
}
static void joinNodes(cff_SubrGraph *g, cff_SubrNode *m, cff_SubrNode *n) {
	if (m->next) {
		unlinkNode(g, m);
		if (n->prev && n->next && identNode(n->prev, n) && identNode(n, n->next)) { addDoublet(g, n); }
		if (m->prev && m->next && identNode(m->prev, m) && identNode(m, m->next)) { addDoublet(g, m->prev); }
	}
	m->next = n;
	n->prev = m;
}
static void xInsertNodeAfter(cff_SubrGraph *g, cff_SubrNode *m, cff_SubrNode *n) {
	joinNodes(g, n, m->next);
	joinNodes(g, m, n);
}
static void removeNodeFromGraph(cff_SubrGraph *g, cff_SubrNode *a) {
	joinNodes(g, a->prev, a->next);
	if (!a->guard) {
		unlinkNode(g, a);
		delete_Node(a);
	}
}

static void expandCall(cff_SubrGraph *g, cff_SubrNode *a) {
	cff_SubrNode *aprev = a->prev;
	cff_SubrNode *anext = a->next;
	cff_SubrRule *r = a->rule;
	cff_SubrNode *r1 = r->guard->next;
	cff_SubrNode *r2 = r->guard->prev;

	// We should move out [a, a'] from g's diagramIndex
	unlinkNode(g, a);

	joinNodes(g, aprev, r1);
	joinNodes(g, r2, anext);
	addDoublet(g, r2);
	// make this rule a stub.
	r->guard->prev = r->guard->next = r->guard;
	r->refcount -= 1;
	// remove call node
	delete_Node(a);
}

static void substituteDoubletWithRule(cff_SubrGraph *g, cff_SubrNode *m, cff_SubrRule *r) {
	cff_SubrNode *prev = m->prev;
	removeNodeFromGraph(g, prev->next);
	removeNodeFromGraph(g, prev->next);
	cff_SubrNode *invoke = cff_new_Node();
	invoke->rule = r;
	invoke->rule->refcount += 1;
	xInsertNodeAfter(g, prev, invoke);
	addDoublet(g, prev);
	addDoublet(g, invoke);
	addSinglet(g, invoke);

	if (!checkDoubletMatch(g, prev)) { checkDoubletMatch(g, prev->next); }
}
static void substituteSingletWithRule(cff_SubrGraph *g, cff_SubrNode *m, cff_SubrRule *r) {
	cff_SubrNode *prev = m->prev;
	removeNodeFromGraph(g, prev->next);
	cff_SubrNode *invoke = cff_new_Node();
	invoke->rule = r;
	invoke->rule->refcount += 1;
	xInsertNodeAfter(g, prev, invoke);
	addDoublet(g, prev);
	addDoublet(g, invoke);
	addSinglet(g, invoke);
}

static void processMatchDoublet(cff_SubrGraph *g, cff_SubrNode *m, cff_SubrNode *n) {
	cff_SubrRule *rule = NULL;
	if (m->prev->guard && m->next->next->guard) {
		// The match [m, m'] is a rule's full content
		rule = m->prev->rule;
		substituteDoubletWithRule(g, n, rule);
	} else {
		rule = cff_new_Rule();
		rule->uniqueIndex = g->totalRules;
		g->totalRules += 1;
		g->last->next = rule;
		g->last = rule;
		xInsertNodeAfter(g, lastNodeOf(rule), copyNode(m));
		xInsertNodeAfter(g, lastNodeOf(rule), copyNode(m->next));
		substituteDoubletWithRule(g, m, rule);
		substituteDoubletWithRule(g, n, rule);
		addDoublet(g, rule->guard->next);
		addSinglet(g, rule->guard->next);
		addSinglet(g, rule->guard->next->next);
	}

	if (rule->guard->next->rule && rule->guard->next->rule->refcount == 1) {
		// The rule is shrinkable.
		expandCall(g, rule->guard->next);
	}
}
static void processMatchSinglet(cff_SubrGraph *g, cff_SubrNode *m, cff_SubrNode *n) {
	cff_SubrRule *rule = NULL;
	if (m->prev->guard && m->next->guard) {
		// The match [m] is a rule's full content
		rule = m->prev->rule;
		substituteSingletWithRule(g, n, rule);
	} else {
		// Create a new rule
		rule = cff_new_Rule();
		rule->uniqueIndex = g->totalRules;
		g->totalRules += 1;
		g->last->next = rule;
		g->last = rule;
		xInsertNodeAfter(g, lastNodeOf(rule), copyNode(m));
		substituteSingletWithRule(g, m, rule);
		substituteSingletWithRule(g, n, rule);
		addSinglet(g, rule->guard->next);
	}
}

static bool checkDoubletMatch(cff_SubrGraph *g, cff_SubrNode *n) {
	if (n->guard || n->next->guard || n->hard || n->next->hard) return false;
	// printf("test "), printNode(n, false), printNode(n->next, true);
	size_t len;
	uint8_t *key = getDoubletHashKey(n, &len);
	cff_SubrDiagramIndex *di = NULL;
	HASH_FIND(hh, g->diagramIndex, key, len, di);
	if (!di) {
		NEW(di);
		di->arity = 2;
		di->key = key;
		di->start = n;
		HASH_ADD_KEYPTR(hh, g->diagramIndex, key, len, di);
		return false;
	} else if (di->arity == 2 && di->start != n && !di->start->guard && !di->start->next->guard) {
		FREE(key);
		processMatchDoublet(g, di->start, n);
		return true;
	} else {
		FREE(key);
		return true;
	}
}

static bool checkSingletMatch(cff_SubrGraph *g, cff_SubrNode *n) {
	if (n->guard || n->hard) return false;
	size_t len;
	uint8_t *key = getSingletHashKey(n, &len);
	cff_SubrDiagramIndex *di = NULL;
	HASH_FIND(hh, g->diagramIndex, key, len, di);
	if (!di) {
		NEW(di);
		di->arity = 1;
		di->key = key;
		di->start = n;
		HASH_ADD_KEYPTR(hh, g->diagramIndex, key, len, di);
		return false;
	} else if (di->arity == 1 && di->start != n && !di->start->guard) {
		FREE(key);
		processMatchSinglet(g, di->start, n);
		return true;
	} else {
		FREE(key);
		return false;
	}
}

static void appendNodeToGraph(cff_SubrGraph *g, cff_SubrNode *n) {
	cff_SubrNode *last = lastNodeOf(g->root);
	xInsertNodeAfter(g, last, n);
	if (g->doSubroutinize) {
		if (!checkDoubletMatch(g, last)) {
			if (buflen(n->terminal) > 15) checkSingletMatch(g, n);
		}
	}
}

void cff_insertILToGraph(cff_SubrGraph *g, cff_CharstringIL *il) {
	caryll_Buffer *blob = bufnew();
	bool flush = false;
	bool last = false;
	for (uint32_t j = 0; j < il->length; j++) {
		switch (il->instr[j].type) {
			case IL_ITEM_OPERAND: {
				if (flush) {
					cff_SubrNode *n = cff_new_Node();
					n->rule = NULL;
					n->terminal = blob;
					n->last = last;
					appendNodeToGraph(g, n);
					blob = bufnew();
					flush = false;
				}
				cff_mergeCS2Operand(blob, il->instr[j].d);
				break;
			}

			case IL_ITEM_OPERATOR: {
				cff_mergeCS2Operator(blob, il->instr[j].i);
				if (il->instr[j].i == op_endchar) { last = true; }
				flush = true;
				break;
			}
			case IL_ITEM_SPECIAL: {
				cff_mergeCS2Special(blob, il->instr[j].i);
				flush = true;
				break;
			}
			default:
				break;
		}
	}
	if (blob->size) {
		cff_SubrNode *n = cff_new_Node();
		n->rule = NULL;
		n->last = last;
		n->terminal = blob;
		appendNodeToGraph(g, n);
	}
	{
		blob = bufnew();
		cff_SubrNode *n = cff_new_Node();
		n->rule = NULL;
		n->terminal = blob;
		n->hard = true;
		appendNodeToGraph(g, n);
		g->totalCharStrings += 1;
	}
}

static void cff_statHeight(cff_SubrRule *r, uint32_t height) {
	if (height > r->height) r->height = height;
	// Stat the heights bottom-up.
	uint32_t effectiveLength = 0;
	for (cff_SubrNode *e = r->guard->next; e != r->guard; e = e->next) {
		if (e->rule) {
			cff_statHeight(e->rule, height + 1);
			effectiveLength += 4;
		} else {
			effectiveLength += e->terminal->size;
		}
	}
	r->effectiveLength = effectiveLength;
}

static void numberASubroutine(cff_SubrRule *r, uint32_t *current) {
	if (r->numbered) return;
	if (r->height >= type2_subr_nesting) return;
	if ((r->effectiveLength - 4) * (r->refcount - 1) - 4 <= 0) return;
	r->number = *current;
	(*current)++;
	r->numbered = true;
	for (cff_SubrNode *e = r->guard->next; e != r->guard; e = e->next) {
		if (e->rule) { numberASubroutine(e->rule, current); }
	}
}
static uint32_t cff_numberSubroutines(cff_SubrGraph *g) {
	uint32_t current = 0;
	for (cff_SubrNode *e = g->root->guard->next; e != g->root->guard; e = e->next) {
		if (e->rule) numberASubroutine(e->rule, &current);
	}
	return current;
}

static inline int32_t subroutineBias(int32_t cnt) {
	if (cnt < 1240)
		return 107;
	else if (cnt < 33900)
		return 1131;
	else
		return 32768;
}

static bool endsWithEndChar(cff_SubrRule *rule) {
	cff_SubrNode *node = lastNodeOf(rule);
	if (node->terminal) {
		return node->last;
	} else {
		return endsWithEndChar(node->rule);
	}
}

static void serializeNodeToBuffer(cff_SubrNode *node, caryll_Buffer *buf, caryll_Buffer *gsubrs, uint32_t maxGSubrs,
                                  caryll_Buffer *lsubrs, uint32_t maxLSubrs) {
	if (node->rule) {
		if (node->rule->numbered && node->rule->number < maxLSubrs + maxGSubrs &&
		    node->rule->height < type2_subr_nesting) {
			// A call.
			caryll_Buffer *target;
			if (node->rule->number < maxLSubrs) {
				int32_t stacknum = node->rule->number - subroutineBias(maxLSubrs);
				target = lsubrs + node->rule->number;
				cff_mergeCS2Int(buf, stacknum);
				cff_mergeCS2Operator(buf, op_callsubr);
			} else {
				int32_t stacknum = node->rule->number - maxLSubrs - subroutineBias(maxGSubrs);
				target = gsubrs + (node->rule->number - maxLSubrs);
				cff_mergeCS2Int(buf, stacknum);
				cff_mergeCS2Operator(buf, op_callgsubr);
			}
			cff_SubrRule *r = node->rule;
			if (!r->printed) {
				r->printed = true;
				for (cff_SubrNode *e = r->guard->next; e != r->guard; e = e->next) {
					serializeNodeToBuffer(e, target, gsubrs, maxGSubrs, lsubrs, maxLSubrs);
				}
				if (!endsWithEndChar(r)) { cff_mergeCS2Operator(target, op_return); }
			}
		} else {
			// A call, but invalid
			// Inline its code.
			cff_SubrRule *r = node->rule;
			for (cff_SubrNode *e = r->guard->next; e != r->guard; e = e->next) {
				serializeNodeToBuffer(e, buf, gsubrs, maxGSubrs, lsubrs, maxLSubrs);
			}
		}
	} else {
		bufwrite_buf(buf, node->terminal);
	}
}

static caryll_Buffer *from_array(void *_context, uint32_t j) {
	caryll_Buffer *context = (caryll_Buffer *)_context;
	caryll_Buffer *blob = bufnew();
	bufwrite_buf(blob, context + j);
	return blob;
}
void cff_ilGraphToBuffers(cff_SubrGraph *g, caryll_Buffer **s, caryll_Buffer **gs, caryll_Buffer **ls,
                          const otfcc_Options *options) {
	cff_statHeight(g->root, 0);
	uint32_t maxSubroutines = cff_numberSubroutines(g);
	logProgress("[libcff] Total %d subroutines extracted.", maxSubroutines);
	uint32_t maxLSubrs = maxSubroutines;
	uint32_t maxGSubrs = 0;
	{
		// balance
		if (maxLSubrs > type2_max_subrs) {
			maxLSubrs = type2_max_subrs;
			maxGSubrs = maxSubroutines - maxLSubrs;
		}
		if (maxGSubrs > type2_max_subrs) { maxGSubrs = type2_max_subrs; }
		uint32_t total = maxLSubrs + maxGSubrs;
		maxLSubrs = total / 2;
		maxGSubrs = total - maxLSubrs;
	}
	caryll_Buffer *charStrings, *gsubrs, *lsubrs;
	NEW(charStrings, g->totalCharStrings + 1);
	NEW(lsubrs, maxLSubrs + 1);
	NEW(gsubrs, maxGSubrs + 1);
	uint32_t j = 0;
	cff_SubrRule *r = g->root;
	for (cff_SubrNode *e = r->guard->next; e != r->guard; e = e->next) {
		serializeNodeToBuffer(e, charStrings + j, gsubrs, maxGSubrs, lsubrs, maxLSubrs);
		if (!e->rule && e->terminal && e->hard) { j++; }
	}

	cff_Index *is = cff_iIndex.fromCallback(charStrings, g->totalCharStrings, from_array);
	cff_Index *igs = cff_iIndex.fromCallback(gsubrs, maxGSubrs, from_array);
	cff_Index *ils = cff_iIndex.fromCallback(lsubrs, maxLSubrs, from_array);

	for (uint32_t j = 0; j < g->totalCharStrings; j++) {
		FREE((charStrings + j)->data);
	}
	for (uint32_t j = 0; j < maxGSubrs; j++) {
		FREE((gsubrs + j)->data);
	}
	for (uint32_t j = 0; j < maxLSubrs; j++) {
		FREE((lsubrs + j)->data);
	}
	FREE(charStrings), FREE(gsubrs), FREE(lsubrs);

	*s = cff_iIndex.build(is), *gs = cff_iIndex.build(igs), *ls = cff_iIndex.build(ils);
	cff_iIndex.free(is), cff_iIndex.free(igs), cff_iIndex.free(ils);
}