summaryrefslogtreecommitdiff
path: root/Build/source/texk/web2c/luatexdir/utils/managed-sa.c
blob: 6cf10e301cea137e06e8e2b33aa5a4427ffff951 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/*

Copyright 2006-2010 Taco Hoekwater <taco@luatex.org>

This file is part of LuaTeX.

LuaTeX is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

LuaTeX is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU General Public License along with
LuaTeX; if not, see <http://www.gnu.org/licenses/>.

*/

/*tex

    Here we implement sparse arrays with an embedded save stack. These functions
    are called very often but a few days of experimenting proved that there is
    not much to gain (if at all) from using macros or optimizations like
    preallocating and fast access to the first 128 entries. In practice the
    overhead is mostly in accessing memory and not in (probably inlined) calls.
    So, we should accept fate and wait for faster memory. It's the price we pay
    for being unicode on the one hand and sparse on the other.

*/

#include "ptexlib.h"

static void store_sa_stack(sa_tree a, int n, sa_tree_item v, int gl)
{
    sa_stack_item st;
    st.code = n;
    st.value = v;
    st.level = gl;
    if (a->stack == NULL) {
        a->stack = Mxmalloc_array(sa_stack_item, a->stack_size);
    } else if (((a->stack_ptr) + 1) >= a->stack_size) {
        a->stack_size += a->stack_step;
        a->stack = Mxrealloc_array(a->stack, sa_stack_item, a->stack_size);
    }
    (a->stack_ptr)++;
    a->stack[a->stack_ptr] = st;
}

static void skip_in_stack(sa_tree a, int n)
{
    int p = a->stack_ptr;
    if (a->stack == NULL)
        return;
    while (p > 0) {
        if (a->stack[p].code == n && a->stack[p].level > 0) {
            a->stack[p].level = -(a->stack[p].level);
        }
        p--;
    }
}

sa_tree_item get_sa_item(const sa_tree head, const int n)
{
    if (head->tree != NULL) {
        register int h = HIGHPART_PART(n);
        if (head->tree[h] != NULL) {
            register int m = MIDPART_PART(n);
            if (head->tree[h][m] != NULL) {
                return head->tree[h][m][LOWPART_PART(n)];
            }
        }
    }
    return head->dflt;
}

void set_sa_item(sa_tree head, int n, sa_tree_item v, int gl)
{
    int h = HIGHPART_PART(n);
    int m = MIDPART_PART(n);
    int l = LOWPART_PART(n);
    if (head->tree == NULL) {
        head->tree = (sa_tree_item ***) Mxcalloc_array(sa_tree_item **, HIGHPART);
    }
    if (head->tree[h] == NULL) {
        head->tree[h] = (sa_tree_item **) Mxcalloc_array(sa_tree_item *, MIDPART);
    }
    if (head->tree[h][m] == NULL) {
        int i;
        head->tree[h][m] = (sa_tree_item *) Mxmalloc_array(sa_tree_item, LOWPART);
        for (i = 0; i < LOWPART; i++) {
            head->tree[h][m][i] = head->dflt;
        }
    }
    if (gl <= 1) {
        skip_in_stack(head, n);
    } else {
        store_sa_stack(head, n, head->tree[h][m][l], gl);
    }
    head->tree[h][m][l] = v;
}

void rawset_sa_item(sa_tree head, int n, sa_tree_item v)
{
    head->tree[HIGHPART_PART(n)][MIDPART_PART(n)][LOWPART_PART(n)] = v;
}

void clear_sa_stack(sa_tree a)
{
    xfree(a->stack);
    a->stack_ptr = 0;
    a->stack_size = a->stack_step;
}

void destroy_sa_tree(sa_tree a)
{
    if (a == NULL)
        return;
    if (a->tree != NULL) {
        int h, m;
        for (h = 0; h < HIGHPART; h++) {
            if (a->tree[h] != NULL) {
                for (m = 0; m < MIDPART; m++) {
                    xfree(a->tree[h][m]);
                }
                xfree(a->tree[h]);
            }
        }
        xfree(a->tree);
    }
    xfree(a->stack);
    xfree(a);
}

sa_tree copy_sa_tree(sa_tree b)
{
    sa_tree a = (sa_tree) Mxmalloc_array(sa_tree_head, 1);
    a->stack_step = b->stack_step;
    a->stack_size = b->stack_size;
    a->stack_type = b->stack_type;
    a->dflt = b->dflt;
    a->stack = NULL;
    a->stack_ptr = 0;
    a->tree = NULL;
    if (b->tree != NULL) {
        int h, m;
        a->tree = (sa_tree_item ***) Mxcalloc_array(void *, HIGHPART);
        for (h = 0; h < HIGHPART; h++) {
            if (b->tree[h] != NULL) {
                a->tree[h] = (sa_tree_item **) Mxcalloc_array(void *, MIDPART);
                for (m = 0; m < MIDPART; m++) {
                    if (b->tree[h][m] != NULL) {
                        a->tree[h][m] = Mxmalloc_array(sa_tree_item, LOWPART);
                        memcpy(a->tree[h][m], b->tree[h][m],
                               sizeof(sa_tree_item) * LOWPART);
                    }
                }
            }
        }
    }
    return a;
}

/*tes

    The main reason to fill in the lowest entry branches here immediately is that
    most of the sparse arrays have a bias toward \ASCII\ values.

    Allocating those here immediately improves the chance of the structure
    |a->tree[0][0][x]| being close together in actual memory locations

    We could save less for type 0 stacks.

*/

sa_tree new_sa_tree(int size, int type, sa_tree_item dflt)
{
    sa_tree_head *a;
    a = (sa_tree_head *) xmalloc(sizeof(sa_tree_head));
    a->dflt = dflt;
    a->stack = NULL;
    a->tree = (sa_tree_item ***) Mxcalloc_array(sa_tree_item **, HIGHPART);
    a->tree[0] = (sa_tree_item **) Mxcalloc_array(sa_tree_item *, MIDPART);
    a->stack_size = size;
    a->stack_step = size;
    a->stack_type = type;
    a->stack_ptr = 0;
    return (sa_tree) a;
}

void restore_sa_stack(sa_tree head, int gl)
{
    sa_stack_item st;
    if (head->stack == NULL)
        return;
    while (head->stack_ptr > 0 && abs(head->stack[head->stack_ptr].level) >= gl) {
        st = head->stack[head->stack_ptr];
        if (st.level > 0) {
            rawset_sa_item(head, st.code, st.value);
        }
        (head->stack_ptr)--;
    }
}

void dump_sa_tree(sa_tree a, const char * name)
{
    boolean f;
    int x, n;
    int h, m, l;
    dump_int(a->stack_step);
    x = a->dflt.int_value;
    dump_int(x);
    if (a->tree != NULL) {
        /*tex A marker: */
        dump_int(1);
        n = a->stack_type;
        dump_int(n);
        for (h = 0; h < HIGHPART; h++) {
            if (a->tree[h] != NULL) {
                f = 1;
                dump_qqqq(f);
                for (m = 0; m < MIDPART; m++) {
                    if (a->tree[h][m] != NULL) {
                        f = 1;
                        dump_qqqq(f);
                        for (l = 0; l < LOWPART; l++) {
                            if (n == 2) {
                                x = a->tree[h][m][l].dump_uint.value_1;
                                dump_int(x);
                                x = a->tree[h][m][l].dump_uint.value_2;
                                dump_int(x);
                            } else {
                                x = a->tree[h][m][l].uint_value;
                                dump_int(x);
                            }
                        }
                    } else {
                        f = 0;
                        dump_qqqq(f);
                    }
                }
            } else {
                f = 0;
                dump_qqqq(f);
            }
        }
    } else {
        /*tex A marker: */
        dump_int(0);
    }
}

sa_tree undump_sa_tree(const char * name)
{
    int x, n;
    int h, m, l;
    boolean f;
    sa_tree a = (sa_tree) Mxmalloc_array(sa_tree_head, 1);
    undump_int(x);
    a->stack_step = x;
    a->stack_size = x;
    undump_int(x);
    a->dflt.int_value = x;
    a->stack = Mxmalloc_array(sa_stack_item, a->stack_size);
    a->stack_ptr = 0;
    a->tree = NULL;
    /*tex The marker: */
    undump_int(x);
    if (x == 0)
        return a;
    a->tree = (sa_tree_item ***) Mxcalloc_array(void *, HIGHPART);
    undump_int(n);
    a->stack_type = n;
    for (h = 0; h < HIGHPART; h++) {
        undump_qqqq(f);
        if (f > 0) {
            a->tree[h] = (sa_tree_item **) Mxcalloc_array(void *, MIDPART);
            for (m = 0; m < MIDPART; m++) {
                undump_qqqq(f);
                if (f > 0) {
                    a->tree[h][m] = Mxmalloc_array(sa_tree_item, LOWPART);
                    for (l = 0; l < LOWPART; l++) {
                        if (n == 2) {
                            undump_int(x);
                            a->tree[h][m][l].dump_uint.value_1 = x;
                            undump_int(x);
                            a->tree[h][m][l].dump_uint.value_2 = x;
                        } else {
                            undump_int(x);
                            a->tree[h][m][l].uint_value = x;
                        }
                    }
                }
            }
        }
    }
    return a;
}