1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
|
% texmath.w
%
% Copyright 2008-2010 Taco Hoekwater <taco@@luatex.org>
%
% This file is part of LuaTeX.
%
% LuaTeX is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free
% Software Foundation; either version 2 of the License, or (at your
% option) any later version.
%
% LuaTeX is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
% FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License for more details.
%
% You should have received a copy of the GNU General Public License along
% with LuaTeX; if not, see <http://www.gnu.org/licenses/>.
@ @c
// define DEBUG
#include "ptexlib.h"
@ @c
#define mode cur_list.mode_field
#define head cur_list.head_field
#define tail cur_list.tail_field
#define prev_graf cur_list.pg_field
#define eTeX_aux cur_list.eTeX_aux_field
#define delim_ptr eTeX_aux
#define space_factor cur_list.space_factor_field
#define incompleat_noad cur_list.incompleat_noad_field
#define cur_fam int_par(cur_fam_code)
/*
\mathdisplayskipmode
tex normally always inserts before and only after when larger than zero
0 = normal tex
1 = always
2 = non-zero
3 = ignore
*/
#define display_skip_mode int_par(math_display_skip_mode_code)
#define math_skip glue_par(math_skip_code)
#define var_code 7
@ TODO: not sure if this is the right order
@c
#define back_error(A,B) do { \
OK_to_interrupt=false; \
back_input(); \
OK_to_interrupt=true; \
tex_error(A,B); \
} while (0)
@ @c
int scan_math(pointer, int);
int scan_math_style(pointer, int);
pointer fin_mlist(pointer);
#define pre_display_size dimen_par(pre_display_size_code)
#define hsize dimen_par(hsize_code)
#define display_width dimen_par(display_width_code)
#define display_indent dimen_par(display_indent_code)
#define math_surround dimen_par(math_surround_code)
#define hang_indent dimen_par(hang_indent_code)
#define hang_after int_par(hang_after_code)
#define every_math equiv(every_math_loc)
#define every_display equiv(every_display_loc)
#define par_shape_ptr equiv(par_shape_loc)
#define math_eqno_gap_step int_par(math_eqno_gap_step_code)
@ When \TeX\ reads a formula that is enclosed between \.\$'s, it constructs an
{\sl mlist}, which is essentially a tree structure representing that
formula. An mlist is a linear sequence of items, but we can regard it as
a tree structure because mlists can appear within mlists. For example, many
of the entries can be subscripted or superscripted, and such ``scripts''
are mlists in their own right.
An entire formula is parsed into such a tree before any of the actual
typesetting is done, because the current style of type is usually not
known until the formula has been fully scanned. For example, when the
formula `\.{\$a+b \\over c+d\$}' is being read, there is no way to tell
that `\.{a+b}' will be in script size until `\.{\\over}' has appeared.
During the scanning process, each element of the mlist being built is
classified as a relation, a binary operator, an open parenthesis, etc.,
or as a construct like `\.{\\sqrt}' that must be built up. This classification
appears in the mlist data structure.
After a formula has been fully scanned, the mlist is converted to an hlist
so that it can be incorporated into the surrounding text. This conversion is
controlled by a recursive procedure that decides all of the appropriate
styles by a ``top-down'' process starting at the outermost level and working
in towards the subformulas. The formula is ultimately pasted together using
combinations of horizontal and vertical boxes, with glue and penalty nodes
inserted as necessary.
An mlist is represented internally as a linked list consisting chiefly
of ``noads'' (pronounced ``no-adds''), to distinguish them from the somewhat
similar ``nodes'' in hlists and vlists. Certain kinds of ordinary nodes are
allowed to appear in mlists together with the noads; \TeX\ tells the difference
by means of the |type| field, since a noad's |type| is always greater than
that of a node. An mlist does not contain character nodes, hlist nodes, vlist
nodes, math nodes or unset nodes; in particular, each mlist item appears in the
variable-size part of |mem|, so the |type| field is always present.
Each noad is five or more words long. The first word contains the
|type| and |subtype| and |link| fields that are already so familiar to
us; the second contains the attribute list pointer, and the third,
fourth an fifth words are called the noad's |nucleus|, |subscr|, and
|supscr| fields. (This use of a combined attribute list is temporary.
Eventually, each of fields need their own list)
Consider, for example, the simple formula `\.{\$x\^2\$}', which would be
parsed into an mlist containing a single element called an |ord_noad|.
The |nucleus| of this noad is a representation of `\.x', the |subscr| is
empty, and the |supscr| is a representation of `\.2'.
The |nucleus|, |subscr|, and |supscr| fields are further broken into
subfields. If |p| points to a noad, and if |q| is one of its principal
fields (e.g., |q=subscr(p)|), |q=null| indicates a field with no value (the
corresponding attribute of noad |p| is not present). Otherwise, there are
several possibilities for the subfields, depending on the |type| of |q|.
\yskip\hang|type(q)=math_char_node| means that |math_fam(q)| refers to one of
the sixteen font families, and |character(q)| is the number of a character
within a font of that family, as in a character node.
\yskip\hang|type(q)=math_text_char_node| is similar, but the character is
unsubscripted and unsuperscripted and it is followed immediately by another
character from the same font. (This |type| setting appears only
briefly during the processing; it is used to suppress unwanted italic
corrections.)
\yskip\hang|type(q)=sub_box_node| means that |math_list(q)| points to a box
node (either an |hlist_node| or a |vlist_node|) that should be used as the
value of the field. The |shift_amount| in the subsidiary box node is the
amount by which that box will be shifted downward.
\yskip\hang|type(q)=sub_mlist_node| means that |math_list(q)| points to
an mlist; the mlist must be converted to an hlist in order to obtain
the value of this field.
\yskip\noindent In the latter case, we might have |math_list(q)=null|. This
is not the same as |q=null|; for example, `\.{\$P\_\{\}\$}'
and `\.{\$P\$}' produce different results (the former will not have the
``italic correction'' added to the width of |P|, but the ``script skip''
will be added).
@c
static void unsave_math(void)
{
unsave();
decr(save_ptr);
flush_node_list(text_dir_ptr);
assert(saved_type(0) == saved_textdir);
text_dir_ptr = saved_value(0);
}
@ Sometimes it is necessary to destroy an mlist. The following
subroutine empties the current list, assuming that |abs(mode)=mmode|.
@c
void flush_math(void)
{
flush_node_list(vlink(head));
flush_node_list(incompleat_noad);
vlink(head) = null;
tail = head;
incompleat_noad = null;
}
@ Before we can do anything in math mode, we need fonts.
@c
#define MATHFONTSTACK 8
#define MATHFONTDEFAULT 0 /* == nullfont */
static sa_tree math_fam_head = NULL;
@ @c
int fam_fnt(int fam_id, int size_id)
{
int n = fam_id + (256 * size_id);
return (int) get_sa_item(math_fam_head, n).int_value;
}
void def_fam_fnt(int fam_id, int size_id, int f, int lvl)
{
int n = fam_id + (256 * size_id);
sa_tree_item sa_value = { 0 };
sa_value.int_value = f;
set_sa_item(math_fam_head, n, sa_value, lvl);
fixup_math_parameters(fam_id, size_id, f, lvl);
if (int_par(tracing_assigns_code) > 1) {
begin_diagnostic();
tprint("{assigning");
print_char(' ');
print_cmd_chr(def_family_cmd, size_id);
print_int(fam_id);
print_char('=');
print_font_identifier(fam_fnt(fam_id, size_id));
print_char('}');
end_diagnostic(false);
}
}
@ @c
static void unsave_math_fam_data(int gl)
{
sa_stack_item st;
if (math_fam_head->stack == NULL)
return;
while (math_fam_head->stack_ptr > 0 &&
abs(math_fam_head->stack[math_fam_head->stack_ptr].level)
>= (int) gl) {
st = math_fam_head->stack[math_fam_head->stack_ptr];
if (st.level > 0) {
rawset_sa_item(math_fam_head, st.code, st.value);
/* now do a trace message, if requested */
if (int_par(tracing_restores_code) > 1) {
int size_id = st.code / 256;
int fam_id = st.code % 256;
begin_diagnostic();
tprint("{restoring");
print_char(' ');
print_cmd_chr(def_family_cmd, size_id);
print_int(fam_id);
print_char('=');
print_font_identifier(fam_fnt(fam_id, size_id));
print_char('}');
end_diagnostic(false);
}
}
(math_fam_head->stack_ptr)--;
}
}
@ and parameters
@c
#define MATHPARAMSTACK 8
#define MATHPARAMDEFAULT undefined_math_parameter
static sa_tree math_param_head = NULL;
@ @c
void def_math_param(int param_id, int style_id, scaled value, int lvl)
{
int n = param_id + (256 * style_id);
sa_tree_item sa_value = { 0 };
sa_value.int_value = (int) value;
set_sa_item(math_param_head, n, sa_value, lvl);
if (int_par(tracing_assigns_code) > 1) {
begin_diagnostic();
tprint("{assigning");
print_char(' ');
print_cmd_chr(set_math_param_cmd, param_id);
print_cmd_chr(math_style_cmd, style_id);
print_char('=');
print_int(value);
print_char('}');
end_diagnostic(false);
}
}
scaled get_math_param(int param_id, int style_id)
{
int n = param_id + (256 * style_id);
return (scaled) get_sa_item(math_param_head, n).int_value;
}
@ @c
static void unsave_math_param_data(int gl)
{
sa_stack_item st;
if (math_param_head->stack == NULL)
return;
while (math_param_head->stack_ptr > 0 &&
abs(math_param_head->stack[math_param_head->stack_ptr].level)
>= (int) gl) {
st = math_param_head->stack[math_param_head->stack_ptr];
if (st.level > 0) {
rawset_sa_item(math_param_head, st.code, st.value);
/* now do a trace message, if requested */
if (int_par(tracing_restores_code) > 1) {
int param_id = st.code % 256;
int style_id = st.code / 256;
begin_diagnostic();
tprint("{restoring");
print_char(' ');
print_cmd_chr(set_math_param_cmd, param_id);
print_cmd_chr(math_style_cmd, style_id);
print_char('=');
print_int(get_math_param(param_id, style_id));
print_char('}');
end_diagnostic(false);
}
}
(math_param_head->stack_ptr)--;
}
}
@ saving and unsaving of both
@c
void unsave_math_data(int gl)
{
unsave_math_fam_data(gl);
unsave_math_param_data(gl);
}
@ Dumping and undumping
@c
void dump_math_data(void)
{
sa_tree_item sa_value = { 0 };
if (math_fam_head == NULL) {
sa_value.int_value = MATHFONTDEFAULT;
math_fam_head = new_sa_tree(MATHFONTSTACK, 1, sa_value);
}
dump_sa_tree(math_fam_head);
if (math_param_head == NULL) {
sa_value.int_value = MATHPARAMDEFAULT;
math_param_head = new_sa_tree(MATHPARAMSTACK, 1, sa_value);
}
dump_sa_tree(math_param_head);
}
void undump_math_data(void)
{
math_fam_head = undump_sa_tree();
math_param_head = undump_sa_tree();
}
@ @c
void initialize_math(void)
{
sa_tree_item sa_value = { 0 };
if (math_fam_head == NULL) {
sa_value.int_value = MATHFONTDEFAULT;
math_fam_head = new_sa_tree(MATHFONTSTACK, 1, sa_value);
}
if (math_param_head == NULL) {
sa_value.int_value = MATHPARAMDEFAULT;
math_param_head = new_sa_tree(MATHPARAMSTACK, 1, sa_value);
initialize_math_spacing();
}
return;
}
@ Each portion of a formula is classified as Ord, Op, Bin, Rel, Ope,
Clo, Pun, or Inn, for purposes of spacing and line breaking. An
|ord_noad|, |op_noad|, |bin_noad|, |rel_noad|, |open_noad|, |close_noad|,
|punct_noad|, or |inner_noad| is used to represent portions of the various
types. For example, an `\.=' sign in a formula leads to the creation of a
|rel_noad| whose |nucleus| field is a representation of an equals sign
(usually |fam=0|, |character=075|). A formula preceded by \.{\\mathrel}
also results in a |rel_noad|. When a |rel_noad| is followed by an
|op_noad|, say, and possibly separated by one or more ordinary nodes (not
noads), \TeX\ will insert a penalty node (with the current |rel_penalty|)
just after the formula that corresponds to the |rel_noad|, unless there
already was a penalty immediately following; and a ``thick space'' will be
inserted just before the formula that corresponds to the |op_noad|.
A noad of type |ord_noad|, |op_noad|, \dots, |inner_noad| usually
has a |subtype=normal|. The only exception is that an |op_noad| might
have |subtype=limits| or |no_limits|, if the normal positioning of
limits has been overridden for this operator.
A |radical_noad| also has a |left_delimiter| field, which usually
represents a square root sign.
A |fraction_noad| has a |right_delimiter| field as well as a |left_delimiter|.
Delimiter fields have four subfields
called |small_fam|, |small_char|, |large_fam|, |large_char|. These subfields
represent variable-size delimiters by giving the ``small'' and ``large''
starting characters, as explained in Chapter~17 of {\sl The \TeX book}.
@:TeXbook}{\sl The \TeX book@>
A |fraction_noad| is actually quite different from all other noads.
It has |thickness|, |denominator|, and |numerator| fields instead of
|nucleus|, |subscr|, and |supscr|. The |thickness| is a scaled value
that tells how thick to make a fraction rule; however, the special
value |default_code| is used to stand for the
|default_rule_thickness| of the current size. The |numerator| and
|denominator| point to mlists that define a fraction; we always have
$$\hbox{|type(numerator)=type(denominator)=sub_mlist|}.$$ The
|left_delimiter| and |right_delimiter| fields specify delimiters that will
be placed at the left and right of the fraction. In this way, a
|fraction_noad| is able to represent all of \TeX's operators \.{\\over},
\.{\\atop}, \.{\\above}, \.{\\overwithdelims}, \.{\\atopwithdelims}, and
\.{\\abovewithdelims}.
@ The |new_noad| function creates an |ord_noad| that is completely null
@c
pointer new_noad(void)
{
pointer p;
p = new_node(simple_noad, ord_noad_type);
/* all noad fields are zero after this */
return p;
}
@ @c
pointer new_sub_box(pointer curbox)
{
pointer p, q;
p = new_noad();
q = new_node(sub_box_node, 0);
nucleus(p) = q;
math_list(nucleus(p)) = curbox;
return p;
}
@ A few more kinds of noads will complete the set: An |under_noad| has its
nucleus underlined; an |over_noad| has it overlined. An |accent_noad| places
an accent over its nucleus; the accent character appears as
|math_fam(accent_chr(p))| and |math_character(accent_chr(p))|. A |vcenter_noad|
centers its nucleus vertically with respect to the axis of the formula;
in such noads we always have |type(nucleus(p))=sub_box|.
And finally, we have the |fence_noad| type, to implement
\TeX's \.{\\left} and \.{\\right} as well as eTeX's \.{\\middle}.
The |nucleus| of such noads is
replaced by a |delimiter| field; thus, for example, `\.{\\left(}' produces
a |fence_noad| such that |delimiter(p)| holds the family and character
codes for all left parentheses. A |fence_noad| of subtype |left_noad_side|
never appears in an mlist except as the first element, and a |fence_noad|
with subtype |right_noad_side| never appears in an mlist
except as the last element; furthermore, we either have both a |left_noad_side|
and a |right_noad_side|, or neither one is present.
@ Math formulas can also contain instructions like \.{\\textstyle} that
override \TeX's normal style rules. A |style_node| is inserted into the
data structure to record such instructions; it is three words long, so it
is considered a node instead of a noad. The |subtype| is either |display_style|
or |text_style| or |script_style| or |script_script_style|. The
second and third words of a |style_node| are not used, but they are
present because a |choice_node| is converted to a |style_node|.
\TeX\ uses even numbers 0, 2, 4, 6 to encode the basic styles
|display_style|, \dots, |script_script_style|, and adds~1 to get the
``cramped'' versions of these styles. This gives a numerical order that
is backwards from the convention of Appendix~G in {\sl The \TeX book\/};
i.e., a smaller style has a larger numerical value.
@:TeXbook}{\sl The \TeX book@>
@c
const char *math_style_names[] = {
"display", "crampeddisplay",
"text", "crampedtext",
"script", "crampedscript",
"scriptscript", "crampedscriptscript",
NULL
};
const char *math_param_names[] = {
"quad", "axis", "operatorsize",
"overbarkern", "overbarrule", "overbarvgap",
"underbarkern", "underbarrule", "underbarvgap",
"radicalkern", "radicalrule", "radicalvgap",
"radicaldegreebefore", "radicaldegreeafter", "radicaldegreeraise",
"stackvgap", "stacknumup", "stackdenomdown",
"fractionrule", "fractionnumvgap", "fractionnumup",
"fractiondenomvgap", "fractiondenomdown", "fractiondelsize",
"limitabovevgap", "limitabovebgap", "limitabovekern",
"limitbelowvgap", "limitbelowbgap", "limitbelowkern",
"underdelimitervgap", "underdelimiterbgap",
"overdelimitervgap", "overdelimiterbgap",
"subshiftdrop", "supshiftdrop", "subshiftdown",
"subsupshiftdown", "subtopmax", "supshiftup",
"supbottommin", "supsubbottommax", "subsupvgap",
"spaceafterscript", "connectoroverlapmin",
"ordordspacing", "ordopspacing", "ordbinspacing", "ordrelspacing",
"ordopenspacing", "ordclosespacing", "ordpunctspacing", "ordinnerspacing",
"opordspacing", "opopspacing", "opbinspacing", "oprelspacing",
"opopenspacing", "opclosespacing", "oppunctspacing", "opinnerspacing",
"binordspacing", "binopspacing", "binbinspacing", "binrelspacing",
"binopenspacing", "binclosespacing", "binpunctspacing", "bininnerspacing",
"relordspacing", "relopspacing", "relbinspacing", "relrelspacing",
"relopenspacing", "relclosespacing", "relpunctspacing", "relinnerspacing",
"openordspacing", "openopspacing", "openbinspacing", "openrelspacing",
"openopenspacing", "openclosespacing", "openpunctspacing",
"openinnerspacing",
"closeordspacing", "closeopspacing", "closebinspacing", "closerelspacing",
"closeopenspacing", "closeclosespacing", "closepunctspacing",
"closeinnerspacing",
"punctordspacing", "punctopspacing", "punctbinspacing", "punctrelspacing",
"punctopenspacing", "punctclosespacing", "punctpunctspacing",
"punctinnerspacing",
"innerordspacing", "inneropspacing", "innerbinspacing", "innerrelspacing",
"inneropenspacing", "innerclosespacing", "innerpunctspacing",
"innerinnerspacing",
NULL
};
@ @c
pointer new_style(small_number s)
{ /* create a style node */
m_style = s;
return new_node(style_node, s);
}
@ Finally, the \.{\\mathchoice} primitive creates a |choice_node|, which
has special subfields |display_mlist|, |text_mlist|, |script_mlist|,
and |script_script_mlist| pointing to the mlists for each style.
@c
static pointer new_choice(void)
{ /* create a choice node */
return new_node(choice_node, 0); /* the |subtype| is not used */
}
@ Let's consider now the previously unwritten part of |show_node_list|
that displays the things that can only be present in mlists; this
program illustrates how to access the data structures just defined.
In the context of the following program, |p| points to a node or noad that
should be displayed, and the current string contains the ``recursion history''
that leads to this point. The recursion history consists of a dot for each
outer level in which |p| is subsidiary to some node, or in which |p| is
subsidiary to the |nucleus| field of some noad; the dot is replaced by
`\.\_' or `\.\^' or `\./' or `\.\\' if |p| is descended from the |subscr|
or |supscr| or |denominator| or |numerator| fields of noads. For example,
the current string would be `\.{.\^.\_/}' if |p| points to the |ord_noad| for
|x| in the (ridiculous) formula
`\.{\$\\sqrt\{a\^\{\\mathinner\{b\_\{c\\over x+y\}\}\}\}\$}'.
@c
void display_normal_noad(pointer p); /* forward */
void display_fence_noad(pointer p); /* forward */
void display_fraction_noad(pointer p); /* forward */
void show_math_node(pointer p)
{
switch (type(p)) {
case style_node:
print_cmd_chr(math_style_cmd, subtype(p));
break;
case choice_node:
tprint_esc("mathchoice");
append_char('D');
show_node_list(display_mlist(p));
flush_char();
append_char('T');
show_node_list(text_mlist(p));
flush_char();
append_char('S');
show_node_list(script_mlist(p));
flush_char();
append_char('s');
show_node_list(script_script_mlist(p));
flush_char();
break;
case simple_noad:
case radical_noad:
case accent_noad:
display_normal_noad(p);
break;
case fence_noad:
display_fence_noad(p);
break;
case fraction_noad:
display_fraction_noad(p);
break;
default:
tprint("Unknown node type!");
break;
}
}
@ Here are some simple routines used in the display of noads.
@c
static void print_fam_and_char(pointer p)
{ /* prints family and character */
tprint_esc("fam");
print_int(math_fam(p));
print_char(' ');
print(math_character(p));
}
@ @c
static void print_delimiter(pointer p)
{
int a;
if (delimiteroptionset(p)) {
tprint(" [ ");
if (delimiteraxis(p))
tprint("axis ");
if (delimiternoaxis(p))
tprint("noaxis ");
if (delimiterexact(p))
tprint("exact ");
tprint("]");
}
if (delimiterheight(p)) {
tprint("height=");
print_scaled(delimiterheight(p));
tprint(" ");
}
if (delimiterdepth(p)) {
tprint("depth=");
print_scaled(delimiterdepth(p));
tprint(" ");
}
if (delimiterclass(p)) {
tprint("class=");
print_int(delimiterclass(p));
tprint(" ");
}
if (small_fam(p) < 0) {
print_int(-1); /* this should never happen */
} else if (small_fam(p) < 16 && large_fam(p) < 16 &&
small_char(p) < 256 && large_char(p) < 256) {
/* traditional tex style */
a = small_fam(p) * 256 + small_char(p);
a = a * 0x1000 + large_fam(p) * 256 + large_char(p);
print_hex(a);
} else if ((large_fam(p) == 0 && large_char(p) == 0) ||
small_char(p) > 65535 || large_char(p) > 65535) {
/* modern xetex/luatex style */
print_hex(small_fam(p));
print_hex(small_char(p));
}
}
@ The next subroutine will descend to another level of recursion when a
subsidiary mlist needs to be displayed. The parameter |c| indicates what
character is to become part of the recursion history. An empty mlist is
distinguished from a missing field, because these are not equivalent
(as explained above).
@^recursion@>
@c
static void print_subsidiary_data(pointer p, ASCII_code c)
{ /* display a noad field */
if ((int) cur_length >= depth_threshold) {
if (p != null)
tprint(" []");
} else {
append_char(c); /* include |c| in the recursion history */
if (p != null) {
switch (type(p)) {
case math_char_node:
print_ln();
print_current_string();
print_fam_and_char(p);
break;
case sub_box_node:
show_node_list(math_list(p));
break;
case sub_mlist_node:
if (math_list(p) == null) {
print_ln();
print_current_string();
tprint("{}");
} else {
show_node_list(math_list(p));
}
break;
}
}
flush_char(); /* remove |c| from the recursion history */
}
}
@ @c
void display_normal_noad(pointer p)
{
switch (type(p)) {
case simple_noad:
switch (subtype(p)) {
case ord_noad_type:
tprint_esc("mathord");
break;
case op_noad_type_normal:
case op_noad_type_limits:
case op_noad_type_no_limits:
tprint_esc("mathop");
if (subtype(p) == op_noad_type_limits)
tprint_esc("limits");
else if (subtype(p) == op_noad_type_no_limits)
tprint_esc("nolimits");
break;
case bin_noad_type:
tprint_esc("mathbin");
break;
case rel_noad_type:
tprint_esc("mathrel");
break;
case open_noad_type:
tprint_esc("mathopen");
break;
case close_noad_type:
tprint_esc("mathclose");
break;
case punct_noad_type:
tprint_esc("mathpunct");
break;
case inner_noad_type:
tprint_esc("mathinner");
break;
case over_noad_type:
tprint_esc("overline");
break;
case under_noad_type:
tprint_esc("underline");
break;
case vcenter_noad_type:
tprint_esc("vcenter");
break;
default:
tprint("<unknown noad type!>");
break;
}
break;
case radical_noad:
if (subtype(p) == 6)
tprint_esc("Udelimiterover");
else if (subtype(p) == 5)
tprint_esc("Udelimiterunder");
else if (subtype(p) == 4)
tprint_esc("Uoverdelimiter");
else if (subtype(p) == 3)
tprint_esc("Uunderdelimiter");
else if (subtype(p) == 2)
tprint_esc("Uroot");
else
tprint_esc("radical");
print_delimiter(left_delimiter(p));
if (degree(p) != null) {
print_subsidiary_data(degree(p), '/');
}
if (radicalwidth(p)) {
tprint("width=");
print_scaled(radicalwidth(p));
tprint(" ");
}
if (radicaloptionset(p)) {
tprint(" [ ");
if (radicalexact(p))
tprint("exact ");
if (radicalleft(p))
tprint("left ");
if (radicalmiddle(p))
tprint("middle ");
if (radicalright(p))
tprint("right ");
tprint("]");
}
break;
case accent_noad:
if (top_accent_chr(p) != null) {
if (bot_accent_chr(p) != null) {
tprint_esc("Umathaccent both");
} else {
tprint_esc("Umathaccent");
}
} else if (bot_accent_chr(p) != null) {
tprint_esc("Umathaccent bottom");
} else {
tprint_esc("Umathaccent overlay");
}
if (accentfraction(p)) {
tprint(" fraction=");
print_int(accentfraction(p));
tprint(" ");
}
switch (subtype(p)) {
case 0:
if (top_accent_chr(p) != null) {
if (bot_accent_chr(p) != null) {
print_fam_and_char(top_accent_chr(p));
print_fam_and_char(bot_accent_chr(p));
} else {
print_fam_and_char(top_accent_chr(p));
}
} else if (bot_accent_chr(p) != null) {
print_fam_and_char(bot_accent_chr(p));
} else {
print_fam_and_char(overlay_accent_chr(p));
}
break;
case 1:
if (top_accent_chr(p) != null) {
tprint(" fixed ");
print_fam_and_char(top_accent_chr(p));
if (bot_accent_chr(p) != null) {
print_fam_and_char(bot_accent_chr(p));
}
} else {
confusion("display_accent_noad");
}
break;
case 2:
if (bot_accent_chr(p) != null) {
if (top_accent_chr(p) != null) {
print_fam_and_char(top_accent_chr(p));
}
tprint(" fixed ");
print_fam_and_char(bot_accent_chr(p));
} else{
confusion("display_accent_noad");
}
break;
case 3:
if (top_accent_chr(p) != null && bot_accent_chr(p) != null) {
tprint(" fixed ");
print_fam_and_char(top_accent_chr(p));
tprint(" fixed ");
print_fam_and_char(bot_accent_chr(p));
} else {
confusion("display_accent_noad");
}
break;
}
break;
}
print_subsidiary_data(nucleus(p), '.');
print_subsidiary_data(supscr(p), '^');
print_subsidiary_data(subscr(p), '_');
}
@ @c
void display_fence_noad(pointer p)
{
if (subtype(p) == right_noad_side)
tprint_esc("right");
else if (subtype(p) == left_noad_side)
tprint_esc("left");
else
tprint_esc("middle");
print_delimiter(delimiter(p));
}
@ @c
void display_fraction_noad(pointer p)
{
tprint_esc("fraction, thickness ");
if (thickness(p) == default_code)
tprint("= default");
else
print_scaled(thickness(p));
if ((left_delimiter(p) != null) &&
((small_fam(left_delimiter(p)) != 0) ||
(small_char(left_delimiter(p)) != 0) ||
(large_fam(left_delimiter(p)) != 0) ||
(large_char(left_delimiter(p)) != 0))) {
tprint(", left-delimiter ");
print_delimiter(left_delimiter(p));
}
if ((right_delimiter(p) != null) &&
((small_fam(right_delimiter(p)) != 0) ||
(small_char(right_delimiter(p)) != 0) ||
(large_fam(right_delimiter(p)) != 0) ||
(large_char(right_delimiter(p)) != 0))) {
tprint(", right-delimiter ");
print_delimiter(right_delimiter(p));
}
print_subsidiary_data(numerator(p), '\\');
print_subsidiary_data(denominator(p), '/');
}
@ The routines that \TeX\ uses to create mlists are similar to those we have
just seen for the generation of hlists and vlists. But it is necessary to
make ``noads'' as well as nodes, so the reader should review the
discussion of math mode data structures before trying to make sense out of
the following program.
Here is a little routine that needs to be done whenever a subformula
is about to be processed. The parameter is a code like |math_group|.
@c
static void new_save_level_math(group_code c)
{
set_saved_record(0, saved_textdir, 0, text_dir_ptr);
text_dir_ptr = new_dir(math_direction);
incr(save_ptr);
new_save_level(c);
eq_word_define(int_base + body_direction_code, math_direction);
eq_word_define(int_base + par_direction_code, math_direction);
eq_word_define(int_base + text_direction_code, math_direction);
}
@ @c
static void push_math(group_code c, int mstyle)
{
if (math_direction != text_direction)
dir_math_save = true;
push_nest();
mode = -mmode;
incompleat_noad = null;
m_style = mstyle;
new_save_level_math(c);
}
@ @c
static void enter_ordinary_math(void)
{
push_math(math_shift_group, text_style);
eq_word_define(int_base + cur_fam_code, -1);
if (every_math != null)
begin_token_list(every_math, every_math_text);
}
@ @c
void enter_display_math(void);
@ We get into math mode from horizontal mode when a `\.\$' (i.e., a
|math_shift| character) is scanned. We must check to see whether this
`\.\$' is immediately followed by another, in case display math mode is
called for.
@c
void init_math(void)
{
if (cur_cmd == math_shift_cmd) {
get_token(); /* |get_x_token| would fail on \.{\\ifmmode}\thinspace! */
if ((cur_cmd == math_shift_cmd) && (mode > 0)) {
enter_display_math();
} else {
back_input();
enter_ordinary_math();
}
} else if (cur_cmd == math_shift_cs_cmd && cur_chr == display_style && (mode > 0)) {
enter_display_math();
} else if (cur_cmd == math_shift_cs_cmd && cur_chr == text_style) {
enter_ordinary_math();
} else {
you_cant();
}
}
@ We get into ordinary math mode from display math mode when `\.{\\eqno}' or
`\.{\\leqno}' appears. In such cases |cur_chr| will be 0 or~1, respectively;
the value of |cur_chr| is placed onto |save_stack| for safe keeping.
@ When \TeX\ is in display math mode, |cur_group=math_shift_group|,
so it is not necessary for the |start_eq_no| procedure to test for
this condition.
@c
void start_eq_no(void)
{
set_saved_record(0, saved_eqno, 0, cur_chr);
incr(save_ptr);
enter_ordinary_math();
}
@ Subformulas of math formulas cause a new level of math mode to be entered,
on the semantic nest as well as the save stack. These subformulas arise in
several ways: (1)~A left brace by itself indicates the beginning of a
subformula that will be put into a box, thereby freezing its glue and
preventing line breaks. (2)~A subscript or superscript is treated as a
subformula if it is not a single character; the same applies to
the nucleus of things like \.{\\underline}. (3)~The \.{\\left} primitive
initiates a subformula that will be terminated by a matching \.{\\right}.
The group codes placed on |save_stack| in these three cases are
|math_group|, |math_group|, and |math_left_group|, respectively.
Here is the code that handles case (1); the other cases are not quite as
trivial, so we shall consider them later.
@c
void math_left_brace(void)
{
pointer q;
tail_append(new_noad());
q = new_node(math_char_node, 0);
nucleus(tail) = q;
back_input();
(void) scan_math(nucleus(tail), m_style);
}
@ If the inline directions of \.{\\pardir} and \.{\\mathdir} are
opposite, then this function will return true. Discovering that fact
is somewhat odd because it needs traversal of the |save_stack|.
The occurance of displayed equations is weird enough that this is
probably still better than having yet another field in the |input_stack|
structures.
None of this makes much sense if the inline direction of either one of
\.{\\pardir} or \.{\\mathdir} is vertical, but in that case the current
math machinery is ill suited anyway so I do not bother to test that.
@c
static boolean math_and_text_reversed_p(void)
{
int i = save_ptr - 1;
while (save_type(i) != level_boundary)
i--;
while (i < save_ptr) {
if (save_type(i) == restore_old_value &&
save_value(i) == int_base + par_direction_code) {
if (textdir_opposite(math_direction, save_value(i - 1)))
return true;
}
i++;
}
return false;
}
@ When we enter display math mode, we need to call |line_break| to
process the partial paragraph that has just been interrupted by the
display. Then we can set the proper values of |display_width| and
|display_indent| and |pre_display_size|.
@c
void enter_display_math(void)
{
scaled w; /* new or partial |pre_display_size| */
scaled l; /* new |display_width| */
scaled s; /* new |display_indent| */
pointer p;
int n; /* scope of paragraph shape specification */
if (head == tail || /* `\.{\\noindent\$\$}' or `\.{\$\${ }\$\$}' */
(vlink(head) == tail && /* the 2nd of \.{\$\${ }\$\$} \.{\$\${ }\$\$} */
type(tail) == local_par_node && vlink(tail) == null)) {
if (vlink(head) == tail) {
/* bug \#270: |resume_after_display| inserts a |local_par_node|, but if
there is another display immediately following, we have to get rid
of that node */
flush_node(tail);
}
pop_nest();
w = -max_dimen;
} else {
line_break(true, math_shift_group);
w = actual_box_width(just_box, (2 * quad(get_cur_font())));
}
/* now we are in vertical mode, working on the list that will contain the display */
/* A displayed equation is considered to be three lines long, so we
calculate the length and offset of line number |prev_graf+2|. */
if (par_shape_ptr == null) {
if ((hang_indent != 0) &&
(((hang_after >= 0) && (prev_graf + 2 > hang_after)) ||
(prev_graf + 1 < -hang_after))) {
l = hsize - abs(hang_indent);
if (hang_indent > 0)
s = hang_indent;
else
s = 0;
} else {
l = hsize;
s = 0;
}
} else {
n = vinfo(par_shape_ptr + 1);
if (prev_graf + 2 >= n)
p = par_shape_ptr + 2 * n + 1;
else
p = par_shape_ptr + 2 * (prev_graf + 2) + 1;
s = varmem[(p - 1)].cint;
l = varmem[p].cint;
}
push_math(math_shift_group, display_style);
mode = mmode;
eq_word_define(int_base + cur_fam_code, -1);
eq_word_define(dimen_base + pre_display_size_code, w);
eq_word_define(dimen_base + display_width_code, l);
eq_word_define(dimen_base + display_indent_code, s);
eq_word_define(int_base + pre_display_direction_code, (math_and_text_reversed_p() ? -1 : 0));
if (every_display != null)
begin_token_list(every_display, every_display_text);
if (nest_ptr == 1) {
if (!output_active)
lua_node_filter_s(buildpage_filter_callback,lua_key_index(before_display));
build_page();
}
}
@ The next routine parses all variations of a delimiter code. The |extcode|
tells what syntax form to use (\TeX, XeTeX, XeTeXnum, ...) , the
|doclass| tells whether or not read a math class also (for \.{\\delimiter} c.s.).
(the class is passed on for conversion to \.{\\mathchar}).
@c
#define fam_in_range ((cur_fam>=0)&&(cur_fam<256))
static delcodeval do_scan_extdef_del_code(int extcode, boolean doclass)
{
const char *hlp[] = {
"I'm going to use 0 instead of that illegal code value.",
NULL
};
delcodeval d;
int mcls = 0, msfam = 0, mschr = 0, mlfam = 0, mlchr = 0;
if (extcode == tex_mathcode) { /* \.{\\delcode}, this is the easiest */
scan_int();
/* "MFCCFCC or "FCCFCC */
if (doclass) {
mcls = (cur_val / 0x1000000);
cur_val = (cur_val & 0xFFFFFF);
}
if (cur_val > 0xFFFFFF) {
tex_error("Invalid delimiter code", hlp);
cur_val = 0;
}
msfam = (cur_val / 0x100000);
mschr = (cur_val % 0x100000) / 0x1000;
mlfam = (cur_val & 0xFFF) / 0x100;
mlchr = (cur_val % 0x100);
} else if (extcode == umath_mathcode) { /* \.{\\Udelcode} */
/* <0-7>,<0-0xFF>,<0-0x10FFFF> or <0-0xFF>,<0-0x10FFFF> */
if (doclass) {
scan_int();
mcls = cur_val;
}
scan_int();
msfam = cur_val;
scan_char_num();
mschr = cur_val;
if (msfam < 0 || msfam > 255) {
tex_error("Invalid delimiter code", hlp);
msfam = 0;
mschr = 0;
}
mlfam = 0;
mlchr = 0;
} else if (extcode == umathnum_mathcode) { /* \.{\\Udelcodenum} */
/* "FF<21bits> */
/* the largest numeric value is $2^29-1$, but
the top of bit 21 can't be used as it contains invalid USV's
*/
if (doclass) { /* such a primitive doesn't exist */
confusion("umathnum_mathcode");
}
scan_int();
msfam = (cur_val / 0x200000);
mschr = cur_val & 0x1FFFFF;
if (msfam < 0 || msfam > 255 || mschr > 0x10FFFF) {
tex_error("Invalid delimiter code", hlp);
msfam = 0;
mschr = 0;
}
mlfam = 0;
mlchr = 0;
} else {
/* something's gone wrong */
confusion("unknown_extcode");
}
d.class_value = mcls;
d.small_family_value = msfam;
d.small_character_value = mschr;
d.large_family_value = mlfam;
d.large_character_value = mlchr;
return d;
}
@ @c
void scan_extdef_del_code(int level, int extcode)
{
delcodeval d;
int p;
scan_char_num();
p = cur_val;
scan_optional_equals();
d = do_scan_extdef_del_code(extcode, false);
set_del_code(p, d.small_family_value, d.small_character_value,
d.large_family_value, d.large_character_value,
(quarterword) (level));
}
@ @c
mathcodeval scan_mathchar(int extcode)
{
char errstr[255] = { 0 };
const char *hlp[] = {
"I'm going to use 0 instead of that illegal code value.",
NULL
};
mathcodeval d;
int mcls = 0, mfam = 0, mchr = 0;
if (extcode == tex_mathcode) { /* \.{\\mathcode} */
/* "TFCC */
scan_int();
if (cur_val > 0x8000) {
tex_error("Invalid math code", hlp);
cur_val = 0;
}
if (cur_val < 0) {
snprintf(errstr, 255, "Bad mathchar (%d)", (int)cur_val);
tex_error(errstr, hlp);
cur_val = 0;
}
mcls = (cur_val / 0x1000);
mfam = ((cur_val % 0x1000) / 0x100);
mchr = (cur_val % 0x100);
} else if (extcode == umath_mathcode) {
/* <0-0x7> <0-0xFF> <0-0x10FFFF> */
scan_int();
mcls = cur_val;
scan_int();
mfam = cur_val;
scan_char_num();
mchr = cur_val;
if (mcls < 0 || mcls > 7 || mfam > 255) {
tex_error("Invalid math code", hlp);
mchr = 0;
mfam = 0;
mcls = 0;
}
} else if (extcode == umathnum_mathcode) {
/* "FFT<21bits> */
/* the largest numeric value is $2^32-1$, but
the top of bit 21 can't be used as it contains invalid USV's
*/
/* Note: |scan_int| won't accept families 128-255 because these use bit 32 */
scan_int();
mfam = (cur_val / 0x200000) & 0x7FF;
mcls = mfam % 0x08;
mfam = mfam / 0x08;
mchr = cur_val & 0x1FFFFF;
if (mchr > 0x10FFFF) {
tex_error("Invalid math code", hlp);
mcls = 0;
mfam = 0;
mchr = 0;
}
} else {
/* something's gone wrong */
confusion("unknown_extcode");
}
d.class_value = mcls;
d.family_value = mfam;
d.character_value = mchr;
return d;
}
@ @c
void scan_extdef_math_code(int level, int extcode)
{
mathcodeval d;
int p;
scan_char_num();
p = cur_val;
scan_optional_equals();
d = scan_mathchar(extcode);
set_math_code(p, d.class_value,
d.family_value, d.character_value, (quarterword) (level));
}
@ this reads in a delcode when actually a mathcode is needed
@c
mathcodeval scan_delimiter_as_mathchar(int extcode)
{
delcodeval dval;
mathcodeval mval;
dval = do_scan_extdef_del_code(extcode, true);
mval.class_value = dval.class_value;
mval.family_value = dval.small_family_value;
mval.character_value = dval.small_character_value;
return mval;
}
@ Recall that the |nucleus|, |subscr|, and |supscr| fields in a noad
are broken down into subfields called |type| and either |math_list| or
|(math_fam,math_character)|. The job of |scan_math| is to figure out
what to place in one of these principal fields; it looks at the
subformula that comes next in the input, and places an encoding of
that subformula into a given word of |mem|.
@c
#define get_next_nb_nr() do { get_x_token(); } while (cur_cmd==spacer_cmd||cur_cmd==relax_cmd)
int scan_math_style(pointer p, int mstyle)
{
get_next_nb_nr();
back_input();
scan_left_brace();
set_saved_record(0, saved_math, 0, p);
incr(save_ptr);
push_math(math_group, mstyle);
return 1;
}
int scan_math(pointer p, int mstyle)
{
/* label restart,reswitch,exit; */
mathcodeval mval = { 0, 0, 0 };
assert(p != null);
RESTART:
get_next_nb_nr();
RESWITCH:
switch (cur_cmd) {
case letter_cmd:
case other_char_cmd:
case char_given_cmd:
mval = get_math_code(cur_chr);
if (mval.class_value == 8) {
/* An active character that is an |outer_call| is allowed here */
cur_cs = active_to_cs(cur_chr, true);
cur_cmd = eq_type(cur_cs);
cur_chr = equiv(cur_cs);
x_token();
back_input();
goto RESTART;
}
break;
case char_num_cmd:
scan_char_num();
cur_chr = cur_val;
cur_cmd = char_given_cmd;
goto RESWITCH;
break;
case math_char_num_cmd:
if (cur_chr == 0)
mval = scan_mathchar(tex_mathcode);
else if (cur_chr == 1)
mval = scan_mathchar(umath_mathcode);
else if (cur_chr == 2)
mval = scan_mathchar(umathnum_mathcode);
else
confusion("scan_math");
break;
case math_given_cmd:
mval = mathchar_from_integer(cur_chr, tex_mathcode);
break;
case xmath_given_cmd:
mval = mathchar_from_integer(cur_chr, umath_mathcode);
break;
case delim_num_cmd:
if (cur_chr == 0)
mval = scan_delimiter_as_mathchar(tex_mathcode);
else if (cur_chr == 1)
mval = scan_delimiter_as_mathchar(umath_mathcode);
else
confusion("scan_math");
break;
default:
/* The pointer |p| is placed on |save_stack| while a complex subformula
is being scanned. */
back_input();
scan_left_brace();
set_saved_record(0, saved_math, 0, p);
incr(save_ptr);
push_math(math_group, mstyle);
return 1;
}
type(p) = math_char_node;
math_character(p) = mval.character_value;
if ((mval.class_value == var_code) && fam_in_range)
math_fam(p) = cur_fam;
else
math_fam(p) = mval.family_value;
return 0;
}
@ The |set_math_char| procedure creates a new noad appropriate to a given
math code, and appends it to the current mlist. However, if the math code
is sufficiently large, the |cur_chr| is treated as an active character and
nothing is appended.
@c
void set_math_char(mathcodeval mval)
{
pointer p; /* the new noad */
if (mval.class_value == 8) {
/* An active character that is an |outer_call| is allowed here */
cur_cs = active_to_cs(cur_chr, true);
cur_cmd = eq_type(cur_cs);
cur_chr = equiv(cur_cs);
x_token();
back_input();
} else {
pointer q;
p = new_noad();
q = new_node(math_char_node, 0);
nucleus(p) = q;
math_character(nucleus(p)) = mval.character_value;
math_fam(nucleus(p)) = mval.family_value;
if (mval.class_value == var_code) {
if (fam_in_range)
math_fam(nucleus(p)) = cur_fam;
subtype(p) = ord_noad_type;
} else {
switch (mval.class_value) {
/* *INDENT-OFF* */
case 0: subtype(p) = ord_noad_type; break;
case 1: subtype(p) = op_noad_type_normal; break;
case 2: subtype(p) = bin_noad_type; break;
case 3: subtype(p) = rel_noad_type; break;
case 4: subtype(p) = open_noad_type; break;
case 5: subtype(p) = close_noad_type; break;
case 6: subtype(p) = punct_noad_type; break;
/* *INDENT-ON* */
}
}
vlink(tail) = p;
tail = p;
}
}
@ The |math_char_in_text| procedure creates a new node representing a math char
in text code, and appends it to the current list. However, if the math code
is sufficiently large, the |cur_chr| is treated as an active character and
nothing is appended.
@c
void math_char_in_text(mathcodeval mval)
{
pointer p; /* the new node */
if (mval.class_value == 8) {
/* An active character that is an |outer_call| is allowed here */
cur_cs = active_to_cs(cur_chr, true);
cur_cmd = eq_type(cur_cs);
cur_chr = equiv(cur_cs);
x_token();
back_input();
} else {
p = new_char(fam_fnt(mval.family_value, text_size), mval.character_value);
vlink(tail) = p;
tail = p;
}
}
@ @c
void math_math_comp(void)
{
pointer q;
tail_append(new_noad());
subtype(tail) = (quarterword) cur_chr;
q = new_node(math_char_node, 0);
nucleus(tail) = q;
if (cur_chr == over_noad_type)
(void) scan_math(nucleus(tail), cramped_style(m_style));
else
(void) scan_math(nucleus(tail), m_style);
}
@ @c
void math_limit_switch(void)
{
const char *hlp[] = {
"I'm ignoring this misplaced \\limits or \\nolimits command.",
NULL
};
if (head != tail) {
if (type(tail) == simple_noad &&
(subtype(tail) == op_noad_type_normal ||
subtype(tail) == op_noad_type_limits ||
subtype(tail) == op_noad_type_no_limits)) {
subtype(tail) = (quarterword) cur_chr;
return;
}
}
tex_error("Limit controls must follow a math operator", hlp);
}
@ Delimiter fields of noads are filled in by the |scan_delimiter| routine.
The first parameter of this procedure is the |mem| address where the
delimiter is to be placed; the second tells if this delimiter follows
\.{\\radical} or not.
@c
static void scan_delimiter(pointer p, int r)
{
delcodeval dval = { 0, 0, 0, 0, 0 };
if (r == tex_mathcode) { /* \.{\\radical} */
dval = do_scan_extdef_del_code(tex_mathcode, true);
} else if (r == umath_mathcode) { /* \.{\\Uradical} */
dval = do_scan_extdef_del_code(umath_mathcode, false);
} else if (r == no_mathcode) {
get_next_nb_nr();
switch (cur_cmd) {
case letter_cmd:
case other_char_cmd:
dval = get_del_code(cur_chr);
break;
case delim_num_cmd:
if (cur_chr == 0) /* \.{\\delimiter} */
dval = do_scan_extdef_del_code(tex_mathcode, true);
else if (cur_chr == 1) /* \.{\\Udelimiter} */
dval = do_scan_extdef_del_code(umath_mathcode, true);
else
confusion("scan_delimiter1");
break;
default:
dval.small_family_value = -1;
break;
}
} else {
confusion("scan_delimiter2");
}
if (p == null)
return;
if (dval.small_family_value < 0) {
const char *hlp[] = {
"I was expecting to see something like `(' or `\\{' or",
"`\\}' here. If you typed, e.g., `{' instead of `\\{', you",
"should probably delete the `{' by typing `1' now, so that",
"braces don't get unbalanced. Otherwise just proceed",
"Acceptable delimiters are characters whose \\delcode is",
"nonnegative, or you can use `\\delimiter <delimiter code>'.",
NULL
};
back_error("Missing delimiter (. inserted)", hlp);
small_fam(p) = 0;
small_char(p) = 0;
large_fam(p) = 0;
large_char(p) = 0;
} else {
small_fam(p) = dval.small_family_value;
small_char(p) = dval.small_character_value;
large_fam(p) = dval.large_family_value;
large_char(p) = dval.large_character_value;
}
return;
}
@ @c
void math_radical(void)
{
halfword q;
int chr_code = cur_chr;
halfword options = 0;
tail_append(new_node(radical_noad, chr_code));
q = new_node(delim_node, 0);
left_delimiter(tail) = q;
while (1) {
if (scan_keyword("width")) {
scan_dimen(false,false,false);
radicalwidth(tail) = cur_val ;
} else if (scan_keyword("left")) {
options = options | noad_option_left ;
} else if (scan_keyword("middle")) {
options = options | noad_option_middle ;
} else if (scan_keyword("right")) {
options = options | noad_option_right ;
} else {
break;
}
}
radicaloptions(tail) = options;
if (chr_code == 0) /* \.{\\radical} */
scan_delimiter(left_delimiter(tail), tex_mathcode);
else if (chr_code == 1) /* \.{\\Uradical} */
scan_delimiter(left_delimiter(tail), umath_mathcode);
else if (chr_code == 2) /* \.{\\Uroot} */
scan_delimiter(left_delimiter(tail), umath_mathcode);
else if (chr_code == 3) /* \.{\\Uunderdelimiter} */
scan_delimiter(left_delimiter(tail), umath_mathcode);
else if (chr_code == 4) /* \.{\\Uoverdelimiter} */
scan_delimiter(left_delimiter(tail), umath_mathcode);
else if (chr_code == 5) /* \.{\\Udelimiterunder} */
scan_delimiter(left_delimiter(tail), umath_mathcode);
else if (chr_code == 6) /* \.{\\Udelimiterover} */
scan_delimiter(left_delimiter(tail), umath_mathcode);
else if (chr_code == 7) /* \.{\\Uhextensible} */
scan_delimiter(left_delimiter(tail), umath_mathcode);
else
confusion("math_radical");
if (chr_code == 7) {
q = new_node(sub_box_node, 0); /* type will change */
nucleus(tail) = q;
return;
} else if (chr_code == 2) {
/* the trick with the |vlink(q)| is used by |scan_math|
to decide whether it needs to go on */
q = new_node(math_char_node, 0);
vlink(q) = tail;
degree(tail) = q;
if (!scan_math(degree(tail), sup_sup_style(m_style))) {
vlink(degree(tail)) = null;
q = new_node(math_char_node, 0);
nucleus(tail) = q;
(void) scan_math(nucleus(tail), cramped_style(m_style));
}
} else {
q = new_node(math_char_node, 0);
nucleus(tail) = q;
(void) scan_math(nucleus(tail), cramped_style(m_style));
}
}
@ @c
void math_ac(void)
{
halfword q;
mathcodeval t = { 0, 0, 0 };
mathcodeval b = { 0, 0, 0 };
mathcodeval o = { 0, 0, 0 };
if (cur_cmd == accent_cmd) {
const char *hlp[] = {
"I'm changing \\accent to \\mathaccent here; wish me luck.",
"(Accents are not the same in formulas as they are in text.)",
NULL
};
tex_error("Please use \\mathaccent for accents in math mode", hlp);
}
tail_append(new_node(accent_noad, 0));
if (cur_chr == 0) { /* \.{\\mathaccent} */
t = scan_mathchar(tex_mathcode);
} else if (cur_chr == 1) { /* \.{\\Umathaccent} */
if (scan_keyword("fixed")) {
/* top */
subtype(tail) = 1;
t = scan_mathchar(umath_mathcode);
} else if (scan_keyword("both")) {
/* top bottom */
if (scan_keyword("fixed")) {
subtype(tail) = 1;
}
t = scan_mathchar(umath_mathcode);
if (scan_keyword("fixed")) {
subtype(tail) += 2;
}
b = scan_mathchar(umath_mathcode);
} else if (scan_keyword("bottom")) {
/* bottom */
if (scan_keyword("fixed")) {
subtype(tail) = 2;
}
b = scan_mathchar(umath_mathcode);
} else if (scan_keyword("top")) {
/* top */
if (scan_keyword("fixed")) {
subtype(tail) = 1;
}
t = scan_mathchar(umath_mathcode);
} else if (scan_keyword("overlay")) {
/* overlay */
if (scan_keyword("fixed")) {
subtype(tail) = 1;
}
o = scan_mathchar(umath_mathcode);
} else {
/* top */
t = scan_mathchar(umath_mathcode);
}
if (scan_keyword("fraction")) {
scan_int();
accentfraction(tail) = cur_val;
}
} else {
confusion("mathaccent");
}
if (!(t.character_value == 0 && t.family_value == 0)) {
q = new_node(math_char_node, 0);
top_accent_chr(tail) = q;
math_character(top_accent_chr(tail)) = t.character_value;
if ((t.class_value == var_code) && fam_in_range)
math_fam(top_accent_chr(tail)) = cur_fam;
else
math_fam(top_accent_chr(tail)) = t.family_value;
}
if (!(b.character_value == 0 && b.family_value == 0)) {
q = new_node(math_char_node, 0);
bot_accent_chr(tail) = q;
math_character(bot_accent_chr(tail)) = b.character_value;
if ((b.class_value == var_code) && fam_in_range)
math_fam(bot_accent_chr(tail)) = cur_fam;
else
math_fam(bot_accent_chr(tail)) = b.family_value;
}
if (!(o.character_value == 0 && o.family_value == 0)) {
q = new_node(math_char_node, 0);
overlay_accent_chr(tail) = q;
math_character(overlay_accent_chr(tail)) = o.character_value;
if ((o.class_value == var_code) && fam_in_range)
math_fam(overlay_accent_chr(tail)) = cur_fam;
else
math_fam(overlay_accent_chr(tail)) = o.family_value;
}
q = new_node(math_char_node, 0);
nucleus(tail) = q;
(void) scan_math(nucleus(tail), cramped_style(m_style));
}
@ @c
pointer math_vcenter_group(pointer p)
{
pointer q, r;
q = new_noad();
subtype(q) = vcenter_noad_type;
r = new_node(sub_box_node, 0);
nucleus(q) = r;
math_list(nucleus(q)) = p;
return q;
}
@ The routine that scans the four mlists of a \.{\\mathchoice} is very
much like the routine that builds discretionary nodes.
@c
void append_choices(void)
{
tail_append(new_choice());
incr(save_ptr);
set_saved_record(-1, saved_choices, 0, 0);
push_math(math_choice_group, display_style);
scan_left_brace();
}
@ @c
void build_choices(void)
{
pointer p; /* the current mlist */
int prev_style;
prev_style = m_style;
unsave_math();
p = fin_mlist(null);
assert(saved_type(-1) == saved_choices);
switch (saved_value(-1)) {
case 0:
display_mlist(tail) = p;
break;
case 1:
text_mlist(tail) = p;
break;
case 2:
script_mlist(tail) = p;
break;
case 3:
script_script_mlist(tail) = p;
decr(save_ptr);
return;
break;
} /* there are no other cases */
set_saved_record(-1, saved_choices, 0, (saved_value(-1) + 1));
push_math(math_choice_group, (prev_style + 2));
scan_left_brace();
}
@ Subscripts and superscripts are attached to the previous nucleus by the
action procedure called |sub_sup|.
@c
void sub_sup(void)
{
pointer q;
if (tail == head || (!scripts_allowed(tail))) {
tail_append(new_noad());
q = new_node(sub_mlist_node, 0);
nucleus(tail) = q;
}
if (cur_cmd == sup_mark_cmd || cur_chr == sup_mark_cmd) { /* |super_sub_script| */
if (supscr(tail) != null) {
const char *hlp[] = {
"I treat `x^1^2' essentially like `x^1{}^2'.", NULL
};
tail_append(new_noad());
q = new_node(sub_mlist_node, 0);
nucleus(tail) = q;
tex_error("Double superscript", hlp);
}
q = new_node(math_char_node, 0);
supscr(tail) = q;
(void) scan_math(supscr(tail), sup_style(m_style));
} else if (cur_cmd == sub_mark_cmd || cur_chr == sub_mark_cmd) {
if (subscr(tail) != null) {
const char *hlp[] = {
"I treat `x_1_2' essentially like `x_1{}_2'.", NULL
};
tail_append(new_noad());
q = new_node(sub_mlist_node, 0);
nucleus(tail) = q;
tex_error("Double subscript", hlp);
}
q = new_node(math_char_node, 0);
subscr(tail) = q;
(void) scan_math(subscr(tail), sub_style(m_style));
}
}
@ An operation like `\.{\\over}' causes the current mlist to go into a
state of suspended animation: |incompleat_noad| points to a |fraction_noad|
that contains the mlist-so-far as its numerator, while the denominator
is yet to come. Finally when the mlist is finished, the denominator will
go into the incompleat fraction noad, and that noad will become the
whole formula, unless it is surrounded by `\.{\\left}' and `\.{\\right}'
delimiters.
@c
void math_fraction(void)
{
halfword c; /* the type of generalized fraction we are scanning */
pointer q;
halfword options = 0;
c = cur_chr;
if (incompleat_noad != null) {
const char *hlp[] = {
"I'm ignoring this fraction specification, since I don't",
"know whether a construction like `x \\over y \\over z'",
"means `{x \\over y} \\over z' or `x \\over {y \\over z}'.",
NULL
};
if (c >= delimited_code) {
scan_delimiter(null, no_mathcode);
scan_delimiter(null, no_mathcode);
}
if ((c % delimited_code) == above_code)
scan_normal_dimen();
tex_error("Ambiguous; you need another { and }", hlp);
} else {
incompleat_noad = new_node(fraction_noad, 0);
numerator(incompleat_noad) = new_node(sub_mlist_node, 0);
math_list(numerator(incompleat_noad)) = vlink(head);
vlink(head) = null;
tail = head;
m_style = cramped_style(m_style);
if ((c % delimited_code) == skewed_code) {
q = new_node(delim_node, 0);
middle_delimiter(incompleat_noad) = q;
scan_delimiter(middle_delimiter(incompleat_noad), no_mathcode);
}
if (c >= delimited_code) {
q = new_node(delim_node, 0);
left_delimiter(incompleat_noad) = q;
q = new_node(delim_node, 0);
right_delimiter(incompleat_noad) = q;
scan_delimiter(left_delimiter(incompleat_noad), no_mathcode);
scan_delimiter(right_delimiter(incompleat_noad), no_mathcode);
}
switch (c % delimited_code) {
case above_code:
while (1) {
if (scan_keyword("exact")) {
options = options | noad_option_exact ;
} else {
break;
}
}
fractionoptions(incompleat_noad) = options;
scan_normal_dimen();
thickness(incompleat_noad) = cur_val;
break;
case over_code:
thickness(incompleat_noad) = default_code;
break;
case atop_code:
thickness(incompleat_noad) = 0;
break;
case skewed_code:
while (1) {
if (scan_keyword("exact")) {
options = options | noad_option_exact ;
} else if (scan_keyword("noaxis")) {
options = options | noad_option_no_axis ;
} else {
break;
}
}
fractionoptions(incompleat_noad) = options;
thickness(incompleat_noad) = 0;
break;
}
}
}
@ At the end of a math formula or subformula, the |fin_mlist| routine is
called upon to return a pointer to the newly completed mlist, and to
pop the nest back to the enclosing semantic level. The parameter to
|fin_mlist|, if not null, points to a |fence_noad| that ends the
current mlist; this |fence_noad| has not yet been appended.
@c
pointer fin_mlist(pointer p)
{
pointer q; /* the mlist to return */
if (incompleat_noad != null) {
if (denominator(incompleat_noad) != null) {
type(denominator(incompleat_noad)) = sub_mlist_node;
} else {
q = new_node(sub_mlist_node, 0);
denominator(incompleat_noad) = q;
}
math_list(denominator(incompleat_noad)) = vlink(head);
if (p == null) {
q = incompleat_noad;
} else {
q = math_list(numerator(incompleat_noad));
if ((type(q) != fence_noad) || (subtype(q) != left_noad_side)
|| (delim_ptr == null))
confusion("right"); /* this can't happen */
math_list(numerator(incompleat_noad)) = vlink(delim_ptr);
vlink(delim_ptr) = incompleat_noad;
vlink(incompleat_noad) = p;
}
} else {
vlink(tail) = p;
q = vlink(head);
}
pop_nest();
return q;
}
@ Now at last we're ready to see what happens when a right brace occurs
in a math formula. Two special cases are simplified here: Braces are effectively
removed when they surround a single Ord without sub/superscripts, or when they
surround an accent that is the nucleus of an Ord atom.
@c
void close_math_group(pointer p)
{
int old_style = m_style;
unsave_math();
decr(save_ptr);
assert(saved_type(0) == saved_math);
type(saved_value(0)) = sub_mlist_node;
p = fin_mlist(null);
math_list(saved_value(0)) = p;
if (p != null) {
if (vlink(p) == null) {
if (type(p) == simple_noad && subtype(p) == ord_noad_type) {
if (subscr(p) == null && supscr(p) == null) {
type(saved_value(0)) = type(nucleus(p));
if (type(nucleus(p)) == math_char_node) {
math_fam(saved_value(0)) = math_fam(nucleus(p));
math_character(saved_value(0)) =
math_character(nucleus(p));
} else {
math_list(saved_value(0)) = math_list(nucleus(p));
math_list(nucleus(p)) = null;
}
delete_attribute_ref(node_attr(saved_value(0)));
node_attr(saved_value(0)) = node_attr(nucleus(p));
node_attr(nucleus(p)) = null;
flush_node(p);
}
} else if (type(p) == accent_noad) {
if (saved_value(0) == nucleus(tail)) {
if (type(tail) == simple_noad
&& subtype(tail) == ord_noad_type) {
pointer q = head;
while (vlink(q) != tail)
q = vlink(q);
vlink(q) = p;
nucleus(tail) = null;
subscr(tail) = null;
supscr(tail) = null;
delete_attribute_ref(node_attr(p));
node_attr(p) = node_attr(tail);
node_attr(tail) = null;
flush_node(tail);
tail = p;
}
}
}
}
}
if (vlink(saved_value(0)) > 0) {
pointer q;
q = new_node(math_char_node, 0);
nucleus(vlink(saved_value(0))) = q;
vlink(saved_value(0)) = null;
saved_value(0) = q;
(void) scan_math(saved_value(0), old_style);
/* restart */
}
}
@ We have dealt with all constructions of math mode except `\.{\\left}' and
`\.{\\right}', so the picture is completed by the following sections of
the program. The |middle| feature of eTeX allows one ore several \.{\\middle}
delimiters to appear between \.{\\left} and \.{\\right}.
@c
void math_left_right(void)
{
halfword t; /* |left_noad_side| .. |right_noad_side| */
pointer p; /* new noad */
pointer q; /* resulting mlist */
pointer r; /* temporary */
halfword ht = 0;
halfword dp = 0;
halfword options = 0;
halfword type = -1 ;
t = cur_chr;
if (t > 10) {
/* we have \Uleft \Uright \Umiddle */
t = t - 10;
while (1) {
if (scan_keyword("height")) {
scan_dimen(false,false,false);
ht = cur_val ;
} else if (scan_keyword("depth")) {
scan_dimen(false,false,false);
dp = cur_val ;
} else if (scan_keyword("axis")) {
options = options | noad_option_axis ;
} else if (scan_keyword("noaxis")) {
options = options | noad_option_no_axis ;
} else if (scan_keyword("exact")) {
options = options | noad_option_exact ;
} else if (scan_keyword("class")) {
scan_int();
type = cur_val ;
} else {
break;
}
}
}
if ((t != no_noad_side) && (t != left_noad_side) && (cur_group != math_left_group)) {
if (cur_group == math_shift_group) {
scan_delimiter(null, no_mathcode);
if (t == middle_noad_side) {
const char *hlp[] = {
"I'm ignoring a \\middle that had no matching \\left.",
NULL
};
tex_error("Extra \\middle", hlp);
} else {
const char *hlp[] = {
"I'm ignoring a \\right that had no matching \\left.",
NULL
};
tex_error("Extra \\right", hlp);
}
} else {
off_save();
}
} else {
p = new_noad();
type(p) = fence_noad;
subtype(p) = (quarterword) t;
r = new_node(delim_node, 0);
delimiter(p) = r;
delimiterheight(p) = ht;
delimiterdepth(p) = dp;
delimiteroptions(p) = options;
delimiterclass(p) = type;
delimiteritalic(p) = 0;
scan_delimiter(delimiter(p), no_mathcode);
if (t == no_noad_side) {
tail_append(new_noad());
subtype(tail) = inner_noad_type;
r = new_node(sub_mlist_node, 0);
nucleus(tail) = r;
math_list(nucleus(tail)) = p;
return ;
}
if (t == left_noad_side) {
q = p;
} else {
q = fin_mlist(p);
unsave_math();
}
if (t != right_noad_side) {
push_math(math_left_group, m_style);
vlink(head) = q;
tail = p;
delim_ptr = p;
} else {
tail_append(new_noad());
subtype(tail) = inner_noad_type;
r = new_node(sub_mlist_node, 0);
nucleus(tail) = r;
math_list(nucleus(tail)) = q;
}
}
}
@ \TeX\ gets to the following part of the program when
the first `\.\$' ending a display has been scanned.
@c
static void check_second_math_shift(void)
{
get_x_token();
if (cur_cmd != math_shift_cmd) {
const char *hlp[] = {
"The `$' that I just saw supposedly matches a previous `$$'.",
"So I shall assume that you typed `$$' both times.",
NULL
};
back_error("Display math should end with $$", hlp);
}
}
static void check_display_math_end(void)
{
if (cur_chr != cramped_display_style) {
const char *hlp[] = {
"I shall assume that you typed that.",
NULL
};
tex_error("Display math should end with \\Ustopdisplaymath", hlp);
}
}
static void check_inline_math_end(void)
{
if (cur_chr != cramped_text_style) {
const char *hlp[] = {
"I shall assume that you typed that.",
NULL
};
tex_error("Inline math should end with \\Ustopmath", hlp);
}
}
@ @c
static void resume_after_display(void)
{
if (cur_group != math_shift_group)
confusion("display");
unsave_math();
prev_graf = prev_graf + 3;
push_nest();
mode = hmode;
space_factor = 1000;
tail_append(make_local_par_node()); /* this needs to be intercepted in
the display math start ! */
get_x_token();
if (cur_cmd != spacer_cmd)
back_input();
if (nest_ptr == 1) {
lua_node_filter_s(buildpage_filter_callback,lua_key_index(after_display));
build_page();
}
}
@ The fussiest part of math mode processing occurs when a displayed formula is
being centered and placed with an optional equation number.
At this time we are in vertical mode (or internal vertical mode).
|p| points to the mlist for the formula.
|a| is either |null| or it points to a box containing the equation number.
|l| is true if there was an \.{\\leqno}/ (so |a| is a horizontal box).
@c
static void finish_displayed_math(boolean l, pointer eqno_box, pointer p)
{
pointer eq_box; /* box containing the equation */
scaled eq_w; /* width of the equation */
scaled line_w; /* width of the line */
scaled eqno_w; /* width of equation number */
scaled eqno_w2; /* width of equation number plus space to separate from equation */
scaled line_s; /* move the line right this much */
scaled d; /* displacement of equation in the line */
small_number g1, g2; /* glue parameter codes for before and after */
pointer r,s; /* kern nodes used to position the display */
pointer t; /* tail of adjustment list */
pointer pre_t; /* tail of pre-adjustment list */
boolean swap_dir; /* true if the math and surrounding text dirs are opposed */
scaled eqno_width;
swap_dir = (int_par(pre_display_direction_code) < 0 ? true : false );
if (eqno_box != null && swap_dir)
l = !l;
adjust_tail = adjust_head;
pre_adjust_tail = pre_adjust_head;
eq_box = hpack(p, 0, additional, -1);
subtype(eq_box) = equation_list; /* new */
build_attribute_list(eq_box);
p = list_ptr(eq_box);
t = adjust_tail;
adjust_tail = null;
pre_t = pre_adjust_tail;
pre_adjust_tail = null;
eq_w = width(eq_box);
line_w = display_width;
line_s = display_indent;
if (eqno_box == null) {
eqno_w = 0;
eqno_width = 0;
eqno_w2 = 0;
} else {
eqno_w = width(eqno_box);
eqno_width = eqno_w;
eqno_w2 = eqno_w + round_xn_over_d(math_eqno_gap_step, get_math_quad(text_size), 1000);
subtype(eqno_box) = equation_number_list; /* new */
/* build_attribute_list(eqno_box); */ /* probably already set */
}
if (eq_w + eqno_w2 > line_w) {
/* The user can force the equation number to go on a separate line
by causing its width to be zero. */
if ((eqno_w != 0) && ((eq_w - total_shrink[normal] + eqno_w2 <= line_w)
|| (total_shrink[sfi] != 0)
|| (total_shrink[fil] != 0)
|| (total_shrink[fill] != 0)
|| (total_shrink[filll] != 0))) {
list_ptr(eq_box) = null;
flush_node(eq_box);
eq_box = hpack(p, line_w - eqno_w2, exactly, -1);
subtype(eq_box) = equation_list; /* new */
build_attribute_list(eq_box);
} else {
eqno_w = 0;
if (eq_w > line_w) {
list_ptr(eq_box) = null;
flush_node(eq_box);
eq_box = hpack(p, line_w, exactly, -1);
subtype(eq_box) = equation_list; /* new */
build_attribute_list(eq_box);
}
}
eq_w = width(eq_box);
}
/* We try first to center the display without regard to the existence of
the equation number. If that would make it too close (where ``too close''
means that the space between display and equation number is less than the
width of the equation number), we either center it in the remaining space
or move it as far from the equation number as possible. The latter alternative
is taken only if the display begins with glue, since we assume that the
user put glue there to control the spacing precisely.
*/
d = half(line_w - eq_w);
if ((eqno_w > 0) && (d < 2 * eqno_w)) { /* too close */
d = half(line_w - eq_w - eqno_w);
if (p != null)
if (!is_char_node(p))
if (type(p) == glue_node)
d = 0;
}
tail_append(new_penalty(int_par(pre_display_penalty_code)));
if ((d + line_s <= pre_display_size) || l) { /* not enough clearance */
g1 = above_display_skip_code;
g2 = below_display_skip_code;
} else {
g1 = above_display_short_skip_code;
g2 = below_display_short_skip_code;
}
/* If the equation number is set on a line by itself, either before or
after the formula, we append an infinite penalty so that no page break will
separate the display from its number; and we use the same size and
displacement for all three potential lines of the display, even though
`\.{\\parshape}' may specify them differently.
*/
/* \.{\\leqno} on a forced single line due to |width=0| */
/* it follows that |type(a)=hlist_node| */
if (eqno_box && l && (eqno_w == 0)) {
/* if (math_direction==dir_TLT) { */
shift_amount(eqno_box) = 0;
/* } else { */
/* } */
append_to_vlist(eqno_box,lua_key_index(equation_number));
tail_append(new_penalty(inf_penalty));
} else {
switch (display_skip_mode) {
case 0 : /* normal tex */
tail_append(new_param_glue(g1));
break;
case 1 : /* always */
tail_append(new_param_glue(g1));
break;
case 2 : /* non-zero */
if (g1 != 0)
tail_append(new_param_glue(g1));
break;
case 3: /* ignore */
break;
}
}
if (eqno_w != 0) {
r = new_kern(line_w - eq_w - eqno_w - d);
if (l) {
if (swap_dir) {
if (math_direction==dir_TLT) {
/* TRT + TLT + \eqno, (swap_dir=true, math_direction=TLT, l=true) */
#ifdef DEBUG
fprintf(stderr, "\nDEBUG: CASE 1\n");
#endif
s = new_kern(width(r) + eqno_w);
try_couple_nodes(eqno_box,r);
try_couple_nodes(r,eq_box);
try_couple_nodes(eq_box,s);
} else {
/* TLT + TRT + \eqno, (swap_dir=true, math_direction=TRT, l=true) */
#ifdef DEBUG
fprintf(stderr, "\nDEBUG: CASE 2\n");
#endif
try_couple_nodes(eqno_box,r);
try_couple_nodes(r,eq_box);
}
} else {
if (math_direction==dir_TLT) {
/* TLT + TLT + \leqno, (swap_dir=false, math_direction=TLT, l=true) */ /* OK */
#ifdef DEBUG
fprintf(stderr, "\nDEBUG: CASE 3\n");
#endif
s = new_kern(width(r) + eqno_w);
} else {
/* TRT + TRT + \leqno, (swap_dir=false, math_direction=TRT, l=true) */
#ifdef DEBUG
fprintf(stderr, "\nDEBUG: CASE 4\n");
#endif
s = new_kern(width(r));
}
try_couple_nodes(eqno_box,r);
try_couple_nodes(r,eq_box);
try_couple_nodes(eq_box,s);
}
eq_box = eqno_box;
} else {
if (swap_dir) {
if (math_direction==dir_TLT) {
/* TRT + TLT + \leqno, (swap_dir=true, math_direction=TLT, l=false) */
#ifdef DEBUG
fprintf(stderr, "\nDEBUG: CASE 5\n");
#endif
} else {
/* TLT + TRT + \leqno, (swap_dir=true, math_direction=TRT, l=false) */
#ifdef DEBUG
fprintf(stderr, "\nDEBUG: CASE 6\n");
#endif
}
try_couple_nodes(eq_box,r);
try_couple_nodes(r,eqno_box);
} else {
if (math_direction==dir_TLT) {
/* TLT + TLT + \eqno, (swap_dir=false, math_direction=TLT, l=false) */ /* OK */
#ifdef DEBUG
fprintf(stderr, "\nDEBUG: CASE 7\n");
#endif
s = new_kern(d);
} else {
/* TRT + TRT + \eqno, (swap_dir=false, math_direction=TRT, l=false) */
#ifdef DEBUG
fprintf(stderr, "\nDEBUG: CASE 8\n");
#endif
s = new_kern(width(r) + eqno_w);
}
try_couple_nodes(s,eq_box);
try_couple_nodes(eq_box,r);
try_couple_nodes(r,eqno_box);
eq_box = s;
}
}
eq_box = hpack(eq_box, 0, additional, -1);
subtype(eq_box) = equation_list; /* new */
build_attribute_list(eq_box);
shift_amount(eq_box) = line_s;
} else {
shift_amount(eq_box) = line_s + d;
}
/* check for prev: */
append_to_vlist(eq_box,lua_key_index(equation));
if ((eqno_box != null) && (eqno_w == 0) && !l) {
tail_append(new_penalty(inf_penalty));
/* if (math_direction==dir_TLT) { */
shift_amount(eqno_box) = line_s + line_w - eqno_width ;
/* } else { */
/* } */
append_to_vlist(eqno_box,lua_key_index(equation_number));
g2 = 0;
}
if (t != adjust_head) { /* migrating material comes after equation number */
vlink(tail) = vlink(adjust_head);
/* needs testing */
alink(adjust_tail) = alink(tail);
tail = t;
}
if (pre_t != pre_adjust_head) {
vlink(tail) = vlink(pre_adjust_head);
/* needs testing */
alink(pre_adjust_tail) = alink(tail);
tail = pre_t;
}
tail_append(new_penalty(int_par(post_display_penalty_code)));
switch (display_skip_mode) {
case 0 : /* normal tex */
if (g2 > 0)
tail_append(new_param_glue(g2));
break;
case 1 : /* always */
tail_append(new_param_glue(g2));
break;
case 2 : /* non-zero */
if (g2 != 0)
tail_append(new_param_glue(g2));
break;
case 3: /* ignore */
break;
}
resume_after_display();
}
@ @c
void after_math(void)
{
int m; /* |mmode| or |-mmode| */
pointer p; /* the formula */
pointer a = null; /* box containing equation number */
boolean l = false; /* `\.{\\leqno}' instead of `\.{\\eqno}' */
m = mode;
p = fin_mlist(null); /* this pops the nest */
if (cur_cmd == math_shift_cs_cmd &&
(cur_chr == text_style || cur_chr == display_style)) {
you_cant();
}
if (mode == -m) { /* end of equation number */
if (cur_cmd == math_shift_cmd) {
check_second_math_shift();
} else {
check_display_math_end();
}
run_mlist_to_hlist(p, false, text_style);
a = hpack(vlink(temp_head), 0, additional, -1);
build_attribute_list(a);
unsave_math();
decr(save_ptr); /* now |cur_group=math_shift_group| */
assert(saved_type(0) == saved_eqno);
if (saved_value(0) == 1)
l = true;
m = mode;
p = fin_mlist(null);
}
if (m < 0) {
/* The |unsave| is done after everything else here; hence an appearance of
`\.{\\mathsurround}' inside of `\.{\$...\$}' affects the spacing at these
particular \.\$'s. This is consistent with the conventions of
`\.{\$\$...\$\$}', since `\.{\\abovedisplayskip}' inside a display affects the
space above that display.
*/
if (cur_cmd == math_shift_cs_cmd) {
check_inline_math_end();
}
tail_append(new_math(math_surround, before));
/* begin mathskip code */
if (math_skip != zero_glue) {
glue_ptr(tail) = math_skip;
add_glue_ref(math_skip);
}
/* end mathskip code */
if (dir_math_save) {
tail_append(new_dir(math_direction));
}
run_mlist_to_hlist(p, (mode > 0), text_style);
vlink(tail) = vlink(temp_head);
while (vlink(tail) != null)
tail = vlink(tail);
if (dir_math_save) {
tail_append(new_dir(math_direction - dir_swap));
}
dir_math_save = false;
tail_append(new_math(math_surround, after));
/* begin mathskip code */
if (math_skip != zero_glue) {
glue_ptr(tail) = math_skip;
add_glue_ref(math_skip);
}
/* end mathskip code */
space_factor = 1000;
unsave_math();
} else {
if (a == null) {
if (cur_cmd == math_shift_cmd) {
check_second_math_shift();
} else {
check_display_math_end();
}
}
run_mlist_to_hlist(p, false, display_style);
finish_displayed_math(l, a, vlink(temp_head));
}
}
@ When \.{\\halign} appears in a display, the alignment routines operate
essentially as they do in vertical mode. Then the following program is
activated, with |p| and |q| pointing to the beginning and end of the
resulting list, and with |aux_save| holding the |prev_depth| value.
@c
void finish_display_alignment(pointer p, pointer q, halfword saved_prevdepth)
{
do_assignments();
if (cur_cmd == math_shift_cmd) {
check_second_math_shift();
} else {
check_display_math_end();
}
pop_nest();
tail_append(new_penalty(int_par(pre_display_penalty_code)));
tail_append(new_param_glue(above_display_skip_code));
vlink(tail) = p;
if (p != null)
tail = q;
tail_append(new_penalty(int_par(post_display_penalty_code)));
tail_append(new_param_glue(below_display_skip_code));
cur_list.prev_depth_field = saved_prevdepth;
resume_after_display();
}
@ Interface to \.{\\Umath} and \.{\\mathstyle}
@c
void setup_math_style(void)
{
pointer q;
tail_append(new_noad());
q = new_node(math_char_node, 0);
nucleus(tail) = q;
(void) scan_math_style(nucleus(tail), num_style(m_style));
}
@ @c
void print_math_style(void)
{
if (abs(mode) == mmode)
print_int(m_style);
else
print_int(-1);
}
|