1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
|
/*
Copyright 2006-2008 Taco Hoekwater <taco@luatex.org>
This file is part of LuaTeX.
LuaTeX is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your
option) any later version.
LuaTeX is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU General Public License along
with LuaTeX; if not, see <http://www.gnu.org/licenses/>.
*/
#include "ptexlib.h"
/*tex
We come now to what is probably the most interesting algorithm of \TeX: the
mechanism for choosing the ``best possible'' breakpoints that yield the
individual lines of a paragraph. \TeX's line-breaking algorithm takes a given
horizontal list and converts it to a sequence of boxes that are appended to
the current vertical list. In the course of doing this, it creates a special
data structure containing three kinds of records that are not used elsewhere
in \TeX. Such nodes are created while a paragraph is being processed, and
they are destroyed afterwards; thus, the other parts of \TeX\ do not need to
know anything about how line-breaking is done.
The method used here is based on an approach devised by Michael F. Plass and
the author in 1977, subsequently generalized and improved by the same two
people in 1980. A detailed discussion appears in {\sl SOFTWARE---Practice
\AM\ Experience \bf11} (1981), 1119--1184, where it is shown that the
line-breaking problem can be regarded as a special case of the problem of
computing the shortest path in an acyclic network. The cited paper includes
numerous examples and describes the history of line breaking as it has been
practiced by printers through the ages. The present implementation adds two
new ideas to the algorithm of 1980: Memory space requirements are
considerably reduced by using smaller records for inactive nodes than for
active ones, and arithmetic overflow is avoided by using ``delta distances''
instead of keeping track of the total distance from the beginning of the
paragraph to the current point.
The |line_break| procedure should be invoked only in horizontal mode; it
leaves that mode and places its output into the current vlist of the
enclosing vertical mode (or internal vertical mode). There is one explicit
parameter: |d| is true for partial paragraphs preceding display math mode; in
this case the amount of additional penalty inserted before the final line is
|display_widow_penalty| instead of |widow_penalty|.
There are also a number of implicit parameters: The hlist to be broken starts
at |vlink(head)|, and it is nonempty. The value of |prev_graf| in the
enclosing semantic level tells where the paragraph should begin in the
sequence of line numbers, in case hanging indentation or \.{\\parshape} are
in use; |prev_graf| is zero unless this paragraph is being continued after a
displayed formula. Other implicit parameters, such as the |par_shape_ptr| and
various penalties to use for hyphenation, etc., appear in |eqtb|.
After |line_break| has acted, it will have updated the current vlist and the
value of |prev_graf|. Furthermore, the global variable |just_box| will point
to the final box created by |line_break|, so that the width of this line can
be ascertained when it is necessary to decide whether to use
|above_display_skip| or |above_display_short_skip| before a displayed
formula.
*/
/*tex The |hlist_node| for the last line of the new paragraph: */
halfword just_box;
/*tex
In it's complete form, |line_break| is a rather lengthy procedure---sort of a
small world unto itself---we must build it up little by little. Below you see
only the general outline.
The main task performed here is to move the list from |head| to |temp_head|
and go into the enclosing semantic level. We also append the
\.{\\parfillskip} glue to the end of the paragraph, removing a space (or
other glue node) if it was there, since spaces usually precede blank lines
and instances of `\.{\$\$}'. The |par_fill_skip| is preceded by an infinite
penalty, so it will never be considered as a potential breakpoint.
That code assumes that a |glue_node| and a |penalty_node| occupy the same
number of |mem|~words.
Most other processing is delegated to external functions.
*/
void line_break(boolean d, int line_break_context)
{
/*tex Main direction of paragraph: */
int paragraph_dir = 0;
halfword final_par_glue;
halfword start_of_par;
int callback_id;
/*tex this is for over/underfull box messages */
pack_begin_line = cur_list.ml_field;
alink(temp_head) = null;
vlink(temp_head) = vlink(cur_list.head_field);
new_hyphenation(temp_head, cur_list.tail_field);
cur_list.tail_field = new_ligkern(temp_head, cur_list.tail_field);
if (is_char_node(cur_list.tail_field)) {
tail_append(new_penalty(inf_penalty,line_penalty));
} else if (type(cur_list.tail_field) != glue_node) {
tail_append(new_penalty(inf_penalty,line_penalty));
} else {
halfword t = alink(cur_list.tail_field);
flush_node(cur_list.tail_field);
cur_list.tail_field = t;
tail_append(new_penalty(inf_penalty,line_penalty));
}
final_par_glue = new_param_glue(par_fill_skip_code);
couple_nodes(cur_list.tail_field, final_par_glue);
cur_list.tail_field = vlink(cur_list.tail_field);
lua_node_filter(pre_linebreak_filter_callback, line_break_context, temp_head, addressof(cur_list.tail_field));
last_line_fill = cur_list.tail_field;
pop_nest();
start_of_par = cur_list.tail_field;
callback_id = callback_defined(linebreak_filter_callback);
if (callback_id > 0) {
callback_id = lua_linebreak_callback(d, temp_head, addressof(cur_list.tail_field));
if (callback_id > 0) {
/*tex find the correct value for the |just_box| */
halfword box_search = cur_list.tail_field;
just_box = null;
if (box_search != null) {
do {
if (type(box_search) == hlist_node) {
just_box = box_search;
}
box_search = vlink(box_search);
} while (box_search != null);
}
if (just_box == null) {
help3(
"A linebreaking routine should return a non-empty list of nodes",
"and at least one of those has to be a \\hbox.",
"Sorry, I cannot recover from this."
);
print_err("Invalid linebreak_filter");
succumb();
}
} else {
if (tracing_paragraphs_par > 0) {
begin_diagnostic();
print_int(line);
end_diagnostic(true);
}
}
}
if (callback_id == 0) {
if ((!is_char_node(vlink(temp_head))) && ((type(vlink(temp_head)) == local_par_node))) {
paragraph_dir = local_par_dir(vlink(temp_head));
} else {
confusion("weird par dir");
}
ext_do_line_break(
paragraph_dir,
pretolerance_par,
tracing_paragraphs_par,
tolerance_par,
emergency_stretch_par,
looseness_par,
adjust_spacing_par,
par_shape_par_ptr,
adj_demerits_par,
protrude_chars_par,
line_penalty_par,
last_line_fit_par,
double_hyphen_demerits_par,
final_hyphen_demerits_par,
hang_indent_par,
hsize_par,
hang_after_par,
left_skip_par,
right_skip_par,
inter_line_penalties_par_ptr,
inter_line_penalty_par,
club_penalty_par,
club_penalties_par_ptr,
(d ? display_widow_penalties_par_ptr : widow_penalties_par_ptr),
(d ? display_widow_penalty_par : widow_penalty_par),
broken_penalty_par,
final_par_glue
);
}
lua_node_filter(post_linebreak_filter_callback, line_break_context, start_of_par, addressof(cur_list.tail_field));
pack_begin_line = 0;
}
/*tex
Glue nodes in a horizontal list that is being paragraphed are not supposed to
include ``infinite'' shrinkability; that is why the algorithm maintains four
registers for stretching but only one for shrinking. If the user tries to
introduce infinite shrinkability, the shrinkability will be reset to finite
and an error message will be issued. A boolean variable |no_shrink_error_yet|
prevents this error message from appearing more than once per paragraph.
*/
#define check_shrinkage(a) \
if ((shrink_order((a))!=normal)&&(shrink((a))!=0)) \
a=finite_shrink((a))
/*tex Have we complained about infinite shrinkage? */
static boolean no_shrink_error_yet;
/*tex Recovers from infinite shrinkage. */
static halfword finite_shrink(halfword p)
{
const char *hlp[] = {
"The paragraph just ended includes some glue that has",
"infinite shrinkability, e.g., `\\hskip 0pt minus 1fil'.",
"Such glue doesn't belong there---it allows a paragraph",
"of any length to fit on one line. But it's safe to proceed,",
"since the offensive shrinkability has been made finite.",
NULL
};
if (no_shrink_error_yet) {
no_shrink_error_yet = false;
tex_error("Infinite glue shrinkage found in a paragraph", hlp);
}
shrink_order(p) = normal;
return p;
}
/*tex
A pointer variable |cur_p| runs through the given horizontal list as we look
for breakpoints. This variable is global, since it is used both by
|line_break| and by its subprocedure |try_break|.
Another global variable called |threshold| is used to determine the
feasibility of individual lines: breakpoints are feasible if there is a way
to reach them without creating lines whose badness exceeds |threshold|. (The
badness is compared to |threshold| before penalties are added, so that
penalty values do not affect the feasibility of breakpoints, except that no
break is allowed when the penalty is 10000 or more.) If |threshold| is 10000
or more, all legal breaks are considered feasible, since the |badness|
function specified above never returns a value greater than~10000.
Up to three passes might be made through the paragraph in an attempt to find
at least one set of feasible breakpoints. On the first pass, we have
|threshold=pretolerance| and |second_pass=final_pass=false|. If this pass
fails to find a feasible solution, |threshold| is set to |tolerance|,
|second_pass| is set |true|, and an attempt is made to hyphenate as many
words as possible. If that fails too, we add |emergency_stretch| to the
background stretchability and set |final_pass=true|.
*/
/*tex is this our second attempt to break this paragraph? */
static boolean second_pass;
/*tex is this our final attempt to break this paragraph? */
static boolean final_pass;
/*tex maximum badness on feasible lines */
static int threshold;
/*tex
The maximum fill level for |hlist_stack|. Maybe good if larger than |2 *
max_quarterword|, so that box nesting level would overflow first.
*/
#define max_hlist_stack 512
/*tex stack for |find_protchar_left()| and |find_protchar_right()| */
static halfword hlist_stack[max_hlist_stack];
/*tex fill level for |hlist_stack| */
static short hlist_stack_level = 0;
static void push_node(halfword p)
{
if (hlist_stack_level >= max_hlist_stack)
normal_error("push_node","stack overflow");
hlist_stack[hlist_stack_level++] = p;
}
static halfword pop_node(void)
{
if (hlist_stack_level <= 0) {
/*tex This can point to some bug. */
normal_error("pop_node","stack underflow (internal error)");
}
return hlist_stack[--hlist_stack_level];
}
/*tex maximal stretch ratio of expanded fonts */
static int max_stretch_ratio = 0;
/*tex maximal shrink ratio of expanded fonts */
static int max_shrink_ratio = 0;
/*tex the current step of expanded fonts */
static int cur_font_step = 0;
static boolean check_expand_pars(internal_font_number f)
{
int m;
if ((font_step(f) == 0) || ((font_max_stretch(f) == 0) && (font_max_shrink(f) == 0)))
return false;
if (cur_font_step < 0)
cur_font_step = font_step(f);
else if (cur_font_step != font_step(f))
normal_error("font expansion","using fonts with different step of expansion in one paragraph is not allowed");
m = font_max_stretch(f);
if (m != 0) {
if (max_stretch_ratio < 0)
max_stretch_ratio = m;
else if (max_stretch_ratio != m)
normal_error("font expansion","using fonts with different limit of expansion in one paragraph is not allowed");
}
m = font_max_shrink(f);
if (m != 0) {
if (max_shrink_ratio < 0)
max_shrink_ratio = -m;
else if (max_shrink_ratio != -m)
normal_error("font expansion","using fonts with different limit of expansion in one paragraph is not allowed");
}
return true;
}
/*tex Search left to right from list head |l|, returns 1st non-skipable item */
halfword find_protchar_left(halfword l, boolean d)
{
halfword t;
boolean run;
boolean done = false ;
while ((vlink(l) != null) && (type(l) == hlist_node) && zero_dimensions(l) && (list_ptr(l) == null)) {
/*tex For paragraph start with \.{\\parindent} = 0pt or any empty hbox. */
l = vlink(l);
done = true ;
}
if ((!done) && (type(l) == local_par_node)) {
l = vlink(l);
done = true ;
}
if ((!done) && d) {
while ((vlink(l) != null) && (!(is_char_node(l) || non_discardable(l)))) {
/*tex standard discardables at line break, \TeX book, p 95 */
l = vlink(l);
}
}
if (type(l) != glyph_node) {
hlist_stack_level = 0;
run = true;
do {
t = l;
while (run && (type(l) == hlist_node) && (list_ptr(l) != null)) {
push_node(l);
l = list_ptr(l);
}
while (run && cp_skipable(l)) {
while ((vlink(l) == null) && (hlist_stack_level > 0)) {
/*tex Don't visit this node again. */
l = pop_node();
run = false;
}
if ((vlink(l) != null) && (type(l) == boundary_node) && (subtype(l) == protrusion_boundary) &&
((boundary_value(l) == 1) || (boundary_value(l) == 3))) {
/*tex Skip next node. */
l = vlink(l);
}
if (vlink(l) != null) {
l = vlink(l);
} else if (hlist_stack_level == 0) {
run = false;
}
}
} while (t != l);
}
return l;
}
/*tex
Search right to left from list tail |r| to head |l|, returns 1st non-skipable
item.
*/
halfword find_protchar_right(halfword l, halfword r)
{
halfword t;
boolean run = true;
if (r == null)
return null;
hlist_stack_level = 0;
do {
t = r;
while (run && (type(r) == hlist_node) && (list_ptr(r) != null)) {
push_node(l);
push_node(r);
l = list_ptr(r);
r = l;
while (vlink(r) != null) {
halfword s = r;
r = vlink(r);
alink(r) = s;
}
}
while (run && cp_skipable(r)) {
while ((r == l) && (hlist_stack_level > 0)) {
/*tex Don't visit this node again. */
r = pop_node();
l = pop_node();
}
if ((r != l) && (r != null)) {
if ((alink(r) != null) && (type(r) == boundary_node) && (subtype(r) == protrusion_boundary) &&
((boundary_value(r) == 2) || (boundary_value(r) == 3))) {
/*tex Skip next node. */
r = alink(r);
}
if (alink(r) != null) {
r = alink(r);
} else {
/*tex This is the input: \.{\\leavevmode\\penalty-10000\\penalty-10000} (bug \#268). */
run = false;
}
} else if ((r == l) && (hlist_stack_level == 0))
run = false;
}
} while (t != r);
return r;
}
#define left_pw(a) char_pw((a), left_side)
#define right_pw(a) char_pw((a), right_side)
/*tex
When looking for optimal line breaks, \TeX\ creates a ``break node'' for each
break that is {\sl feasible}, in the sense that there is a way to end a line
at the given place without requiring any line to stretch more than a given
tolerance. A break node is characterized by three things: the position of the
break (which is a pointer to a |glue_node|, |math_node|, |penalty_node|, or
|disc_node|); the ordinal number of the line that will follow this
breakpoint; and the fitness classification of the line that has just ended,
i.e., |tight_fit|, |decent_fit|, |loose_fit|, or |very_loose_fit|.
*/
typedef enum {
/*tex fitness classification for lines stretching more than their stretchability */
very_loose_fit = 0,
/*tex fitness classification for lines stretching 0.5 to 1.0 of their stretchability */
loose_fit,
/*tex fitness classification for all other lines */
decent_fit,
/*tex fitness classification for lines shrinking 0.5 to 1.0 of their shrinkability */
tight_fit
} fitness_value;
/*tex
The algorithm essentially determines the best possible way to achieve each
feasible combination of position, line, and fitness. Thus, it answers
questions like, ``What is the best way to break the opening part of the
paragraph so that the fourth line is a tight line ending at such-and-such a
place?'' However, the fact that all lines are to be the same length after a
certain point makes it possible to regard all sufficiently large line numbers
as equivalent, when the looseness parameter is zero, and this makes it
possible for the algorithm to save space and time.
An ``active node'' and a ``passive node'' are created in |mem| for each
feasible breakpoint that needs to be considered. Active nodes are three words
long and passive nodes are two words long. We need active nodes only for
breakpoints near the place in the paragraph that is currently being examined,
so they are recycled within a comparatively short time after they are
created.
An active node for a given breakpoint contains six fields:
\startitemize[n]
\startitem
|vlink| points to the next node in the list of active nodes; the last
active node has |vlink=active|.
\stopitem
\startitem
|break_node| points to the passive node associated with this
breakpoint.
\stopitem
\startitem
|line_number| is the number of the line that follows this breakpoint.
\stopitem
\startitem
|fitness| is the fitness classification of the line ending at this
breakpoint.
\stopitem
\startitem
|type| is either |hyphenated_node| or |unhyphenated_node|, depending
on whether this breakpoint is a |disc_node|.
\stopitem
\startitem
|total_demerits| is the minimum possible sum of demerits over all
lines leading from the beginning of the paragraph to this breakpoint.
\stopitem
\stopitemize
The value of |vlink(active)| points to the first active node on a vlinked
list of all currently active nodes. This list is in order by |line_number|,
except that nodes with |line_number>easy_line| may be in any order relative
to each other.
*/
void initialize_active(void)
{
type(active) = hyphenated_node;
line_number(active) = max_halfword;
/*tex The |subtype| is never examined. */
subtype(active) = 0;
}
/*tex
The passive node for a given breakpoint contains eight fields:
\startitemize
\startitem
|vlink| points to the passive node created just before this one, if
any, otherwise it is |null|.
\stopitem
\startitem
|cur_break| points to the position of this breakpoint in the
horizontal list for the paragraph being broken.
\stopitem
\startitem
|prev_break| points to the passive node that should precede this one
in an optimal path to this breakpoint.
\stopitem
\startitem
|serial| is equal to |n| if this passive node is the |n|th one
created during the current pass. (This field is used only when
printing out detailed statistics about the line-breaking
calculations.)
\stopitem
\startitem
|passive_pen_inter| holds the current \.{\\localinterlinepenalty}
\stopitem
\startitem
|passive_pen_broken| holds the current \.{\\localbrokenpenalty}
\stopitem
\stopitemize
There is a global variable called |passive| that points to the most recently
created passive node. Another global variable, |printed_node|, is used to
help print out the paragraph when detailed information about the
line-breaking computation is being displayed.
*/
/*tex most recent node on passive list */
static halfword passive;
/*tex most recent node that has been printed */
static halfword printed_node;
/*tex the number of passive nodes allocated on this pass */
static halfword pass_number;
/*tex
The active list also contains ``delta'' nodes that help the algorithm compute
the badness of individual lines. Such nodes appear only between two active
nodes, and they have |type=delta_node|. If |p| and |r| are active nodes and
if |q| is a delta node between them, so that |vlink(p)=q| and |vlink(q)=r|,
then |q| tells the space difference between lines in the horizontal list that
start after breakpoint |p| and lines that start after breakpoint |r|. In
other words, if we know the length of the line that starts after |p| and ends
at our current position, then the corresponding length of the line that
starts after |r| is obtained by adding the amounts in node~|q|. A delta node
contains seven scaled numbers, since it must record the net change in glue
stretchability with respect to all orders of infinity. The natural width
difference appears in |mem[q+1].sc|; the stretch differences in units of pt,
sfi, fil, fill, and filll appear in |mem[q+2..q+6].sc|; and the shrink
difference appears in |mem[q+7].sc|. The |subtype| field of a delta node is
not used.
Actually, we have two more fields that are used by |pdftex|.
As the algorithm runs, it maintains a set of seven delta-like registers for
the length of the line following the first active breakpoint to the current
position in the given hlist. When it makes a pass through the active list, it
also maintains a similar set of seven registers for the length following the
active breakpoint of current interest. A third set holds the length of an
empty line (namely, the sum of \.{\\leftskip} and \.{\\rightskip}); and a
fourth set is used to create new delta nodes.
When we pass a delta node we want to do operations like:
\starttyping
for k := 1 to 7 do
cur_active_width[k] := cur_active_width[k] + mem[q+k].sc|};
\stoptyping
and we want to do this without the overhead of |for| loops. The |do_all_six|
macro makes such six-tuples convenient.
*/
/*tex distance from first active node to~|cur_p| */
static scaled active_width[10] = { 0 };
/*tex length of an ``empty'' line */
static scaled background[10] = { 0 };
/*tex length being computed after current break */
static scaled break_width[10] = { 0 };
/*tex Make |auto_breaking| accessible out of |line_break|: */
static boolean auto_breaking;
/*tex
Let's state the principles of the delta nodes more precisely and concisely,
so that the following programs will be less obscure. For each legal
breakpoint~|p| in the paragraph, we define two quantities $\alpha(p)$ and
$\beta(p)$ such that the length of material in a line from breakpoint~|p| to
breakpoint~|q| is $\gamma+\beta(q)-\alpha(p)$, for some fixed $\gamma$.
Intuitively, $\alpha(p)$ and $\beta(q)$ are the total length of material from
the beginning of the paragraph to a point ``after'' a break at |p| and to a
point ``before'' a break at |q|; and $\gamma$ is the width of an empty line,
namely the length contributed by \.{\\leftskip} and \.{\\rightskip}.
Suppose, for example, that the paragraph consists entirely of alternating
boxes and glue skips; let the boxes have widths $x_1\ldots x_n$ and let the
skips have widths $y_1\ldots y_n$, so that the paragraph can be represented
by $x_1y_1\ldots x_ny_n$. Let $p_i$ be the legal breakpoint at $y_i$; then
$\alpha(p_i)=x_1+y_1+\cdots+x_i+y_i$, and $\beta(p_i)= x_1+y_1+\cdots+x_i$.
To check this, note that the length of material from $p_2$ to $p_5$, say, is
$\gamma+x_3+y_3+x_4+y_4+x_5=\gamma+\beta(p_5) -\alpha(p_2)$.
The quantities $\alpha$, $\beta$, $\gamma$ involve glue stretchability and
shrinkability as well as a natural width. If we were to compute $\alpha(p)$
and $\beta(p)$ for each |p|, we would need multiple precision arithmetic, and
the multiprecise numbers would have to be kept in the active nodes. \TeX\
avoids this problem by working entirely with relative differences or
``deltas.'' Suppose, for example, that the active list contains
$a_1\,\delta_1\,a_2\,\delta_2\,a_3$, where the |a|'s are active breakpoints
and the $\delta$'s are delta nodes. Then $\delta_1=\alpha(a_1)-\alpha(a_2)$
and $\delta_2=\alpha(a_2)-\alpha(a_3)$. If the line breaking algorithm is
currently positioned at some other breakpoint |p|, the |active_width| array
contains the value $\gamma+\beta(p)-\alpha(a_1)$. If we are scanning through
the list of active nodes and considering a tentative line that runs from
$a_2$ to~|p|, say, the |cur_active_width| array will contain the value
$\gamma+\beta(p)-\alpha(a_2)$. Thus, when we move from $a_2$ to $a_3$, we
want to add $\alpha(a_2)-\alpha(a_3)$ to |cur_active_width|; and this is just
$\delta_2$, which appears in the active list between $a_2$ and $a_3$. The
|background| array contains $\gamma$. The |break_width| array will be used to
calculate values of new delta nodes when the active list is being updated.
The heart of the line-breaking procedure is `|try_break|', a subroutine that
tests if the current breakpoint |cur_p| is feasible, by running through the
active list to see what lines of text can be made from active nodes
to~|cur_p|. If feasible breaks are possible, new break nodes are created. If
|cur_p| is too far from an active node, that node is deactivated.
The parameter |pi| to |try_break| is the penalty associated with a break at
|cur_p|; we have |pi=eject_penalty| if the break is forced, and
|pi=inf_penalty| if the break is illegal.
The other parameter, |break_type|, is set to |hyphenated_node| or
|unhyphenated_node|, depending on whether or not the current break is at a
|disc_node|. The end of a paragraph is also regarded as `|hyphenated_node|';
this case is distinguishable by the condition |cur_p=null|.
*/
/*tex running \.{\\localinterlinepenalty} */
static int internal_pen_inter;
/*tex running \.{\\localbrokenpenalty} */
static int internal_pen_broken;
/*tex running \.{\\localleftbox} */
static halfword internal_left_box;
/*tex running \.{\\localleftbox} width */
static int internal_left_box_width;
/*tex running \.{\\localleftbox} */
static halfword init_internal_left_box;
/*tex running \.{\\localleftbox} width */
static int init_internal_left_box_width;
/*tex running \.{\\localrightbox} */
static halfword internal_right_box;
/*tex running \.{\\localrightbox} width */
static int internal_right_box_width;
/*tex the length of discretionary material preceding a break */
static scaled disc_width[10] = { 0 };
/*tex
As we consider various ways to end a line at |cur_p|, in a given line number
class, we keep track of the best total demerits known, in an array with one
entry for each of the fitness classifications. For example,
|minimal_demerits[tight_fit]| contains the fewest total demerits of feasible
line breaks ending at |cur_p| with a |tight_fit| line;
|best_place[tight_fit]| points to the passive node for the break
before~|cur_p| that achieves such an optimum; and |best_pl_line[tight_fit]|
is the |line_number| field in the active node corresponding to
|best_place[tight_fit]|. When no feasible break sequence is known, the
|minimal_demerits| entries will be equal to |awful_bad|, which is $2^{30}-1$.
Another variable, |minimum_demerits|, keeps track of the smallest value in
the |minimal_demerits| array.
*/
/*tex best total demerits known for current line class and position, given the fitness */
static int minimal_demerits[4];
/*tex best total demerits known for current line class and position */
static int minimum_demerits;
/*tex how to achieve |minimal_demerits| */
static halfword best_place[4];
/*tex corresponding line number */
static halfword best_pl_line[4];
/*tex
The length of lines depends on whether the user has specified \.{\\parshape}
or \.{\\hangindent}. If |par_shape_ptr| is not null, it points to a
$(2n+1)$-word record in |mem|, where the |vinfo| in the first word contains
the value of |n|, and the other $2n$ words contain the left margins and line
lengths for the first |n| lines of the paragraph; the specifications for line
|n| apply to all subsequent lines. If |par_shape_ptr=null|, the shape of the
paragraph depends on the value of |n=hang_after|; if |n>=0|, hanging
indentation takes place on lines |n+1|, |n+2|, \dots, otherwise it takes
place on lines 1, \dots, $\vert n\vert$. When hanging indentation is active,
the left margin is |hang_indent|, if |hang_indent>=0|, else it is 0; the line
length is $|hsize|-\vert|hang_indent|\vert$. The normal setting is
|par_shape_ptr=null|, |hang_after=1|, and |hang_indent=0|. Note that if
|hang_indent=0|, the value of |hang_after| is irrelevant.
*/
/*tex line numbers |>easy_line| are equivalent in break nodes */
static halfword easy_line;
/*tex line numbers |>last_special_line| all have the same width */
static halfword last_special_line;
/*tex the width of all lines |<=last_special_line|, if no \.{\\parshape} has been specified */
static scaled first_width;
/*tex the width of all lines |>last_special_line| */
static scaled second_width;
/*tex left margin to go with |first_width| */
static scaled first_indent;
/*tex left margin to go with |second_width| */
static scaled second_indent;
/*tex use this passive node and its predecessors */
static halfword best_bet;
/*tex the demerits associated with |best_bet| */
static int fewest_demerits;
/*tex line number following the last line of the new paragraph */
static halfword best_line;
/*tex the difference between |line_number(best_bet)| and the optimum |best_line| */
static int actual_looseness;
/*tex the difference between the current line number and the optimum |best_line| */
static int line_diff;
/*tex
\TeX\ makes use of the fact that |hlist_node|, |vlist_node|, |rule_node|,
|ins_node|, |mark_node|, |adjust_node|, |disc_node|, |whatsit_node|, and
|math_node| are at the low end of the type codes, by permitting a break at
glue in a list if and only if the |type| of the previous node is less than
|math_node|. Furthermore, a node is discarded after a break if its type is
|math_node| or~more.
*/
#define do_all_six(a) a(1);a(2);a(3);a(4);a(5);a(6);a(7)
#define do_seven_eight(a) if (adjust_spacing > 1) { a(8);a(9); }
#define do_all_eight(a) do_all_six(a); do_seven_eight(a)
#define do_one_seven_eight(a) a(1); do_seven_eight(a)
#define store_background(a) {active_width[a]=background[a];}
#define kern_break() { \
if ((!is_char_node(vlink(cur_p))) && auto_breaking) \
if (type(vlink(cur_p))==glue_node) \
ext_try_break(\
0, \
unhyphenated_node, \
line_break_dir, \
adjust_spacing, \
par_shape_ptr, \
adj_demerits, \
tracing_paragraphs, \
protrude_chars, \
line_penalty, \
last_line_fit, \
double_hyphen_demerits, \
final_hyphen_demerits, \
first_p, \
cur_p \
); \
if (type(cur_p)!=math_node) \
active_width[1] += width(cur_p); \
else \
active_width[1] += surround(cur_p); \
}
#define clean_up_the_memory() { \
q=vlink(active); \
while (q!=active) { \
cur_p = vlink(q); \
if (type(q)==delta_node) \
flush_node(q); \
else \
flush_node(q); \
q = cur_p; \
} \
q = passive; \
while (q!=null) { \
cur_p = vlink(q); \
flush_node(q); \
q = cur_p; \
} \
}
/*tex special algorithm for last line of paragraph? */
static boolean do_last_line_fit;
/*tex infinite stretch components of |par_fill_skip| */
static scaled fill_width[4];
/*tex |shortfall| corresponding to |minimal_demerits| */
static scaled best_pl_short[4];
/*tex corresponding glue stretch or shrink */
static scaled best_pl_glue[4];
#define reset_disc_width(a) disc_width[(a)] = 0
#define add_disc_width_to_break_width(a) break_width[(a)] += disc_width[(a)]
#define sub_disc_width_from_active_width(a) active_width[(a)] -= disc_width[(a)]
#define add_char_shrink(a,b) a += char_shrink((b))
#define add_char_stretch(a,b) a += char_stretch((b))
#define sub_char_shrink(a,b) a -= char_shrink((b))
#define sub_char_stretch(a,b) a -= char_stretch((b))
#define add_kern_shrink(a,b) a += kern_shrink((b))
#define add_kern_stretch(a,b) a += kern_stretch((b))
#define sub_kern_shrink(a,b) a -= kern_shrink((b))
#define sub_kern_stretch(a,b) a -= kern_stretch((b))
/*tex
This function is used to add the width of a list of nodes (from a
discretionary) to one of the width arrays.
Replacement texts and discretionary texts are supposed to contain only
character nodes, kern nodes, and box or rule nodes.
*/
#define bad_node_in_disc_error(p) { \
if (type(p) == whatsit_node) { \
formatted_error("linebreak","invalid node with type %s and subtype %i found in discretionary",node_data[type(p)].name,subtype(p)); \
} else { \
formatted_error("linebreak","invalid node with type %s found in discretionary",node_data[type(p)].name); \
} \
}
static void add_to_widths(halfword s, int line_break_dir, int adjust_spacing, scaled * widths)
{
while (s != null) {
if (is_char_node(s)) {
widths[1] += pack_width(line_break_dir, dir_TRT, s, true);
if ((adjust_spacing > 1) && check_expand_pars(font(s))) {
set_prev_char_p(s);
add_char_stretch(widths[8], s);
add_char_shrink(widths[9], s);
};
} else {
switch (type(s)) {
case hlist_node:
case vlist_node:
widths[1] += pack_width(line_break_dir, box_dir(s), s, false);
break;
case kern_node:
if ((adjust_spacing == 2) && (subtype(s) == normal)) {
add_kern_stretch(widths[8], s);
add_kern_shrink(widths[9], s);
}
/*tex fall through */
case rule_node:
widths[1] += width(s);
break;
case disc_node:
break;
default:
bad_node_in_disc_error(s);
break;
}
}
s = vlink(s);
}
}
/*tex
This function is used to substract the width of a list of nodes (from a
discretionary) from one of the width arrays. It is used only once, but
deserves it own function because of orthogonality with the |add_to_widths|
function.
*/
static void sub_from_widths(halfword s, int line_break_dir, int adjust_spacing, scaled * widths)
{
while (s != null) {
/*tex Subtract the width of node |s| from |break_width|; */
if (is_char_node(s)) {
widths[1] -= pack_width(line_break_dir, dir_TRT, s, true);
if ((adjust_spacing > 1) && check_expand_pars(font(s))) {
set_prev_char_p(s);
sub_char_stretch(widths[8], s);
sub_char_shrink(widths[9], s);
}
} else {
switch (type(s)) {
case hlist_node:
case vlist_node:
widths[1] -= pack_width(line_break_dir, box_dir(s), s, false);
break;
case kern_node:
if ((adjust_spacing == 2) && (subtype(s) == normal)) {
sub_kern_stretch(widths[8], s);
sub_kern_shrink(widths[9], s);
}
/*tex fall through */
case rule_node:
widths[1] -= width(s);
break;
case disc_node:
break;
default:
bad_node_in_disc_error(s);
break;
}
}
s = vlink(s);
}
}
/*tex
When we insert a new active node for a break at |cur_p|, suppose this new
node is to be placed just before active node |a|; then we essentially want to
insert `$\delta\,|cur_p|\,\delta^\prime$' before |a|, where
$\delta=\alpha(a)-\alpha(|cur_p|)$ and
$\delta^\prime=\alpha(|cur_p|)-\alpha(a)$ in the notation explained above.
The |cur_active_width| array now holds $\gamma+\beta(|cur_p|)-\alpha(a)$; so
$\delta$ can be obtained by subtracting |cur_active_width| from the quantity
$\gamma+\beta(|cur_p|)- \alpha(|cur_p|)$. The latter quantity can be regarded
as the length of a line ``from |cur_p| to |cur_p|''; we call it the
|break_width| at |cur_p|.
The |break_width| is usually negative, since it consists of the background
(which is normally zero) minus the width of nodes following~|cur_p| that are
eliminated after a break. If, for example, node |cur_p| is a glue node, the
width of this glue is subtracted from the background; and we also look ahead
to eliminate all subsequent glue and penalty and kern and math nodes,
subtracting their widths as well.
Kern nodes do not disappear at a line break unless they are |explicit|.
*/
static void compute_break_width(int break_type, int line_break_dir, int adjust_spacing, halfword p)
{
/*tex
Glue and other 'whitespace' to be skipped after a break; used if
unhyphenated, or |post_break==empty|.
*/
halfword s = p;
if (break_type > unhyphenated_node && p != null) {
/*tex
Compute the discretionary |break_width| values.
When |p| is a discretionary break, the length of a line ``from |p| to
|p|'' has to be defined properly so that the other calculations work
out. Suppose that the pre-break text at |p| has length $l_0$, the
post-break text has length $l_1$, and the replacement text has length
|l|. Suppose also that |q| is the node following the replacement
text. Then length of a line from |p| to |q| will be computed as
$\gamma+\beta(q)-\alpha(|p|)$, where $\beta(q)=\beta(|p|)-l_0+l$. The
actual length will be the background plus $l_1$, so the length from
|p| to |p| should be $\gamma+l_0+l_1-l$. If the post-break text of
the discretionary is empty, a break may also discard~|q|; in that
unusual case we subtract the length of~|q| and any other nodes that
will be discarded after the discretionary break.
The value of $l_0$ need not be computed, since |line_break| will put
it into the global variable |disc_width| before calling |try_break|.
In case of nested discretionaries, we always follow the no-break
path, as we are talking about the breaking on {\it this} position.
*/
sub_from_widths(vlink_no_break(p), line_break_dir, adjust_spacing, break_width);
add_to_widths(vlink_post_break(p), line_break_dir, adjust_spacing, break_width);
do_one_seven_eight(add_disc_width_to_break_width);
if (vlink_post_break(p) == null) {
/*tex no |post_break|: 'skip' any 'whitespace' following */
s = vlink(p);
} else {
s = null;
}
}
while (s != null) {
switch (type(s)) {
case math_node:
/*tex begin mathskip code */
if (glue_is_zero(s)) {
break_width[1] -= surround(s);
break;
} else {
/*tex fall through */
}
/*tex end mathskip code */
case glue_node:
/*tex Subtract glue from |break_width|; */
break_width[1] -= width(s);
break_width[2 + stretch_order(s)] -= stretch(s);
break_width[7] -= shrink(s);
break;
case penalty_node:
break;
case kern_node:
if (subtype(s) != explicit_kern && subtype(s) != italic_kern)
return;
else
break_width[1] -= width(s);
break;
default:
return;
};
s = vlink(s);
}
}
static void print_break_node(halfword q, fitness_value fit_class, quarterword break_type, halfword cur_p)
{
/*tex Print a symbolic description of the new break node. */
tprint_nl("@@");
print_int(serial(passive));
tprint(": line ");
print_int(line_number(q) - 1);
print_char('.');
print_int(fit_class);
if (break_type == hyphenated_node)
print_char('-');
tprint(" t=");
print_int(total_demerits(q));
if (do_last_line_fit) {
/*tex Print additional data in the new active node. */
tprint(" s=");
print_scaled(active_short(q));
if (cur_p == null)
tprint(" a=");
else
tprint(" g=");
print_scaled(active_glue(q));
}
tprint(" -> @");
if (prev_break(passive) == null)
print_char('0');
else
print_int(serial(prev_break(passive)));
}
static void print_feasible_break(halfword cur_p, pointer r, halfword b, int pi, int d, boolean artificial_demerits)
{
/*tex
Print a symbolic description of this feasible break.
*/
if (printed_node != cur_p) {
/*tex
Print the list between |printed_node| and |cur_p|, then set
|printed_node:=cur_p|.
*/
tprint_nl("");
if (cur_p == null) {
short_display(vlink(printed_node));
} else {
halfword save_link = vlink(cur_p);
vlink(cur_p) = null;
tprint_nl("");
short_display(vlink(printed_node));
vlink(cur_p) = save_link;
}
printed_node = cur_p;
}
tprint_nl("@");
if (cur_p == null) {
tprint_esc("par");
} else if (type(cur_p) != glue_node) {
if (type(cur_p) == penalty_node)
tprint_esc("penalty");
else if (type(cur_p) == disc_node)
tprint_esc("discretionary");
else if (type(cur_p) == kern_node)
tprint_esc("kern");
else
tprint_esc("math");
}
tprint(" via @");
if (break_node(r) == null)
print_char('0');
else
print_int(serial(break_node(r)));
tprint(" b=");
if (b > inf_bad)
print_char('*');
else
print_int(b);
tprint(" p=");
print_int(pi);
tprint(" d=");
if (artificial_demerits)
print_char('*');
else
print_int(d);
}
#define add_disc_width_to_active_width(a) active_width[a] += disc_width[a]
#define update_width(a) cur_active_width[a] += varmem[(r+(a))].cint
#define set_break_width_to_background(a) break_width[a]=background[(a)]
#define convert_to_break_width(a) \
varmem[(prev_r+(a))].cint = varmem[(prev_r+(a))].cint-cur_active_width[(a)]+break_width[(a)]
#define store_break_width(a) active_width[(a)]=break_width[(a)]
#define new_delta_to_break_width(a) \
varmem[(q+(a))].cint=break_width[(a)]-cur_active_width[(a)]
#define new_delta_from_break_width(a) \
varmem[(q+(a))].cint=cur_active_width[(a)]-break_width[(a)]
#define copy_to_cur_active(a) cur_active_width[(a)]=active_width[(a)]
#define combine_two_deltas(a) varmem[(prev_r+(a))].cint += varmem[(r+(a))].cint
#define downdate_width(a) cur_active_width[(a)] -= varmem[(prev_r+(a))].cint
#define update_active(a) active_width[(a)]+=varmem[(r+(a))].cint
#define total_font_stretch cur_active_width[8]
#define total_font_shrink cur_active_width[9]
#define cal_margin_kern_var(a) { \
character(cp) = character((a)); \
font(cp) = font((a)); \
do_subst_font(cp, 1000); \
if (font(cp) != font((a))) \
margin_kern_stretch += (left_pw((a)) - left_pw(cp)); \
font(cp) = font((a)); \
do_subst_font(cp, -1000); \
if (font(cp) != font((a))) \
margin_kern_shrink += (left_pw(cp) - left_pw((a))); \
}
static void ext_try_break(
int pi,
quarterword break_type,
int line_break_dir,
int adjust_spacing,
int par_shape_ptr,
int adj_demerits,
int tracing_paragraphs,
int protrude_chars,
int line_penalty,
int last_line_fit,
int double_hyphen_demerits,
int final_hyphen_demerits, halfword first_p, halfword cur_p
)
{
/*tex runs through the active list */
pointer r;
scaled margin_kern_stretch;
scaled margin_kern_shrink;
halfword lp, rp, cp;
/*tex stays a step behind |r| */
halfword prev_r = active;
/*tex a step behind |prev_r|, if |type(prev_r)=delta_node| */
halfword prev_prev_r = null;
/*tex maximum line number in current equivalence class of lines */
halfword old_l = 0;
/*tex have we found a feasible break at |cur_p|? */
boolean no_break_yet = true;
/*tex points to a new node being created */
halfword q;
/*tex line number of current active node */
halfword l;
/*tex should node |r| remain in the active list? */
boolean node_r_stays_active;
/*tex the current line will be justified to this width */
scaled line_width = 0;
/*tex possible fitness class of test line */
fitness_value fit_class;
/*tex badness of test line */
halfword b;
/*tex demerits of test line */
int d;
/*tex has |d| been forced to zero? */
boolean artificial_demerits;
/*tex used in badness calculations */
scaled shortfall;
/*tex glue stretch or shrink of test line, adjustment for last line */
scaled g = 0;
/*tex distance from current active node */
scaled cur_active_width[10] = { 0 };
/*tex Make sure that |pi| is in the proper range; */
if (pi >= inf_penalty) {
/*tex this breakpoint is inhibited by infinite penalty */
return;
} else if (pi <= -inf_penalty) {
/*tex this breakpoint will be forced */
pi = eject_penalty;
}
do_all_eight(copy_to_cur_active);
while (1) {
r = vlink(prev_r);
/*tex
If node |r| is of type |delta_node|, update |cur_active_width|, set
|prev_r| and |prev_prev_r|, then |goto continue|. The following code
uses the fact that |type(active)<>delta_node|.
*/
if (type(r) == delta_node) {
/*tex implicit */
do_all_eight(update_width);
prev_prev_r = prev_r;
prev_r = r;
continue;
}
/*tex
If a line number class has ended, create new active nodes for the
best feasible breaks in that class; then |return| if |r=active|,
otherwise compute the new |line_width|.
The first part of the following code is part of \TeX's inner loop, so
we don't want to waste any time. The current active node, namely node
|r|, contains the line number that will be considered next. At the
end of the list we have arranged the data structure so that
|r=active| and |line_number(active)>old_l|.
*/
l = line_number(r);
if (l > old_l) {
/*tex now we are no longer in the inner loop */
if ((minimum_demerits < awful_bad)
&& ((old_l != easy_line) || (r == active))) {
/*tex
Create new active nodes for the best feasible breaks just
found. It is not necessary to create new active nodes having
|minimal_demerits| greater than
|minimum_demerits+abs(adj_demerits)|, since such active nodes
will never be chosen in the final paragraph breaks. This
observation allows us to omit a substantial number of
feasible breakpoints from further consideration.
*/
if (no_break_yet) {
no_break_yet = false;
do_all_eight(set_break_width_to_background);
compute_break_width(break_type, line_break_dir, adjust_spacing, cur_p);
}
/*tex
Insert a delta node to prepare for breaks at |cur_p|. We use
the fact that |type(active)<>delta_node|.
*/
if (type(prev_r) == delta_node) {
/*tex modify an existing delta node */
do_all_eight(convert_to_break_width);
} else if (prev_r == active) {
/*tex no delta node needed at the beginning */
do_all_eight(store_break_width);
} else {
q = new_node(delta_node, 0);
vlink(q) = r;
do_all_eight(new_delta_to_break_width);
vlink(prev_r) = q;
prev_prev_r = prev_r;
prev_r = q;
}
if (abs(adj_demerits) >= awful_bad - minimum_demerits)
minimum_demerits = awful_bad - 1;
else
minimum_demerits += abs(adj_demerits);
for (fit_class = very_loose_fit; fit_class <= tight_fit;
fit_class++) {
if (minimal_demerits[fit_class] <= minimum_demerits) {
/*tex
Insert a new active node from |best_place[fit_class]|
to |cur_p|. When we create an active node, we also
create the corresponding passive node.
*/
q = new_node(passive_node, 0);
vlink(q) = passive;
passive = q;
cur_break(q) = cur_p;
incr(pass_number);
serial(q) = pass_number;
prev_break(q) = best_place[fit_class];
/*tex
Here we keep track of the subparagraph penalties in
the break nodes.
*/
passive_pen_inter(q) = internal_pen_inter;
passive_pen_broken(q) = internal_pen_broken;
passive_last_left_box(q) = internal_left_box;
passive_last_left_box_width(q) =
internal_left_box_width;
if (prev_break(q) != null) {
passive_left_box(q) = passive_last_left_box(prev_break(q));
passive_left_box_width(q) = passive_last_left_box_width(prev_break(q));
} else {
passive_left_box(q) = init_internal_left_box;
passive_left_box_width(q) = init_internal_left_box_width;
}
passive_right_box(q) = internal_right_box;
passive_right_box_width(q) = internal_right_box_width;
q = new_node(break_type, fit_class);
break_node(q) = passive;
line_number(q) = best_pl_line[fit_class] + 1;
total_demerits(q) = minimal_demerits[fit_class];
if (do_last_line_fit) {
/*tex
Store additional data in the new active node.
Here we save these data in the active node
representing a potential line break.
*/
active_short(q) = best_pl_short[fit_class];
active_glue(q) = best_pl_glue[fit_class];
}
vlink(q) = r;
vlink(prev_r) = q;
prev_r = q;
if (tracing_paragraphs > 0)
print_break_node(q, fit_class, break_type, cur_p);
}
minimal_demerits[fit_class] = awful_bad;
}
minimum_demerits = awful_bad;
/*tex
Insert a delta node to prepare for the next active node. When
the following code is performed, we will have just inserted
at least one active node before |r|, so
|type(prev_r)<>delta_node|.
*/
if (r != active) {
q = new_node(delta_node, 0);
vlink(q) = r;
do_all_eight(new_delta_from_break_width);
vlink(prev_r) = q;
prev_prev_r = prev_r;
prev_r = q;
}
}
if (r == active)
return;
/*tex
Compute the new line width. When we come to the following code,
we have just encountered the first active node~|r| whose
|line_number| field contains |l|. Thus we want to compute the
length of the $l\mskip1mu$th line of the current paragraph.
Furthermore, we want to set |old_l| to the last number in the
class of line numbers equivalent to~|l|.
*/
if (l > easy_line) {
old_l = max_halfword - 1;
line_width = second_width;
} else {
old_l = l;
if (l > last_special_line) {
line_width = second_width;
} else if (par_shape_ptr == null) {
line_width = first_width;
} else {
line_width = varmem[(par_shape_ptr + 2 * l + 1)].cint;
}
}
}
/*tex
If a line number class has ended, create new active nodes for the
best feasible breaks in that class; then |return| if |r=active|,
otherwise compute the new |line_width|.
Consider the demerits for a line from |r| to |cur_p|; deactivate node
|r| if it should no longer be active; then |goto continue| if a line
from |r| to |cur_p| is infeasible, otherwise record a new feasible
break.
*/
artificial_demerits = false;
shortfall = line_width - cur_active_width[1];
if (break_node(r) == null)
shortfall -= init_internal_left_box_width;
else
shortfall -= passive_last_left_box_width(break_node(r));
shortfall -= internal_right_box_width;
if (protrude_chars > 1) {
halfword l1, o;
l1 = (break_node(r) == null) ? first_p : cur_break(break_node(r));
if (cur_p == null) {
o = null;
} else {
o = alink(cur_p);
assert(vlink(o) == cur_p);
}
/*tex
The disc could be a SELECT subtype, to we might need to get the
last character as |pre_break| from either the |pre_break| list
(if the previous INIT disc was taken), or the |no_break| (sic)
list (if the previous INIT disc was not taken).
The last characters (hyphenation character) if these two list
should always be the same anyway, so we just look at |pre_break|.
Let's look at the right margin first.
*/
if ((cur_p != null) && (type(cur_p) == disc_node) && (vlink_pre_break(cur_p) != null)) {
/*tex a |disc_node| with non-empty |pre_break|, protrude the last char of |pre_break| */
o = tlink_pre_break(cur_p);
} else {
o = find_protchar_right(l1, o);
}
/*tex now the left margin */
if ((l1 != null) && (type(l1) == disc_node) && (vlink_post_break(l1) != null)) {
/*tex The first char could be a disc! Protrude the first char. */
l1 = vlink_post_break(l1);
} else {
l1 = find_protchar_left(l1, true);
}
shortfall += (left_pw(l1) + right_pw(o));
}
if (shortfall != 0) {
margin_kern_stretch = 0;
margin_kern_shrink = 0;
if (protrude_chars > 1) {
/*tex Calculate variations of marginal kerns. */
lp = last_leftmost_char;
rp = last_rightmost_char;
cp = raw_glyph_node();
if (lp != null) {
cal_margin_kern_var(lp);
}
if (rp != null) {
cal_margin_kern_var(rp);
}
flush_node(cp);
}
if ((shortfall > 0) && ((total_font_stretch + margin_kern_stretch) > 0)) {
if ((total_font_stretch + margin_kern_stretch) > shortfall)
shortfall = ((total_font_stretch + margin_kern_stretch) / (max_stretch_ratio / cur_font_step)) / 2;
else
shortfall -= (total_font_stretch + margin_kern_stretch);
} else if ((shortfall < 0) && ((total_font_shrink + margin_kern_shrink) > 0)) {
if ((total_font_shrink + margin_kern_shrink) > -shortfall)
shortfall = -((total_font_shrink + margin_kern_shrink) / (max_shrink_ratio / cur_font_step)) / 2;
else
shortfall += (total_font_shrink + margin_kern_shrink);
}
}
if (shortfall > 0) {
/*tex
Set the value of |b| to the badness for stretching the line, and
compute the corresponding |fit_class|.
When a line must stretch, the available stretchability can be
found in the subarray |cur_active_width[2..6]|, in units of
points, sfi, fil, fill and filll.
The present section is part of \TeX's inner loop, and it is most
often performed when the badness is infinite; therefore it is
worth while to make a quick test for large width excess and small
stretchability, before calling the |badness| subroutine.
*/
if ((cur_active_width[3] != 0) || (cur_active_width[4] != 0) ||
(cur_active_width[5] != 0) || (cur_active_width[6] != 0)) {
if (do_last_line_fit) {
if (cur_p == null) {
/*tex
The last line of a paragraph. Perform computations
for last line and |goto found|.
Here we compute the adjustment |g| and badness |b|
for a line from |r| to the end of the paragraph. When
any of the criteria for adjustment is violated we
fall through to the normal algorithm.
The last line must be too short, and have infinite
stretch entirely due to |par_fill_skip|.
*/
if ((active_short(r) == 0) || (active_glue(r) <= 0))
/*tex
Previous line was neither stretched nor shrunk,
or was infinitely bad.
*/
goto NOT_FOUND;
if ((cur_active_width[3] != fill_width[0]) || (cur_active_width[4] != fill_width[1]) ||
(cur_active_width[5] != fill_width[2]) || (cur_active_width[6] != fill_width[3]))
/*tex
Infinite stretch of this line not entirely due to |par_fill_skip|.
*/
goto NOT_FOUND;
if (active_short(r) > 0)
g = cur_active_width[2];
else
g = cur_active_width[7];
if (g <= 0)
/*tex No finite stretch resp.\ no shrink. */
goto NOT_FOUND;
arith_error = false;
g = fract(g, active_short(r), active_glue(r),
max_dimen);
if (last_line_fit < 1000)
g = fract(g, last_line_fit, 1000, max_dimen);
if (arith_error) {
if (active_short(r) > 0)
g = max_dimen;
else
g = -max_dimen;
}
if (g > 0) {
/*tex
Set the value of |b| to the badness of the last
line for stretching, compute the corresponding
|fit_class, and |goto found|. These badness
computations are rather similar to those of the
standard algorithm, with the adjustment amount
|g| replacing the |shortfall|.
*/
if (g > shortfall)
g = shortfall;
if (g > 7230584) {
if (cur_active_width[2] < 1663497) {
b = inf_bad;
fit_class = very_loose_fit;
goto FOUND;
}
}
b = badness(g, cur_active_width[2]);
if (b > 99) {
fit_class = very_loose_fit;
} else if (b > 12) {
fit_class = loose_fit;
} else {
fit_class = decent_fit;
}
goto FOUND;
} else if (g < 0) {
/*tex
Set the value of |b| to the badness of the last
line for shrinking, compute the corresponding
|fit_class, and |goto found||.
*/
if (-g > cur_active_width[7])
g = -cur_active_width[7];
b = badness(-g, cur_active_width[7]);
if (b > 12)
fit_class = tight_fit;
else
fit_class = decent_fit;
goto FOUND;
}
}
NOT_FOUND:
shortfall = 0;
}
b = 0;
/*tex Infinite stretch. */
fit_class = decent_fit;
} else if (shortfall > 7230584 && cur_active_width[2] < 1663497) {
b = inf_bad;
fit_class = very_loose_fit;
} else {
b = badness(shortfall, cur_active_width[2]);
if (b > 99) {
fit_class = very_loose_fit;
} else if (b > 12) {
fit_class = loose_fit;
} else {
fit_class = decent_fit;
}
}
} else {
/*tex
Set the value of |b| to the badness for shrinking the line, and
compute the corresponding |fit_class|. Shrinkability is never
infinite in a paragraph; we can shrink the line from |r| to
|cur_p| by at most |cur_active_width[7]|.
*/
if (-shortfall > cur_active_width[7])
b = inf_bad + 1;
else
b = badness(-shortfall, cur_active_width[7]);
if (b > 12)
fit_class = tight_fit;
else
fit_class = decent_fit;
}
if (do_last_line_fit) {
/*tex Adjust the additional data for last line; */
if (cur_p == null)
shortfall = 0;
if (shortfall > 0) {
g = cur_active_width[2];
} else if (shortfall < 0) {
g = cur_active_width[7];
} else {
g = 0;
}
}
FOUND:
if ((b > inf_bad) || (pi == eject_penalty)) {
/*tex
Prepare to deactivate node~|r|, and |goto deactivate| unless
there is a reason to consider lines of text from |r| to |cur_p|.
During the final pass, we dare not lose all active nodes, lest we
lose touch with the line breaks already found. The code shown
here makes sure that such a catastrophe does not happen, by
permitting overfull boxes as a last resort. This particular part
of \TeX\ was a source of several subtle bugs before the correct
program logic was finally discovered; readers who seek to
``improve'' \TeX\ should therefore think thrice before daring to
make any changes here.
*/
if (final_pass && (minimum_demerits == awful_bad) &&
(vlink(r) == active) && (prev_r == active)) {
/*tex Set demerits zero, this break is forced. */
artificial_demerits = true;
} else if (b > threshold) {
goto DEACTIVATE;
}
node_r_stays_active = false;
} else {
prev_r = r;
if (b > threshold)
continue;
node_r_stays_active = true;
}
/*tex
Record a new feasible break. When we get to this part of the code,
the line from |r| to |cur_p| is feasible, its badness is~|b|, and its
fitness classification is |fit_class|. We don't want to make an
active node for this break yet, but we will compute the total
demerits and record them in the |minimal_demerits| array, if such a
break is the current champion among all ways to get to |cur_p| in a
given line-number class and fitness class.
*/
if (artificial_demerits) {
d = 0;
} else {
/*tex Compute the demerits, |d|, from |r| to |cur_p|. */
d = line_penalty + b;
if (abs(d) >= 10000)
d = 100000000;
else
d = d * d;
if (pi != 0) {
if (pi > 0) {
d += (pi * pi);
} else if (pi > eject_penalty) {
d -= (pi * pi);
}
}
if ((break_type == hyphenated_node) && (type(r) == hyphenated_node)) {
if (cur_p != null)
d += double_hyphen_demerits;
else
d += final_hyphen_demerits;
}
/*tex
Direct calculation of the absolute value in ((|fit_class| - |fitness(r)|) > 1)
can lead to unexpected results even if the type of the members of |fit_class|, which is |int|
(see C99 §6.7.2.2), and the integer promotion rules for |fitness(r)|, whose also
give an |int| type, should set the expression as substraction between two |int|.
In this case GCC set the type of |fit_class| to |unsigned int| (perhaps because the members are all positives?)
and hence the expression is converted to a sum of |unsigned int|, leading to a different result.
The choice of type is implementation-defined, as stated in C99 §6.7.2.2.4:
"Each enumerated type shall be compatible with char, a signed integer type, or an unsigned integer type.
The choice of type is implementation-defined, but shall be capable of representing the values
of all the members of the enumeration."
It's better to use the equivalent expanded expression.
*/
if ( (fit_class>(fitness(r)+1)) || (fitness(r)>(fit_class+1)) )
d = d + adj_demerits;
}
if (tracing_paragraphs > 0) {
print_feasible_break(cur_p, r, b, pi, d, artificial_demerits);
}
/*tex This is the minimum total demerits from the beginning to |cur_p| via |r|. */
d += total_demerits(r);
if (d <= minimal_demerits[fit_class]) {
minimal_demerits[fit_class] = d;
best_place[fit_class] = break_node(r);
best_pl_line[fit_class] = l;
if (do_last_line_fit) {
/*tex
Store additional data for this feasible break. For each
feasible break we record the shortfall and glue stretch or
shrink (or adjustment).
*/
best_pl_short[fit_class] = shortfall;
best_pl_glue[fit_class] = g;
}
if (d < minimum_demerits)
minimum_demerits = d;
}
/*tex Record a new feasible break. */
if (node_r_stays_active) {
/*tex |prev_r| has been set to |r|. */
continue;
}
DEACTIVATE:
/*tex
Deactivate node |r|. When an active node disappears, we must delete
an adjacent delta node if the active node was at the beginning or the
end of the active list, or if it was surrounded by delta nodes. We
also must preserve the property that |cur_active_width| represents
the length of material from |vlink(prev_r)| to~|cur_p|.
*/
vlink(prev_r) = vlink(r);
flush_node(r);
if (prev_r == active) {
/*tex
Update the active widths, since the first active node has been
deleted. The following code uses the fact that
|type(active)<>delta_node|. If the active list has just become
empty, we do not need to update the |active_width| array, since
it will be initialized when an active node is next inserted.
*/
r = vlink(active);
if (type(r) == delta_node) {
do_all_eight(update_active);
do_all_eight(copy_to_cur_active);
vlink(active) = vlink(r);
flush_node(r);
}
} else if (type(prev_r) == delta_node) {
r = vlink(prev_r);
if (r == active) {
do_all_eight(downdate_width);
vlink(prev_prev_r) = active;
flush_node(prev_r);
prev_r = prev_prev_r;
} else if (type(r) == delta_node) {
do_all_eight(update_width);
do_all_eight(combine_two_deltas);
vlink(prev_r) = vlink(r);
flush_node(r);
}
}
}
}
void ext_do_line_break(
int paragraph_dir,
int pretolerance,
int tracing_paragraphs,
int tolerance,
scaled emergency_stretch,
int looseness,
int adjust_spacing,
halfword par_shape_ptr,
int adj_demerits,
int protrude_chars,
int line_penalty,
int last_line_fit,
int double_hyphen_demerits,
int final_hyphen_demerits,
int hang_indent,
int hsize,
int hang_after,
halfword left_skip,
halfword right_skip,
halfword inter_line_penalties_ptr,
int inter_line_penalty,
int club_penalty,
halfword club_penalties_ptr,
halfword widow_penalties_ptr,
int widow_penalty,
int broken_penalty,
halfword final_par_glue
)
{
/*tex Miscellaneous nodes of temporary interest. */
halfword cur_p, q, r, s;
int line_break_dir = paragraph_dir;
/*tex Get ready to start */
minimum_demerits = awful_bad;
minimal_demerits[tight_fit] = awful_bad;
minimal_demerits[decent_fit] = awful_bad;
minimal_demerits[loose_fit] = awful_bad;
minimal_demerits[very_loose_fit] = awful_bad;
fewest_demerits = 0;
actual_looseness = 0;
/*tex
We compute the values of |easy_line| and the other local variables
relating to line length when the |line_break| procedure is initializing
itself.
*/
if (par_shape_ptr == null) {
if (hang_indent == 0) {
last_special_line = 0;
second_width = hsize;
second_indent = 0;
} else {
halfword used_hang_indent = swap_hang_indent(hang_indent);
/*tex
Set line length parameters in preparation for hanging
indentation. We compute the values of |easy_line| and the other
local variables relating to line length when the |line_break|
procedure is initializing itself.
*/
last_special_line = abs(hang_after);
if (hang_after < 0) {
first_width = hsize - abs(used_hang_indent);
if (used_hang_indent >= 0)
first_indent = used_hang_indent;
else
first_indent = 0;
second_width = hsize;
second_indent = 0;
} else {
first_width = hsize;
first_indent = 0;
second_width = hsize - abs(used_hang_indent);
if (used_hang_indent >= 0)
second_indent = used_hang_indent;
else
second_indent = 0;
}
}
} else {
last_special_line = vinfo(par_shape_ptr + 1) - 1;
second_indent = varmem[(par_shape_ptr + 2 * (last_special_line + 1))].cint;
second_width = varmem[(par_shape_ptr + 2 * (last_special_line + 1) + 1)].cint;
second_indent = swap_parshape_indent(second_indent,second_width);
}
if (looseness == 0)
easy_line = last_special_line;
else
easy_line = max_halfword;
no_shrink_error_yet = true;
check_shrinkage(left_skip);
check_shrinkage(right_skip);
q = left_skip;
r = right_skip;
background[1] = width(q) + width(r);
background[2] = 0;
background[3] = 0;
background[4] = 0;
background[5] = 0;
background[6] = 0;
background[2 + stretch_order(q)] = stretch(q);
background[2 + stretch_order(r)] += stretch(r);
background[7] = shrink(q) + shrink(r);
if (adjust_spacing > 1) {
background[8] = 0;
background[9] = 0;
max_stretch_ratio = -1;
max_shrink_ratio = -1;
cur_font_step = -1;
set_prev_char_p(null);
}
/*tex
Check for special treatment of last line of paragraph. The new algorithm
for the last line requires that the stretchability |par_fill_skip| is
infinite and the stretchability of |left_skip| plus |right_skip| is
finite.
*/
do_last_line_fit = false;
if (last_line_fit > 0) {
q = last_line_fill;
if ((stretch(q) > 0) && (stretch_order(q) > normal)) {
if ((background[3] == 0) && (background[4] == 0) && (background[5] == 0) && (background[6] == 0)) {
do_last_line_fit = true;
fill_width[0] = 0;
fill_width[1] = 0;
fill_width[2] = 0;
fill_width[3] = 0;
fill_width[stretch_order(q) - 1] = stretch(q);
}
}
}
/*tex Initialize |dir_ptr| for |line_break|. */
if (dir_ptr != null) {
flush_node_list(dir_ptr);
dir_ptr = null;
}
/*tex Find optimal breakpoints. */
threshold = pretolerance;
if (threshold >= 0) {
if (tracing_paragraphs > 0) {
begin_diagnostic();
tprint_nl("@firstpass");
}
second_pass = false;
final_pass = false;
} else {
threshold = tolerance;
second_pass = true;
final_pass = (emergency_stretch <= 0);
if (tracing_paragraphs > 0)
begin_diagnostic();
}
while (1) {
halfword first_p;
halfword nest_stack[10];
int nest_index = 0;
if (threshold > inf_bad)
threshold = inf_bad;
/*tex Create an active breakpoint representing the beginning of the paragraph. */
q = new_node(unhyphenated_node, decent_fit);
vlink(q) = active;
break_node(q) = null;
line_number(q) = cur_list.pg_field + 1;
total_demerits(q) = 0;
active_short(q) = 0;
active_glue(q) = 0;
vlink(active) = q;
do_all_eight(store_background);
passive = null;
printed_node = temp_head;
pass_number = 0;
font_in_short_display = null_font;
/*tex Create an active breakpoint representing the beginning of the paragraph. */
auto_breaking = true;
cur_p = vlink(temp_head);
/*tex Initialize with first |local_paragraph| node. */
if ((cur_p != null) && (type(cur_p) == local_par_node)) {
/*tex This used to be an assert, but may as well force it. */
alink(cur_p) = temp_head;
internal_pen_inter = local_pen_inter(cur_p);
internal_pen_broken = local_pen_broken(cur_p);
init_internal_left_box = local_box_left(cur_p);
init_internal_left_box_width = local_box_left_width(cur_p);
internal_left_box = init_internal_left_box;
internal_left_box_width = init_internal_left_box_width;
internal_right_box = local_box_right(cur_p);
internal_right_box_width = local_box_right_width(cur_p);
} else {
internal_pen_inter = 0;
internal_pen_broken = 0;
init_internal_left_box = null;
init_internal_left_box_width = 0;
internal_left_box = init_internal_left_box;
internal_left_box_width = init_internal_left_box_width;
internal_right_box = null;
internal_right_box_width = 0;
}
/*tex Initialize with first |local_paragraph| node. */
set_prev_char_p(null);
first_p = cur_p;
/*tex
To access the first node of paragraph as the first active node has
|break_node=null|.
*/
while ((cur_p != null) && (vlink(active) != active)) {
/*tex
|try_break| if |cur_p| is a legal breakpoint; on the 2nd pass,
also look at |disc_node|s.
*/
while (is_char_node(cur_p)) {
/*tex
Advance |cur_p| to the node following the present string of
characters. The code that passes over the characters of words
in a paragraph is part of \TeX's inner loop, so it has been
streamlined for speed. We use the fact that
`\.{\\parfillskip}' glue appears at the end of each
paragraph; it is therefore unnecessary to check if
|vlink(cur_p)=null| when |cur_p| is a character node.
*/
active_width[1] += pack_width(line_break_dir, dir_TRT, cur_p, true);
if ((adjust_spacing > 1) && check_expand_pars(font(cur_p))) {
set_prev_char_p(cur_p);
add_char_stretch(active_width[8], cur_p);
add_char_shrink(active_width[9], cur_p);
}
cur_p = vlink(cur_p);
while (cur_p == null && nest_index > 0) {
cur_p = nest_stack[--nest_index];
}
}
if (cur_p == null) {
normal_error("linebreak","invalid list tail, probably missing glue");
}
/*tex
Determine legal breaks: As we move through the hlist, we need to
keep the |active_width| array up to date, so that the badness of
individual lines is readily calculated by |try_break|. It is
convenient to use the short name |active_width[1]| for the
component of active width that represents real width as opposed
to glue.
*/
switch (type(cur_p)) {
case hlist_node:
case vlist_node:
active_width[1] += pack_width(line_break_dir, box_dir(cur_p), cur_p, false);
break;
case rule_node:
active_width[1] += width(cur_p);
break;
case dir_node:
/*tex Adjust the dir stack for the |line_break| routine. */
if (subtype(cur_p) == normal_dir) {
line_break_dir = dir_dir(cur_p);
/* Adds to |dir_ptr|. */
push_dir_node(dir_ptr,cur_p);
} else {
pop_dir_node(dir_ptr);
if (dir_ptr != null) {
line_break_dir = dir_dir(dir_ptr);
}
}
break;
case local_par_node:
/*tex Advance past a |local_paragraph| node. */
internal_pen_inter = local_pen_inter(cur_p);
internal_pen_broken = local_pen_broken(cur_p);
internal_left_box = local_box_left(cur_p);
internal_left_box_width = local_box_left_width(cur_p);
internal_right_box = local_box_right(cur_p);
internal_right_box_width = local_box_right_width(cur_p);
break;
case math_node:
auto_breaking = (subtype(cur_p) == after);
/*tex begin mathskip code */
if (glue_is_zero(cur_p) || ignore_math_skip(cur_p)) {
kern_break();
break;
} else {
/*tex fall through */
}
/*tex end mathskip code */
case glue_node:
/*tex
If node |cur_p| is a legal breakpoint, call |try_break|;
then update the active widths by including the glue in
|glue_ptr(cur_p)|.
When node |cur_p| is a glue node, we look at the previous
to see whether or not a breakpoint is legal at |cur_p|,
as explained above.
We only break after certain nodes (see texnodes.h), a
font related kern and a dir node when
|\breakafterdirmode=1|.
*/
if (auto_breaking) {
halfword prev_p = alink(cur_p);
if (prev_p != temp_head && (is_char_node(prev_p)
|| precedes_break(prev_p) || precedes_kern(prev_p) || precedes_dir(prev_p))) {
ext_try_break(
0,
unhyphenated_node,
line_break_dir,
adjust_spacing,
par_shape_ptr,
adj_demerits,
tracing_paragraphs,
protrude_chars,
line_penalty,
last_line_fit,
double_hyphen_demerits,
final_hyphen_demerits,
first_p,
cur_p
);
}
}
check_shrinkage(cur_p);
active_width[1] += width(cur_p);
active_width[2 + stretch_order(cur_p)] += stretch(cur_p);
active_width[7] += shrink(cur_p);
break;
case kern_node:
if (subtype(cur_p) == explicit_kern || subtype(cur_p) == italic_kern) {
kern_break();
} else {
active_width[1] += width(cur_p);
if ((adjust_spacing == 2) && (subtype(cur_p) == normal)) {
add_kern_stretch(active_width[8], cur_p);
add_kern_shrink(active_width[9], cur_p);
}
}
break;
case disc_node:
/*tex
|select_disc|s are handled by the leading |init_disc|.
*/
if (subtype(cur_p) == select_disc)
break;
/*tex
Try to break after a discretionary fragment, then |goto
done5|. The following code knows that discretionary texts
contain only character nodes, kern nodes, box nodes, and
rule nodes. This branch differs a bit from older engines
because in \LUATEX\ we already have hyphenated the list.
This means that we need to skip automatic disc nodes. Of
better, we need to treat discretionaries and explicit
hyphens always, even in the first pass.
*/
if (second_pass || subtype(cur_p) <= automatic_disc) {
int actual_penalty = (int) disc_penalty(cur_p);
s = vlink_pre_break(cur_p);
do_one_seven_eight(reset_disc_width);
if (s == null) {
/*tex trivial pre-break */
ext_try_break(actual_penalty, hyphenated_node,
line_break_dir, adjust_spacing,
par_shape_ptr, adj_demerits,
tracing_paragraphs, protrude_chars,
line_penalty, last_line_fit,
double_hyphen_demerits,
final_hyphen_demerits, first_p, cur_p);
} else {
add_to_widths(s, line_break_dir, adjust_spacing, disc_width);
do_one_seven_eight(add_disc_width_to_active_width);
ext_try_break(actual_penalty, hyphenated_node,
line_break_dir, adjust_spacing,
par_shape_ptr, adj_demerits,
tracing_paragraphs, protrude_chars,
line_penalty, last_line_fit,
double_hyphen_demerits,
final_hyphen_demerits, first_p, cur_p);
if (subtype(cur_p) == init_disc) {
/*tex
We should at two break points after the one
we added above:
\startitemize[n]
\startitem
which does a possible break in INIT's
|post_break|
\stopitem
\startitem
which means the |no_break| actually
was broken just a character later
\stopitem
\stopitemize
Do the select-0 case |f-f-i|:
*/
s = vlink_pre_break(vlink(cur_p));
add_to_widths(s, line_break_dir, adjust_spacing, disc_width);
ext_try_break(actual_penalty, hyphenated_node,
line_break_dir, adjust_spacing,
par_shape_ptr, adj_demerits,
tracing_paragraphs,
protrude_chars, line_penalty,
last_line_fit, double_hyphen_demerits,
final_hyphen_demerits, first_p,
vlink(cur_p));
/*tex This does not work. */
#if 0
/*tex Go back to the starting situation. */
do_one_seven_eight(sub_disc_width_from_active_width);
do_one_seven_eight(reset_disc_width);
/*tex Add select |no_break| to |active_width|. */
s = vlink_no_break(vlink(cur_p));
add_to_widths(s, line_break_dir, adjust_spacing, disc_width);
ext_try_break(actual_penalty, hyphenated_node,
line_break_dir, adjust_spacing,
par_shape_ptr, adj_demerits,
tracing_paragraphs,
protrude_chars, line_penalty,
last_line_fit, double_hyphen_demerits,
final_hyphen_demerits, first_p,
vlink(cur_p));
#endif
}
do_one_seven_eight(sub_disc_width_from_active_width);
}
}
s = vlink_no_break(cur_p);
add_to_widths(s, line_break_dir, adjust_spacing, active_width);
break;
case penalty_node:
ext_try_break(penalty(cur_p), unhyphenated_node, line_break_dir,
adjust_spacing, par_shape_ptr, adj_demerits,
tracing_paragraphs, protrude_chars,
line_penalty, last_line_fit,
double_hyphen_demerits, final_hyphen_demerits,
first_p, cur_p);
break;
case boundary_node:
case whatsit_node:
/*tex Advance past a whatsit node in the |line_break| loop. */
case mark_node:
case ins_node:
case adjust_node:
break;
case glue_spec_node:
normal_warning("parbuilder","found a glue_spec in a paragraph");
break;
default:
formatted_error("parbuilder","weird node %d in paragraph",type(cur_p));
}
cur_p = vlink(cur_p);
while (cur_p == null && nest_index > 0) {
cur_p = nest_stack[--nest_index];
}
}
if (cur_p == null) {
/*tex
Try the final line break at the end of the paragraph, and |goto
done| if the desired breakpoints have been found.
The forced line break at the paragraph's end will reduce the list
of breakpoints so that all active nodes represent breaks at
|cur_p=null|. On the first pass, we insist on finding an active
node that has the correct ``looseness.'' On the final pass, there
will be at least one active node, and we will match the desired
looseness as well as we can.
The global variable |best_bet| will be set to the active node for
the best way to break the paragraph, and a few other variables
are used to help determine what is best.
*/
ext_try_break(eject_penalty, hyphenated_node, line_break_dir,
adjust_spacing, par_shape_ptr, adj_demerits,
tracing_paragraphs, protrude_chars, line_penalty,
last_line_fit, double_hyphen_demerits,
final_hyphen_demerits, first_p, cur_p);
if (vlink(active) != active) {
/*tex Find an active node with fewest demerits; */
r = vlink(active);
fewest_demerits = awful_bad;
do {
if (type(r) != delta_node) {
if (total_demerits(r) < fewest_demerits) {
fewest_demerits = total_demerits(r);
best_bet = r;
}
}
r = vlink(r);
} while (r != active);
best_line = line_number(best_bet);
/*tex
Find an active node with fewest demerits;
*/
if (looseness == 0)
goto DONE;
/*tex
Find the best active node for the desired looseness;
The adjustment for a desired looseness is a slightly more
complicated version of the loop just considered. Note that if
a paragraph is broken into segments by displayed equations,
each segment will be subject to the looseness calculation,
independently of the other segments.
*/
r = vlink(active);
actual_looseness = 0;
do {
if (type(r) != delta_node) {
line_diff = line_number(r) - best_line;
if (((line_diff < actual_looseness)
&& (looseness <= line_diff))
|| ((line_diff > actual_looseness)
&& (looseness >= line_diff))) {
best_bet = r;
actual_looseness = line_diff;
fewest_demerits = total_demerits(r);
} else if ((line_diff == actual_looseness) &&
(total_demerits(r) < fewest_demerits)) {
best_bet = r;
fewest_demerits = total_demerits(r);
}
}
r = vlink(r);
} while (r != active);
best_line = line_number(best_bet);
/*tex
Find the best active node for the desired looseness.
*/
if ((actual_looseness == looseness) || final_pass)
goto DONE;
}
}
/*tex Clean up the memory by removing the break nodes. */
clean_up_the_memory();
/*tex Clean up the memory by removing the break nodes. */
if (!second_pass) {
if (tracing_paragraphs > 0)
tprint_nl("@secondpass");
threshold = tolerance;
second_pass = true;
final_pass = (emergency_stretch <= 0);
} else {
/*tex If at first you do not succeed, then: */
if (tracing_paragraphs > 0)
tprint_nl("@emergencypass");
background[2] += emergency_stretch;
final_pass = true;
}
}
DONE:
if (tracing_paragraphs > 0) {
end_diagnostic(true);
normalize_selector();
}
if (do_last_line_fit) {
/*tex
Adjust the final line of the paragraph; here we either reset
|do_last_line_fit| or adjust the |par_fill_skip| glue.
*/
if (active_short(best_bet) == 0) {
do_last_line_fit = false;
} else {
width(last_line_fill) += (active_short(best_bet) - active_glue(best_bet));
stretch(last_line_fill) = 0;
}
}
/*tex
Break the paragraph at the chosen. Once the best sequence of
breakpoints has been found (hurray), we call on the procedure
|post_line_break| to finish the remainder of the work. By introducing
this subprocedure, we are able to keep |line_break| from getting
extremely long.
the first thing |ext_post_line_break| does is reset |dir_ptr|.
*/
flush_node_list(dir_ptr);
dir_ptr = null;
ext_post_line_break(paragraph_dir,
right_skip,
left_skip,
protrude_chars,
par_shape_ptr,
adjust_spacing,
inter_line_penalties_par_ptr,
inter_line_penalty,
club_penalty,
club_penalties_ptr,
widow_penalties_ptr,
widow_penalty,
broken_penalty,
final_par_glue,
best_bet,
last_special_line,
second_width,
second_indent, first_width, first_indent, best_line);
/*tex
Clean up the memory by removing the break nodes.
*/
clean_up_the_memory();
}
void get_linebreak_info (int *f, int *a)
{
*f = fewest_demerits;
*a = actual_looseness;
}
|