1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
|
% equivalents.w
%
% Copyright 2009-2010 Taco Hoekwater <taco@@luatex.org>
%
% This file is part of LuaTeX.
%
% LuaTeX is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free
% Software Foundation; either version 2 of the License, or (at your
% option) any later version.
%
% LuaTeX is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
% FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License for more details.
%
% You should have received a copy of the GNU General Public License along
% with LuaTeX; if not, see <http://www.gnu.org/licenses/>.
@ @c
#include "ptexlib.h"
halfword last_cs_name = null_cs;
/* |eqtb[p]| has just been restored or retained */
static void diagnostic_trace(halfword p, const char *s)
{
begin_diagnostic();
print_char('{');
tprint(s);
print_char(' ');
show_eqtb(p);
print_char('}');
end_diagnostic(false);
}
@ @c
#define par_shape_ptr equiv(par_shape_loc)
void show_eqtb_meaning(halfword n); /* forward */
@ Now that we have studied the data structures for \TeX's semantic routines,
we ought to consider the data structures used by its syntactic routines. In
other words, our next concern will be
the tables that \TeX\ looks at when it is scanning
what the user has written.
The biggest and most important such table is called |eqtb|. It holds the
current ``equivalents'' of things; i.e., it explains what things mean
or what their current values are, for all quantities that are subject to
the nesting structure provided by \TeX's grouping mechanism. There are six
parts to |eqtb|:
\yskip\hang 1) |eqtb[null_cs]| holds the current equivalent of the
zero-length control sequence.
\yskip\hang 2) |eqtb[hash_base..(glue_base-1)]| holds the current
equivalents of single- and multiletter control sequences.
\yskip\hang 3) |eqtb[glue_base..(local_base-1)]| holds the current
equivalents of glue parameters like the current baselineskip.
\yskip\hang 4) |eqtb[local_base..(int_base-1)]| holds the current
equivalents of local halfword quantities like the current box registers,
the current ``catcodes,'' the current font, and a pointer to the current
paragraph shape.
\yskip\hang 5) |eqtb[int_base..(dimen_base-1)]| holds the current
equivalents of fullword integer parameters like the current hyphenation
penalty.
\yskip\hang 6) |eqtb[dimen_base..eqtb_size]| holds the current equivalents
of fullword dimension parameters like the current hsize or amount of
hanging indentation.
\yskip\noindent Note that, for example, the current amount of
baselineskip glue is determined by the setting of a particular location
in region~3 of |eqtb|, while the current meaning of the control sequence
`\.{\\baselineskip}' (which might have been changed by \.{\\def} or
\.{\\let}) appears in region~2.
@ The last two regions of |eqtb| have fullword values instead of the
three fields |eq_level|, |eq_type|, and |equiv|. An |eq_type| is unnecessary,
but \TeX\ needs to store the |eq_level| information in another array
called |xeq_level|.
@c
memory_word *eqtb;
halfword eqtb_top; /* maximum of the |eqtb| */
quarterword xeq_level[(eqtb_size + 1)];
@ @c
void initialize_equivalents(void)
{
int k;
for (k = int_base; k <= eqtb_size; k++)
xeq_level[k] = level_one;
}
@ The nested structure provided by `$\.{\char'173}\ldots\.{\char'175}$' groups
in \TeX\ means that |eqtb| entries valid in outer groups should be saved
and restored later if they are overridden inside the braces. When a new |eqtb|
value is being assigned, the program therefore checks to see if the previous
entry belongs to an outer level. In such a case, the old value is placed
on the |save_stack| just before the new value enters |eqtb|. At the
end of a grouping level, i.e., when the right brace is sensed, the
|save_stack| is used to restore the outer values, and the inner ones are
destroyed.
Entries on the |save_stack| are of type |save_record|. The top item on
this stack is |save_stack[p]|, where |p=save_ptr-1|; it contains three
fields called |save_type|, |save_level|, and |save_value|, and it is
interpreted in one of four ways:
\yskip\hang 1) If |save_type(p)=restore_old_value|, then
|save_value(p)| is a location in |eqtb| whose current value should
be destroyed at the end of the current group and replaced by |save_word(p-1)|
(|save_type(p-1)==saved_eqtb|).
Furthermore if |save_value(p)>=int_base|, then |save_level(p)| should
replace the corresponding entry in |xeq_level| (if |save_value(p)<int_base|,
then the level is part of |save_word(p-1)|).
\yskip\hang 2) If |save_type(p)=restore_zero|, then |save_value(p)|
is a location in |eqtb| whose current value should be destroyed at the end
of the current group, when it should be
replaced by the current value of |eqtb[undefined_control_sequence]|.
\yskip\hang 3) If |save_type(p)=insert_token|, then |save_value(p)|
is a token that should be inserted into \TeX's input when the current
group ends.
\yskip\hang 4) If |save_type(p)=level_boundary|, then |save_level(p)|
is a code explaining what kind of group we were previously in, and
|save_value(p)| points to the level boundary word at the bottom of
the entries for that group. Furthermore, |save_value(p-1)| contains the
source line number at which the current level of grouping was entered,
this field has itself a type: |save_type(p-1)==saved_line|.
Besides this `official' use, various subroutines push temporary
variables on the save stack when it is handy to do so. These all have
an explicit |save_type|, and they are:
|saved_adjust| signifies an adjustment is beging scanned,
|saved_insert| an insertion is being scanned,
|saved_disc| the \.{\\discretionary} sublist we are working on right now,
|saved_boxtype| whether a \.{\\localbox} is \.{\\left} or \.{\\right},
|saved_textdir| a text direction to be restored,
|saved_eqno| diffentiates between \.{\\eqno} and \.{\\leqno},
|saved_choices| the \.{\\mathchoices} sublist we are working on right now,
|saved_math| and interrupted math list,
|saved_boxcontext| the box context value,
|saved_boxspec| the box \.{to} or \.{spread} specification,
|saved_boxdir| the box \.{dir} specification,
|saved_boxattr| the box \.{attr} specification,
|saved_boxpack| the box \.{pack} specification.
@ The global variable |cur_group| keeps track of what sort of group we are
currently in. Another global variable, |cur_boundary|, points to the
topmost |level_boundary| word. And |cur_level| is the current depth of
nesting. The routines are designed to preserve the condition that no entry
in the |save_stack| or in |eqtb| ever has a level greater than |cur_level|.
@c
save_record *save_stack;
int save_ptr; /* first unused entry on |save_stack| */
int max_save_stack; /* maximum usage of save stack */
quarterword cur_level = level_one; /* current nesting level for groups */
group_code cur_group = bottom_level; /* current group type */
int cur_boundary; /* where the current level begins */
@ At this time it might be a good idea for the reader to review the introduction
to |eqtb| that was given above just before the long lists of parameter names.
Recall that the ``outer level'' of the program is |level_one|, since
undefined control sequences are assumed to be ``defined'' at |level_zero|.
@ The following macro is used to test if there is room for up to eight more
entries on |save_stack|. By making a conservative test like this, we can
get by with testing for overflow in only a few places.
@c
#define check_full_save_stack() do { \
if (save_ptr>max_save_stack) { \
max_save_stack=save_ptr; \
if (max_save_stack>save_size-8) \
overflow("save size",(unsigned)save_size); \
} \
} while (0)
@ Procedure |new_save_level| is called when a group begins. The
argument is a group identification code like `|hbox_group|'. After
calling this routine, it is safe to put six more entries on |save_stack|.
In some cases integer-valued items are placed onto the
|save_stack| just below a |level_boundary| word, because this is a
convenient place to keep information that is supposed to ``pop up'' just
when the group has finished.
For example, when `\.{\\hbox to 100pt}' is being treated, the 100pt
dimension is stored on |save_stack| just before |new_save_level| is
called.
@c
void new_save_level(group_code c)
{ /* begin a new level of grouping */
check_full_save_stack();
set_saved_record(0, saved_line, 0, line);
incr(save_ptr);
save_type(save_ptr) = level_boundary;
save_level(save_ptr) = cur_group;
save_value(save_ptr) = cur_boundary;
if (cur_level == max_quarterword)
overflow("grouping levels", max_quarterword - min_quarterword);
/* quit if |(cur_level+1)| is too big to be stored in |eqtb| */
cur_boundary = save_ptr;
cur_group = c;
if (int_par(tracing_groups_code) > 0)
group_trace(false);
incr(cur_level);
incr(save_ptr);
}
@ @c
static const char *save_stack_type(int v)
{
const char *s = "";
switch (save_type(v)) {
case restore_old_value: s = "restore_old_value"; break;
case restore_zero: s = "restore_zero"; break;
case insert_token: s = "insert_token"; break;
case level_boundary: s = "level_boundary"; break;
case saved_line: s = "saved_line"; break;
case saved_adjust: s = "saved_adjust"; break;
case saved_insert: s = "saved_insert"; break;
case saved_disc: s = "saved_disc"; break;
case saved_boxtype: s = "saved_boxtype"; break;
case saved_textdir: s = "saved_textdir"; break;
case saved_eqno: s = "saved_eqno"; break;
case saved_choices: s = "saved_choices"; break;
case saved_math: s = "saved_math"; break;
case saved_boxcontext: s = "saved_boxcontext"; break;
case saved_boxspec: s = "saved_boxspec"; break;
case saved_boxdir: s = "saved_boxdir"; break;
case saved_boxattr: s = "saved_boxattr"; break;
case saved_boxpack: s = "saved_boxpack"; break;
case saved_eqtb: s = "saved_eqtb"; break;
default: break;
}
return s;
}
@ @c
void print_save_stack(void)
{
int i;
begin_diagnostic();
selector = term_and_log;
print_ln();
for (i = (save_ptr - 1); i >= 0; i--) {
tprint("save_stack[");
if (i < 100)
print_char(' ');
if (i < 10)
print_char(' ');
print_int(i);
tprint("]: ");
tprint(save_stack_type(i));
switch (save_type(i)) {
case restore_old_value:
tprint(", ");
show_eqtb_meaning(save_value(i));
tprint("=");
if (save_value(i) >= int_base) {
print_int(save_word(i - 1).cint);
} else {
print_int(eq_type_field(save_word(i - 1)));
print_char(','); /* |print_int(eq_level_field(save_word(i-1)));| */
print_int(equiv_field(save_word(i - 1)));
}
i--;
break;
case restore_zero:
tprint(", ");
show_eqtb_meaning(save_value(i));
break;
case insert_token:
tprint(", ");
{
halfword p = get_avail();
set_token_info(p, save_value(i));
show_token_list(p, null, 1);
free_avail(p);
}
break;
case level_boundary:
tprint(", old group=");
print_int(save_level(i));
tprint(", boundary = ");
print_int(save_value(i));
tprint(", line = ");
print_int(save_value(i - 1));
i--;
break;
case saved_adjust:
tprint(", ");
print_int(save_level(i)); /* vadjust vs vadjust pre */
break;
case saved_insert:
tprint(", ");
print_int(save_value(i)); /* insert number */
break;
case saved_boxtype: /* \.{\\localleftbox} vs \.{\\localrightbox} */
tprint(", ");
print_int(save_value(i));
break;
case saved_eqno: /* \.{\\eqno} vs \.{\\leqno} */
tprint(", ");
print_int(save_value(i));
break;
case saved_disc:
case saved_choices:
tprint(", ");
print_int(save_value(i));
break;
case saved_math:
tprint(", listptr=");
print_int(save_value(i));
break;
case saved_boxcontext:
tprint(", ");
print_int(save_value(i));
break;
case saved_boxspec:
tprint(", spec=");
print_int(save_level(i));
tprint(", dimen=");
print_int(save_value(i));
break;
case saved_textdir:
case saved_boxdir:
tprint(", ");
print_dir(dir_dir(save_value(i)));
break;
case saved_boxattr:
case saved_boxpack:
tprint(", ");
print_int(save_value(i));
break;
case saved_line:
case saved_eqtb:
break;
default:
break;
}
print_ln();
}
end_diagnostic(true);
}
@ The \.{\\showgroups} command displays all currently active grouping
levels.
@ The modifications of \TeX\ required for the display produced by the
|show_save_groups| procedure were first discussed by Donald~E. Knuth in
{\sl TUGboat\/} {\bf 11}, 165--170 and 499--511, 1990.
@^Knuth, Donald Ervin@>
In order to understand a group type we also have to know its mode.
Since unrestricted horizontal modes are not associated with grouping,
they are skipped when traversing the semantic nest.
@c
void show_save_groups(void)
{
int p = nest_ptr; /* index into |nest| */
int m; /* mode */
save_pointer v = save_ptr; /* saved value of |save_ptr| */
quarterword l = cur_level; /* saved value of |cur_level| */
group_code c = cur_group; /* saved value of |cur_group| */
int a = 1; /* to keep track of alignments */
int i;
quarterword j;
const char *s = NULL;
save_ptr = cur_boundary;
decr(cur_level);
tprint_nl("");
print_ln();
while (1) {
tprint_nl("### ");
print_group(true);
if (cur_group == bottom_level)
goto DONE;
do {
m = nest[p].mode_field;
if (p > 0)
decr(p);
else
m = vmode;
} while (m == hmode);
tprint(" (");
switch (cur_group) {
case simple_group:
incr(p);
goto FOUND2;
break;
case hbox_group:
case adjusted_hbox_group:
s = "hbox";
break;
case vbox_group:
s = "vbox";
break;
case vtop_group:
s = "vtop";
break;
case align_group:
if (a == 0) {
if (m == -vmode)
s = "halign";
else
s = "valign";
a = 1;
goto FOUND1;
} else {
if (a == 1)
tprint("align entry");
else
tprint_esc("cr");
if (p >= a)
p = p - a;
a = 0;
goto FOUND;
}
break;
case no_align_group:
incr(p);
a = -1;
tprint_esc("noalign");
goto FOUND2;
break;
case output_group:
tprint_esc("output");
goto FOUND;
break;
case math_group:
goto FOUND2;
break;
case disc_group:
tprint_esc("discretionary");
for (i = 1; i < 3; i++)
if (i <= saved_value(-2))
tprint("{}");
goto FOUND2;
break;
case math_choice_group:
tprint_esc("mathchoice");
for (i = 1; i < 4; i++)
if (i <= saved_value(-3)) /* different offset because |-2==saved_textdir| */
tprint("{}");
goto FOUND2;
break;
case insert_group:
if (saved_type(-1) == saved_adjust) {
tprint_esc("vadjust");
if (saved_level(-1) != 0)
tprint(" pre");
} else {
tprint_esc("insert");
print_int(saved_value(-1));
}
goto FOUND2;
break;
case vcenter_group:
s = "vcenter";
goto FOUND1;
break;
case semi_simple_group:
incr(p);
tprint_esc("begingroup");
goto FOUND;
break;
case math_shift_group:
if (m == mmode) {
print_char('$');
} else if (nest[p].mode_field == mmode) {
print_cmd_chr(eq_no_cmd, saved_value(-2));
goto FOUND;
}
print_char('$');
goto FOUND;
break;
case math_left_group:
if (subtype(nest[p + 1].eTeX_aux_field) == left_noad_side)
tprint_esc("left");
else
tprint_esc("middle");
goto FOUND;
break;
default:
confusion("showgroups");
break;
}
/* Show the box context */
i = saved_value(-5);
if (i != 0) {
if (i < box_flag) {
if (abs(nest[p].mode_field) == vmode)
j = hmove_cmd;
else
j = vmove_cmd;
if (i > 0)
print_cmd_chr(j, 0);
else
print_cmd_chr(j, 1);
print_scaled(abs(i));
tprint("pt");
} else if (i < ship_out_flag) {
if (i >= global_box_flag) {
tprint_esc("global");
i = i - (global_box_flag - box_flag);
}
tprint_esc("setbox");
print_int(i - box_flag);
print_char('=');
} else {
print_cmd_chr(leader_ship_cmd, i - (leader_flag - a_leaders));
}
}
FOUND1:
tprint_esc(s);
/* Show the box packaging info */
{
/* offsets may vary */
int ii = -1;
while (saved_type(ii) != saved_boxspec)
ii--;
if (saved_value(ii) != 0) {
print_char(' ');
if (saved_level(ii) == exactly)
tprint("to");
else
tprint("spread");
print_scaled(saved_value(ii));
tprint("pt");
}
}
FOUND2:
print_char('{');
FOUND:
print_char(')');
decr(cur_level);
cur_group = save_level(save_ptr);
save_ptr = save_value(save_ptr);
}
DONE:
save_ptr = v;
cur_level = l;
cur_group = c;
}
@ Just before an entry of |eqtb| is changed, the following procedure should
be called to update the other data structures properly. It is important
to keep in mind that reference counts in |mem| include references from
within |save_stack|, so these counts must be handled carefully.
@^reference counts@>
@c
/* we don't need to destroy when an assignment has the same node */
void eq_destroy(memory_word w)
{ /* gets ready to forget |w| */
halfword q; /* |equiv| field of |w| */
switch (eq_type_field(w)) {
case call_cmd:
case long_call_cmd:
case outer_call_cmd:
case long_outer_call_cmd:
delete_token_ref(equiv_field(w));
break;
case glue_ref_cmd:
flush_node(equiv_field(w));
break;
case shape_ref_cmd:
q = equiv_field(w); /* we need to free a \.{\\parshape} block */
if (q != null)
flush_node(q);
break; /* such a block is |2n+1| words long, where |n=vinfo(q)| */
case box_ref_cmd:
flush_node_list(equiv_field(w));
break;
default:
break;
}
}
@ To save a value of |eqtb[p]| that was established at level |l|, we
can use the following subroutine.
@c
void eq_save(halfword p, quarterword l)
{ /* saves |eqtb[p]| */
check_full_save_stack();
if (l == level_zero) {
save_type(save_ptr) = restore_zero;
} else {
save_word(save_ptr) = eqtb[p];
save_type(save_ptr) = saved_eqtb;
incr(save_ptr);
save_type(save_ptr) = restore_old_value;
}
save_level(save_ptr) = l;
save_value(save_ptr) = p;
incr(save_ptr);
}
@ The procedure |eq_define| defines an |eqtb| entry having specified
|eq_type| and |equiv| fields, and saves the former value if appropriate.
This procedure is used only for entries in the first four regions of |eqtb|,
i.e., only for entries that have |eq_type| and |equiv| fields.
After calling this routine, it is safe to put four more entries on
|save_stack|, provided that there was room for four more entries before
the call, since |eq_save| makes the necessary test.
@ new data for |eqtb|
@c
void eq_define(halfword p, quarterword t, halfword e)
{
boolean trace = int_par(tracing_assigns_code) > 0;
if ((eq_type(p) == t) && (equiv(p) == e)) {
if (trace)
diagnostic_trace(p, "reassigning");
eq_destroy(eqtb[p]);
return;
}
if (trace)
diagnostic_trace(p, "changing");
if (eq_level(p) == cur_level)
eq_destroy(eqtb[p]);
else if (cur_level > level_one)
eq_save(p, eq_level(p));
set_eq_level(p, cur_level);
set_eq_type(p, t);
set_equiv(p, e);
if (trace)
diagnostic_trace(p, "into");
}
@ The counterpart of |eq_define| for the remaining (fullword) positions in
|eqtb| is called |eq_word_define|. Since |xeq_level[p]>=level_one| for all
|p|, a `|restore_zero|' will never be used in this case.
@c
void eq_word_define(halfword p, int w)
{
boolean trace = int_par(tracing_assigns_code) > 0;
if (eqtb[p].cint == w) {
if (trace)
diagnostic_trace(p, "reassigning");
return;
}
if (trace)
diagnostic_trace(p, "changing");
if (xeq_level[p] != cur_level) {
eq_save(p, xeq_level[p]);
xeq_level[p] = cur_level;
}
eqtb[p].cint = w;
if (trace)
diagnostic_trace(p, "into");
}
@ The |eq_define| and |eq_word_define| routines take care of local definitions.
@^global definitions@>
Global definitions are done in almost the same way, but there is no need
to save old values, and the new value is associated with |level_one|.
@c
void geq_define(halfword p, quarterword t, halfword e)
{ /* global |eq_define| */
boolean trace = int_par(tracing_assigns_code) > 0;
if (trace)
diagnostic_trace(p, "globally changing");
eq_destroy(eqtb[p]);
set_eq_level(p, level_one);
set_eq_type(p, t);
set_equiv(p, e);
if (trace)
diagnostic_trace(p, "into");
}
void geq_word_define(halfword p, int w)
{ /* global |eq_word_define| */
boolean trace = int_par(tracing_assigns_code) > 0;
if (trace)
diagnostic_trace(p, "globally changing");
eqtb[p].cint = w;
xeq_level[p] = level_one;
if (trace)
diagnostic_trace(p, "into");
}
@ Subroutine |save_for_after| puts a token on the stack for save-keeping.
@c
void save_for_after(halfword t)
{
if (cur_level > level_one) {
check_full_save_stack();
save_type(save_ptr) = insert_token;
save_level(save_ptr) = level_zero;
save_value(save_ptr) = t;
incr(save_ptr);
}
}
@ The |unsave| routine goes the other way, taking items off of |save_stack|.
This routine takes care of restoration when a level ends; everything
belonging to the topmost group is cleared off of the save stack.
@c
void unsave(void)
{ /* pops the top level off the save stack */
halfword p; /* position to be restored */
quarterword l = level_one; /* saved level, if in fullword regions of |eqtb| */
boolean a = false; /* have we already processed an \.{\\aftergroup} ? */
unsave_math_codes(cur_level);
unsave_cat_codes(int_par(cat_code_table_code), cur_level);
unsave_text_codes(cur_level);
unsave_math_data(cur_level);
if (cur_level > level_one) {
boolean trace = int_par(tracing_restores_code) > 0;
decr(cur_level);
/* Clear off top level from |save_stack| */
while (true) {
decr(save_ptr);
if (save_type(save_ptr) == level_boundary)
break;
p = save_value(save_ptr);
if (save_type(save_ptr) == insert_token) {
reinsert_token(a, p);
a = true; /* always ... always etex now */
} else {
if (save_type(save_ptr) == restore_old_value) {
l = save_level(save_ptr);
decr(save_ptr);
} else {
save_word(save_ptr) = eqtb[undefined_control_sequence];
}
/* Store |save_stack[save_ptr]| in |eqtb[p]|, unless
|eqtb[p]| holds a global value */
/* A global definition, which sets the level to |level_one|,
will not be undone by |unsave|. If at least one global definition of
|eqtb[p]| has been carried out within the group that just ended, the
last such definition will therefore survive.
*/
if (p < int_base || p > eqtb_size) {
if (eq_level(p) == level_one) {
eq_destroy(save_word(save_ptr)); /* destroy the saved value */
if (trace)
diagnostic_trace(p, "retaining");
} else {
eq_destroy(eqtb[p]); /* destroy the current value */
eqtb[p] = save_word(save_ptr); /* restore the saved value */
if (trace)
diagnostic_trace(p, "restoring");
}
} else if (xeq_level[p] != level_one) {
eqtb[p] = save_word(save_ptr);
xeq_level[p] = l;
if (trace)
diagnostic_trace(p, "restoring");
} else {
if (trace)
diagnostic_trace(p, "retaining");
}
}
}
if (int_par(tracing_groups_code) > 0)
group_trace(true);
if (grp_stack[in_open] == cur_boundary)
group_warning(); /* groups possibly not properly nested with files */
cur_group = save_level(save_ptr);
cur_boundary = save_value(save_ptr);
decr(save_ptr);
} else {
confusion("curlevel"); /* |unsave| is not used when |cur_group=bottom_level| */
}
attr_list_cache = cache_disabled;
}
@ Most of the parameters kept in |eqtb| can be changed freely, but there's
an exception: The magnification should not be used with two different
values during any \TeX\ job, since a single magnification is applied to an
entire run. The global variable |mag_set| is set to the current magnification
whenever it becomes necessary to ``freeze'' it at a particular value.
@c
int mag_set; /* if nonzero, this magnification should be used henceforth */
@ The |prepare_mag| subroutine is called whenever \TeX\ wants to use |mag|
for magnification.
@c
#define mag int_par(mag_code)
void prepare_mag(void)
{
if ((mag_set > 0) && (mag != mag_set)) {
print_err("Incompatible magnification (");
print_int(mag);
tprint(");");
tprint_nl(" the previous value will be retained");
help2("I can handle only one magnification ratio per job. So I've",
"reverted to the magnification you used earlier on this run.");
int_error(mag_set);
geq_word_define(int_base + mag_code, mag_set); /* |mag:=mag_set| */
}
if ((mag <= 0) || (mag > 32768)) {
print_err("Illegal magnification has been changed to 1000");
help1("The magnification ratio must be between 1 and 32768.");
int_error(mag);
geq_word_define(int_base + mag_code, 1000);
}
if ((mag_set == 0) && (mag != mag_set)) {
if (mag != 1000)
one_true_inch = xn_over_d(one_hundred_inch, 10, mag);
else
one_true_inch = one_inch;
}
mag_set = mag;
}
@ Let's pause a moment now and try to look at the Big Picture.
The \TeX\ program consists of three main parts: syntactic routines,
semantic routines, and output routines. The chief purpose of the
syntactic routines is to deliver the user's input to the semantic routines,
one token at a time. The semantic routines act as an interpreter
responding to these tokens, which may be regarded as commands. And the
output routines are periodically called on to convert box-and-glue
lists into a compact set of instructions that will be sent
to a typesetter. We have discussed the basic data structures and utility
routines of \TeX, so we are good and ready to plunge into the real activity by
considering the syntactic routines.
Our current goal is to come to grips with the |get_next| procedure,
which is the keystone of \TeX's input mechanism. Each call of |get_next|
sets the value of three variables |cur_cmd|, |cur_chr|, and |cur_cs|,
representing the next input token.
$$\vbox{\halign{#\hfil\cr
\hbox{|cur_cmd| denotes a command code from the long list of codes
given above;}\cr
\hbox{|cur_chr| denotes a character code or other modifier of the command
code;}\cr
\hbox{|cur_cs| is the |eqtb| location of the current control sequence,}\cr
\hbox{\qquad if the current token was a control sequence,
otherwise it's zero.}\cr}}$$
Underlying this external behavior of |get_next| is all the machinery
necessary to convert from character files to tokens. At a given time we
may be only partially finished with the reading of several files (for
which \.{\\input} was specified), and partially finished with the expansion
of some user-defined macros and/or some macro parameters, and partially
finished with the generation of some text in a template for \.{\\halign},
and so on. When reading a character file, special characters must be
classified as math delimiters, etc.; comments and extra blank spaces must
be removed, paragraphs must be recognized, and control sequences must be
found in the hash table. Furthermore there are occasions in which the
scanning routines have looked ahead for a word like `\.{plus}' but only
part of that word was found, hence a few characters must be put back
into the input and scanned again.
To handle these situations, which might all be present simultaneously,
\TeX\ uses various stacks that hold information about the incomplete
activities, and there is a finite state control for each level of the
input mechanism. These stacks record the current state of an implicitly
recursive process, but the |get_next| procedure is not recursive.
Therefore it will not be difficult to translate these algorithms into
low-level languages that do not support recursion.
@c
int cur_cmd; /* current command set by |get_next| */
halfword cur_chr; /* operand of current command */
halfword cur_cs; /* control sequence found here, zero if none found */
halfword cur_tok; /* packed representative of |cur_cmd| and |cur_chr| */
@ Here is a procedure that displays the current command.
@c
#define mode cur_list.mode_field
void show_cur_cmd_chr(void)
{
int n; /* level of \.{\\if...\\fi} nesting */
int l; /* line where \.{\\if} started */
halfword p;
begin_diagnostic();
tprint_nl("{");
if (mode != shown_mode) {
print_mode(mode);
tprint(": ");
shown_mode = mode;
}
print_cmd_chr((quarterword) cur_cmd, cur_chr);
if (int_par(tracing_ifs_code) > 0) {
if (cur_cmd >= if_test_cmd) {
if (cur_cmd <= fi_or_else_cmd) {
tprint(": ");
if (cur_cmd == fi_or_else_cmd) {
print_cmd_chr(if_test_cmd, cur_if);
print_char(' ');
n = 0;
l = if_line;
} else {
n = 1;
l = line;
}
p = cond_ptr;
while (p != null) {
incr(n);
p = vlink(p);
}
tprint("(level ");
print_int(n);
print_char(')');
print_if_line(l);
}
}
}
print_char('}');
end_diagnostic(false);
}
@ Here is a procedure that displays the contents of |eqtb[n]| symbolically.
@c
void show_eqtb(halfword n)
{
if (n < null_cs) {
/* this can't happen */
print_char('?');
} else if ((n < glue_base) || ((n > eqtb_size) && (n <= eqtb_top))) {
/*
Show equivalent |n|, in region 1 or 2
Here is a routine that displays the current meaning of an |eqtb| entry
in region 1 or~2. (Similar routines for the other regions will appear
below.)
*/
sprint_cs(n);
print_char('=');
print_cmd_chr(eq_type(n), equiv(n));
if (eq_type(n) >= call_cmd) {
print_char(':');
show_token_list(token_link(equiv(n)), null, 32);
}
} else if (n < local_base) {
/*
Show equivalent |n|, in region 3
All glue parameters and registers are initially `\.{0pt plus0pt minus0pt}'.
*/
if (n < skip_base) {
if (n < glue_base + thin_mu_skip_code)
print_cmd_chr(assign_glue_cmd, n);
else
print_cmd_chr(assign_mu_glue_cmd, n);
print_char('=');
if (n < glue_base + thin_mu_skip_code)
print_spec(equiv(n), "pt");
else
print_spec(equiv(n), "mu");
} else if (n < mu_skip_base) {
tprint_esc("skip");
print_int(n - skip_base);
print_char('=');
print_spec(equiv(n), "pt");
} else {
tprint_esc("muskip");
print_int(n - mu_skip_base);
print_char('=');
print_spec(equiv(n), "mu");
}
} else if (n < int_base) {
/*
Show equivalent |n|, in region 4
We initialize most things to null or undefined values. An undefined font
is represented by the internal code |font_base|.
However, the character code tables are given initial values based on the
conventional interpretation of ASCII code. These initial values should
not be changed when \TeX\ is adapted for use with non-English languages;
all changes to the initialization conventions should be made in format
packages, not in \TeX\ itself, so that global interchange of formats is
possible.
*/
if ((n == par_shape_loc) || ((n >= etex_pen_base) && (n < etex_pens))) {
if (n == par_shape_loc)
print_cmd_chr(set_tex_shape_cmd, n);
else
print_cmd_chr(set_etex_shape_cmd, n);
print_char('=');
if (equiv(n) == null) {
print_char('0');
} else if (n > par_shape_loc) {
print_int(penalty(equiv(n)));
print_char(' ');
print_int(penalty(equiv(n) + 1));
if (penalty(equiv(n)) > 1)
tprint_esc("ETC.");
} else {
print_int(vinfo(par_shape_ptr + 1));
}
} else if (n < toks_base) {
print_cmd_chr(assign_toks_cmd, n);
print_char('=');
if (equiv(n) != null)
show_token_list(token_link(equiv(n)), null, 32);
} else if (n < box_base) {
tprint_esc("toks");
print_int(n - toks_base);
print_char('=');
if (equiv(n) != null)
show_token_list(token_link(equiv(n)), null, 32);
} else if (n < cur_font_loc) {
tprint_esc("box");
print_int(n - box_base);
print_char('=');
if (equiv(n) == null) {
tprint("void");
} else {
depth_threshold = 0;
breadth_max = 1;
show_node_list(equiv(n));
}
} else if (n == cur_font_loc) {
/* Show the font identifier in |eqtb[n]| */
tprint("current font");
print_char('=');
print_esc(hash[font_id_base + equiv(n)].rh); /* that's |font_id_text(equiv(n))| */
}
} else if (n < dimen_base) {
/* Show equivalent |n|, in region 5 */
if (n < dir_base) {
print_cmd_chr(assign_int_cmd, n);
print_char('=');
print_int(eqtb[n].cint);
} else if (n < count_base) {
print_cmd_chr(assign_dir_cmd, n);
print_char(' ');
print_dir(eqtb[n].cint);
} else if (n < attribute_base) {
tprint_esc("count");
print_int(n - count_base);
print_char('=');
print_int(eqtb[n].cint);
} else if (n < del_code_base) {
tprint_esc("attribute");
print_int(n - attribute_base);
print_char('=');
print_int(eqtb[n].cint);
}
} else if (n <= eqtb_size) {
/* Show equivalent |n|, in region 6 */
if (n < scaled_base) {
print_cmd_chr(assign_dimen_cmd, n);
} else {
tprint_esc("dimen");
print_int(n - scaled_base);
}
print_char('=');
print_scaled(eqtb[n].cint);
tprint("pt");
} else {
/* this can't happen either */
print_char('?');
}
}
@ @c
void show_eqtb_meaning(halfword n)
{
if (n < null_cs) {
/* this can't happen */
print_char('?');
} else if ((n < glue_base) || ((n > eqtb_size) && (n <= eqtb_top))) {
/*
Show equivalent |n|, in region 1 or 2
Here is a routine that displays the current meaning of an |eqtb| entry
in region 1 or~2. (Similar routines for the other regions will appear
below.)
*/
sprint_cs(n);
} else if (n < local_base) {
/*
Show equivalent |n|, in region 3
All glue parameters and registers are initially `\.{0pt plus0pt minus0pt}'.
*/
if (n < skip_base) {
if (n < glue_base + thin_mu_skip_code)
print_cmd_chr(assign_glue_cmd, n);
else
print_cmd_chr(assign_mu_glue_cmd, n);
} else if (n < mu_skip_base) {
tprint_esc("skip");
print_int(n - skip_base);
} else {
tprint_esc("muskip");
print_int(n - mu_skip_base);
}
} else if (n < int_base) {
/*
Show equivalent |n|, in region 4
We initialize most things to null or undefined values. An undefined font
is represented by the internal code |font_base|.
However, the character code tables are given initial values based on the
conventional interpretation of ASCII code. These initial values should
not be changed when \TeX\ is adapted for use with non-English languages;
all changes to the initialization conventions should be made in format
packages, not in \TeX\ itself, so that global interchange of formats is
possible.
*/
if ((n == par_shape_loc) || ((n >= etex_pen_base) && (n < etex_pens))) {
if (n == par_shape_loc)
print_cmd_chr(set_tex_shape_cmd, n);
else
print_cmd_chr(set_etex_shape_cmd, n);
} else if (n < toks_base) {
print_cmd_chr(assign_toks_cmd, n);
} else if (n < box_base) {
tprint_esc("toks");
print_int(n - toks_base);
} else if (n < cur_font_loc) {
tprint_esc("box");
print_int(n - box_base);
} else if (n == cur_font_loc) {
/* Show the font identifier in |eqtb[n]| */
tprint("current font");
}
} else if (n < dimen_base) {
/* Show equivalent |n|, in region 5 */
if (n < dir_base) {
print_cmd_chr(assign_int_cmd, n);
} else if (n < count_base) {
print_cmd_chr(assign_dir_cmd, n);
} else if (n < attribute_base) {
tprint_esc("count");
print_int(n - count_base);
} else if (n < del_code_base) {
tprint_esc("attribute");
print_int(n - attribute_base);
}
} else if (n <= eqtb_size) {
/* Show equivalent |n|, in region 6 */
if (n < scaled_base) {
print_cmd_chr(assign_dimen_cmd, n);
} else {
tprint_esc("dimen");
print_int(n - scaled_base);
}
} else {
/* this can't happen either */
print_char('?');
}
}
|