summaryrefslogtreecommitdiff
path: root/Build/source/texk/web2c/hitexdir/hiformat.w
blob: 6a9634fb218b887b44399a10aa7b2cad91d7b78d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
% This file is part of HINT
% Copyright 2017-2021 Martin Ruckert, Hochschule Muenchen, Lothstrasse 64, 80336 Muenchen
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, including without limitation the rights
% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
% copies of the Software, and to permit persons to whom the Software is
% furnished to do so, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be
% included in all copies or substantial portions of the Software.
%
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
% COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
% WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
% OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
% THE SOFTWARE.
%
% Except as contained in this notice, the name of the copyright holders shall
% not be used in advertising or otherwise to promote the sale, use or other
% dealings in this Software without prior written authorization from the
% copyright holders.

\input btxmac.tex
\input hintmac.tex

%% defining how to display certain C identifiers

@s int8_t int
@s uint8_t int
@s int16_t int
@s uint16_t int
@s uint32_t int
@s int32_t int
@s uint64_t int
@s bool int

@

\makeindex
\maketoc
\makecode
%\makefigindex
\titletrue


\def\setrevision$#1: #2 ${\gdef\lastrevision{#2}}
\setrevision$Revision: 2699 $
\def\setdate$#1(#2) ${\gdef\lastdate{#2}}
\setdate$Date: 2022-02-25 10:21:04 +0100 (Fri, 25 Feb 2022) $

\null

\font\largetitlefont=cmssbx10 scaled\magstep4
\font\Largetitlefont=cmssbx10 at 40pt
\font\hugetitlefont=cmssbx10 at 48pt
\font\smalltitlefontit=cmbxti10 scaled\magstep3
\font\smalltitlefont=cmssbx10 scaled\magstep3

%halftitle
\def\raggedleft{\leftskip=0pt plus 5em\parfillskip=0pt
\spaceskip=.3333em \xspaceskip=0.5em \emergencystretch=1em\relax
\hyphenpenalty=1000\exhyphenpenalty=1000\pretolerance=10000\linepenalty=5000
}
\hbox{}
\vskip 0pt plus 1fill
{ \baselineskip=60pt
  \hugetitlefont\hfill HINT:\par
  \Largetitlefont\raggedleft The File Format\par
}
\vskip 0pt plus 5fill
\eject
% verso of half title
\titletrue
\null
\vfill
\eject

% title
\titletrue
\hbox{}
\vskip 0pt plus 1fill
{
  \baselineskip=1cm\parindent=0pt
  {\largetitlefont\raggedright HINT: The File Format}\par
  \leftline{\smalltitlefont Version 1.4}
  \vskip 10pt plus 0.5fill
  \leftline{\smalltitlefont Reflowable} 
  \vskip-3pt
  \leftline{\smalltitlefont Output} 
  \vskip-3pt
  \leftline{\smalltitlefont for \TeX}
  \vskip 10pt plus 0.5fill
  \hskip 0pt plus 2fill{\it F\"ur meine Mutter}\hskip 0pt plus 0.5fill\hbox{}
  \bigskip
  \vskip 10pt plus 3fill
  \raggedright\baselineskip=12pt
  {\bf MARTIN RUCKERT} \ {\it Munich University of Applied Sciences}\par
  \bigskip
  \leftline{Second edition}
  \bigskip
%  \leftline{\bf Eigendruck im Selbstverlag}
%  \bigskip
}
\eject

% verso of title
% copyright page (ii)
\titletrue
\begingroup
\figrm
\parindent=0pt
%\null
{\raggedright\advance\rightskip 3.5pc
The author has taken care in the preparation of this book,
but makes no expressed or implied warranty of any kind and assumes no
responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

\bigskip
{\figtt\obeylines\obeyspaces\baselineskip=11pt
Ruckert, Martin.
  HINT: The File Format
  Includes index.
  ISBN 979-854992684-4
}
\bigskip

{\raggedright\advance\rightskip 3.5pc
\def\:{\discretionary{}{}{}}
Internet page  {\tt http:\://hint.\:userweb.\:mwn.\:de/\:hint/\:format.html}
may contain current information about this book, downloadable software,
and news. 

\vfill
Copyright $\copyright$ 2019, 2021 by Martin Ruckert
\smallskip
All rights reserved.
Printed by Kindle Direct Publishing.
This publication is protected by copyright, and permission must be
obtained prior to any prohibited reproduction, storage in
a~retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. 
To obtain permission to use material from this work, please submit a written 
request to Martin Ruckert, 
Hochschule M\"unchen, 
Fakult\"at f\"ur Informatik und Mathematik,
Lothstrasse 64, 
80335 M\"unchen, 
Germany.
\medskip
{\tt ruckert\:@@cs.hm.edu}
\medskip
ISBN-13: 979-854992684-4\par
\medskip
First printing: August 2019\par
Second edition: August 2021\par
\medskip
Revision: \lastrevision,\quad Date: \lastdate\par
}
}
\endgroup


\frontmatter



\plainsection{Preface}
Late in summer 2017, with my new \CEE\ based {\tt cweb} implementation
of \TeX\cite{Knuth:tex} in hand\cite{MR:webtocweb}\cite{MR:tug38}\cite{MR:web2w}, I started to write
the first prototype of the \HINT\ viewer. I basically made two copies
of \TeX: In the first copy, I replaced the |build_page| procedure by
an output routine which used more or less the printing routines
already available in \TeX. This was the beginning of the
\HINT\ file format.
In the second copy, I replaced \TeX's main loop by an input routine
that would feed the \HINT\ file more or less directly to \TeX's
|build_page| procedure. And after replacing \TeX's |ship_out|
procedure by a modified rendering routine of a dvi viewer that I had
written earlier for my experiments with \TeX's Computer Modern
fonts\cite{MR:tug37}, I had my first running \HINT\ viewer.  My
sabbatical during the following Fall term gave me time for ``rapid
prototyping'' various features that I considered necessary for
reflowable \TeX\ output\cite{MR:tug39}.

The textual output format derived from the original \TeX\ debugging
routines proved to be insufficient when I implemented a ``page up''
button because it did not support reading the page content
``backwards''. As a consequence, I developed a compact binary file
format that could be parsed easily in both directions. The \HINT\ 
short file format war born. I stopped an initial attempt at
eliminating the old textual format because it was so much nicer when
debugging. Instead, I converted the long textual format into the short
binary format as a preliminary step in the viewer. This was not a long
term solution.  When opening a big file, as produced from a 1000
pages \TeX\ file, the parsing took several seconds before the first
page would appear on screen. This delay, observed on a fast desktop
PC, is barley tolerable, and the delay one would expect on a low-cost,
low-power, mobile device seemed prohibitive.  The consequence is
simple: The viewer will need an input file in the short format; and to
support debugging (or editing), separate programs are needed to
translate the short format into the long format and back again.  But
for the moment, I did not bother to implement any of this but
continued with unrestricted experimentation.

With the beginning of the Spring term 2018, I stopped further
experiments with the \HINT\ viewer and decided that I had to write
down a clean design of the \HINT\ file format. Or of both file
formats?  Professors are supposed to do research, and hence I tried an
experiment: Instead of writing down a traditional language
specification, I decided to stick with the ``literate programming''
paradigm\cite{Knuth:lp} and write the present book.  It describes and implements
the \.{stretch} and \.{shrink} programs translating one file format
into the other.  As a side effect, it contains the underlying language
specification. Whether this experiment is a success as a language
specification remains to be seen, and you should see for yourself. But
the only important measure for the value of a scientific experiment is
how much you can learn form it---and I learned a lot.

The whole project turned out to be much more difficult than I had
expected.  Early on, I decided that I would use a recursive descent
parser for the short format and an LR($k$) parser for the long
format. Of course, I would use {\tt lex}/{\tt flex} and {\tt yacc}/{\tt bison}
to generate the LR($k$) parser, and so I had to extend the {\tt
cweb} tools\cite{Knuth:cweb} to support the corresponding source files.

About in mid May, after writing down about 100 pages, the first
problems emerged that could not be resolved with my current
approach. I had started to describe font definitions containing
definitions of the interword glue and the default hyphen, and the
declarative style of my exposition started to conflict with the
sequential demands of writing an output file. So it was time for a
first complete redesign.  Two more passes over the whole book were
necessary to find the concepts and the structure that would allow me
to go forward and complete the book as you see it now.

While rewriting was on its way, many ``nice ideas'' were pruned from
the book. For example, the initial idea of optimizing the \HINT\ file
while translating it was first reduced to just gathering statistics
and then disappeared completely.  The added code and complexity was
just too distracting.

What you see before you is still a snapshot of the \HINT\ file format
because its development is still under way.  We will know what
features are needed for a reflowable \TeX\ file format only after many
people have started using the format. To use the format, the end-user
will need implementations, and the implementer will need a language
specification.  The present book is the first step in an attempt to
solve this ``chicken or egg'' dilemma.


\vskip 1cm
\noindent {\it M\"unchen\hfil\break
August 20, 2019 \hfill Martin Ruckert}


\tableofcontent
%\thefigindex


\mainmatter

\section{Introduction}\label{intro}
This book defines a file format for reflowable text.
Actually it describes two file formats: a long format 
that optimizes readability for human beings, and 
a short format that optimizes readability for machines 
and the use of storage space. Both formats use the concept of nodes and lists of 
nodes to describe the file content. Programs that process these nodes
will likely want to convert the compressed binary representation of a 
node---the short format---or the lengthy textual representation of a 
node---the long format---into a convenient internal representation.
So most of what follows is just a description of these nodes: their short format,
their long format and sometimes their internal representation.
Where as the description of the long and short external format is part
of the file specification, the description of the internal representation
is just informational. Different internal representations can be chosen
based on the individual needs of the program.

While defining the format, I illustrate the processing of long and short format 
files by implementing two utilities: \.{shrink} and \.{stretch}. 
\.{shrink} converts the long format into the short format and \.{stretch}
goes the other way.

There is also a prototype viewer for this
file format and a special version of \TeX\cite{DK:texbook} to produce output
in this format. Both are not described here; a survey describing
them can be found in \cite{MR:tug39}.

\subsection{Glyphs}
Let's start with a simple and very common kind of node: a node describing
a character.
Because we describe a format that is used to display text,
we are not so much interested in the
character itself but we are interested in the specific glyph\index{glyph}.
In typography, a glyph is a unique mark to be placed on the page representing
a character. For example the glyph representing the character `a' can have
many forms among them `{\it a\/}', `{\bf a}', or `{\tenss a}'.
Such glyphs come in collections, called fonts, representing every character
of the alphabet in a consistent way. 

The long format of a node describing the glyph `a'
 might look like this:`` \.{<glyph} \.{97} \.{*1>}''.
Here ``\.{97}'' is the character code which
happens to be the ASCII code of the letter `a' and ``{\tt *1}'' is a font reference
that stands for ``Computer Modern Roman 10pt''. 
Reference numbers, as you can see, 
start with an asterisk reminiscent of references in the \CEE\ programming language.
The Astrix enables us to distinguish between ordinary numbers like ``\.{1}'' and references like ``{\tt *1}''.

To make this node more readable, we will see in section~\secref{chars} that it is also 
possible to write `` \.{<glyph 'a' (cmr10) *1>}''.
The latter form uses a comment ``\.{(cmr10)}'', enclosed in parentheses, to
give an indication of what kind of font happens to be font 1, and it uses ``\.{'a'}'',
the character enclosed in single quotes to denote the ASCII code of `a'. 
But let's keep things simple for now and stick with the decimal notation of the character code.

The rest is common for all nodes: a keyword, here ``\.{glyph}'', and a pair of pointed brackets ``\.{<}\dots\.{>}''.

Internally, we represent a glyph by the font number
and the character number or character code. 
To store the internal representation of a glyph node, 
we define an appropriate structure type, named after the node with an uppercase first letter.
@<hint types@>=
typedef struct {@+ uint32_t c;@+ uint8_t f; @+} Glyph;
@

Let us now look at the program \.{shrink} and see how it will convert the long format description 
to the internal representation of the glyph and finally to a short format description.


\subsection{Scanning the Long Format}
First, \.{shrink} reads the input file and extracts a sequence of
tokens. This is called ``scanning''\index{scanning}.  We generate the
procedure to do the scanning using the program
\.{flex}\cite{JL:flexbison}\index{flex+{\tt flex}} which is the GNU
version of the common UNIX tool \.{lex}\cite{JL:lexyacc}\index{lex+{\tt lex}}.

The input to \.{flex} is a list of pattern/\kern -1pt action rules
where the pattern is a regular expression and the action is a piece of
\CEE\ code.  Most of the time, the \CEE\ code is very simple: it just
returns the right token\index{token} number to the parser which we
consider shortly.

The code that defines the tokens will be marked with a line ending in
``\redsymbol''.  This symbol\index{symbol} stands for ``{\it Reading
the long format\/}''.  These code sequences define the syntactical
elements of the long format and at the same time implement the reading
process. All sections where that happens are preceded by a similar
heading and for reference they are conveniently listed together
starting on page~\pageref{codeindex}.

\codesection{\redsymbol}{Reading the Long Format}\redindex{1}{2}{Glyphs}
@s START symbol
@s END   symbol
@s GLYPH  symbol
@s UNSIGNED   symbol
@s REFERENCE symbol

@<symbols@>=
%token START    "<"
%token END      ">"
%token GLYPH     "glyph"
%token <u> UNSIGNED
%token <u> REFERENCE   
@
You might notice that a small caps font is used for |START|, |END| or |GLYPH|.
These are  ``terminal symbols'' or ``tokens''.
Next are the scanning rules which define the connection between tokens and their
textual representation.

@<scanning rules@>=
::@="<"@>              :<     SCAN_START; return START;    >:
::@=">"@>              :<     SCAN_END; return END;      >:
::@=glyph@>             :<     return GLYPH;     >:
::@=0|[1-9][0-9]*@>    :<     SCAN_UDEC(yytext); return UNSIGNED; >:
::@=\*(0|[1-9][0-9]*)@>  :< SCAN_UDEC(yytext+1); return REFERENCE; >:
::@=[[:space:]]@>      :< ; >:
::@=\([^()\n]*[)\n]@>  :< ; >:
@

As we will see later, the macros starting with |SCAN_|\dots\ are scanning macros.
Here |SCAN_UDEC| is a macro that converts the decimal representation 
that did match the given pattern to an unsigned integer value; it is explained in
section~\secref{integers}. 
The macros |SCAN_START| and |SCAN_END| are explained in section~\secref{text}.


The action ``{\tt ;}'' is a ``do nothing'' action; here it causes spaces or comments\index{comment} 
to be ignored. Comments start with an opening parenthesis and are terminated by a 
closing parenthesis or the end of line character.
The pattern ``\.{[\^()\\n]}'' is a negated
character class that matches all characters except parentheses and the newline
character. These are not allowed inside comments. For detailed information about
the patterns used in a \.{flex} program, see the \.{flex} user manual\cite{JL:flexbison}.

\subsection{Parsing the Long Format}
\label{parse_glyph}
Next, the tokens produced by the scanner are assembled into larger entities. 
This is called ``parsing''\index{parsing}.
We generate the procedure to do the parsing using the program \.{bison}\cite{JL:flexbison}\index{bison+{\tt bison}} which is
the GNU version of the common UNIX tool \.{yacc}\cite{JL:lexyacc}\index{yacc+{\tt yacc}}.

The input to \.{bison} is a list of parsing rules, called a ``grammar''\index{grammar}.
The rules describe how to build larger entities from smaller entities.
For a simple glyph node like `` \.{<glyph 97 *1>}'', we need just these rules:
\codesection{\redsymbol}{Reading the Long Format}%\redindex{1}{2}{Glyphs}
@s content_node symbol
@s node symbol
@s glyph symbol
@s Glyph int
@s start symbol
@<symbols@>=
%type <u> start
%type <c> glyph
@

@<parsing rules@>=@/
glyph: UNSIGNED REFERENCE  @/{ $$.c=$1; REF(font_kind,$2); $$.f=$2; };
content_node: start GLYPH glyph END { hput_tags($1,hput_glyph(&($3))); };
start: START {HPUTNODE; $$=(uint32_t)(hpos++-hstart);}
@

You might notice that a slanted font is used for |glyph|, |content_node|, or |start|. 
These are ``nonterminal symbols' and occur on the left hand side of a rule. On the
right hand side of a rule you find nonterminal symbols, as well as terminal\index{terminal symbol} symbols 
and \CEE\ code enclosed in braces.

Within the \CEE\ code, the expressions |$1| and |$2| refer to the variables on the parse stack
that are associated with the first and second symbol on the right hand side of the rule.
In the case of our glyph node, these will be the values 97 and 1, respectively, as produced 
by the macro |SCAN_UDEC|.  
|$$| refers to the variable associated with the left hand side of the rule. 
These variables contain the internal representation of the object in question. 
The type of the variable is specified by a mandatory {\bf token} or optional {\bf type} clause 
when we define the symbol. 
In the above {\bf type} clause for |start| and |glyph| , the identifiers |u| and |c| refer to 
the |union| declaration of the parser (see page~\pageref{union})
where we find |uint32_t u| and |Glyph c|. The macro |REF| tests a reference number for
its valid range.


Reading a node is usually split into the following sequence of steps: 
\itemize
\item Reading the node specification, here a |glyph| 
      consisting of an |UNSIGNED| value and a |REFERENCE| value.
\item Creating the internal representation in the variable |$$|
      based on the values of |$1|, |$2|, \dots\ Here the character
      code field |c| is initialized using  the |UNSIGNED| value
       stored in |$1| and the font field |f| is initialized using
      |$2| after checking the reference number for the proper range.
\item A |content_node| rule explaining that |start| is followed by |GLYPH|, 
      the keyword that directs the parser  to |glyph|, the 
      node specification, and a final |END|.
\item Parsing |start|, which is defined as the token |START| will assign 
      to the corresponding variable |p| on the parse stack the current
      position |hpos| in the output and increments that position
      to make room for the start byte, which we will discuss shortly.
\item At the end of the |content_node| rule, the \.{shrink} program calls
      a {\it hput\_\dots\/} function, here |hput_glyph|, to write the short
      format of the node as given by its internal representation to the output
      and return the correct tag value.
\item Finally the |hput_tags| function will add the tag as a start byte and end byte 
      to the output stream.
\enditemize

Now let's see how writing the short format works in detail.

  
\subsection{Writing the Short Format}
A content node in short form begins with a start\index{start byte} byte. It tells us what kind of node it is.
To describe the content of a short \HINT\ file, 32 different kinds\index{kind} of nodes are defined.
Hence the kind of a node can be stored in 5 bits and the remaining bits of the start byte
can be used to contain a 3 bit ``info''\index{info} value. 

We define an enumeration type to give symbolic names to the kind-values.
The exact numerical values are of no specific importance;
we will see in section~\secref{text}, however, that the assignment chosen below,
has certain advantages.
 
Because the usage of kind-values in content nodes is 
slightly different from the usage in definition nodes, we define alternative names for some kind-values.
To display readable names instead of numerical values when debugging,
we define two arrays of strings as well. Keeping the definitions consistent
is achieved by creating all definitions from the same list
of identifiers using different definitions of the macro |DEF_KIND|.

@<hint basic types@>=
#define DEF_KIND(C,D,N) @[C##_kind=N@]
typedef enum {@+@<kinds@>@+,@+ @<alternative kind names@> @+} Kind;
#undef DEF_KIND
@

@<define |content_name| and |definition_name|@>=

#define DEF_KIND(C,D,N) @[#C@]
const char *content_name[32]=@+{@+@<kinds@>@;@+}@+;
#undef DEF_KIND@#
#define DEF_KIND(C,D,N) @[#D@]
const char *definition_name[0x20]=@+{@+@<kinds@>@;@+}@+;
#undef DEF_KIND
@ 

@<print |content_name| and |definition_name|@>=
printf("const char *content_name[32]={");
for (k=0; k<= 31;k++)
{ printf("\"%s\"",content_name[k]);
  if (k<31) printf(", ");
}
printf("};\n\n");
printf("const char *definition_name[32]={");
for (k=0; k<= 31;k++)
{ printf("\"%s\"",definition_name[k]);
  if (k<31) printf(", ");
}
printf("};\n\n");
@ 






\goodbreak
\index{glyph kind+\\{glyph\_kind}}
\index{font kind+\\{font\_kind}}
\index{penalty kind+\\{penalty\_kind}}
\index{int kind+\\{int\_kind}}
\index{kern kind+\\{kern\_kind}}
\index{xdimen kind+\\{xdimen\_kind}}
\index{ligature kind+\\{ligature\_kind}}
\index{disc kind+\\{disc\_kind}}
\index{glue kind+\\{glue\_kind}}
\index{language kind+\\{language\_kind}}
\index{rule kind+\\{rule\_kind}}
\index{image kind+\\{image\_kind}}
\index{baseline kind+\\{baseline\_kind}}
\index{dimen kind+\\{dimen\_kind}}
\index{hbox kind+\\{hbox\_kind}}
\index{vbox kind+\\{vbox\_kind}}
\index{par kind+\\{par\_kind}}
\index{math kind+\\{math\_kind}}
\index{table kind+\\{table\_kind}}
\index{item kind+\\{item\_kind}}
\index{hset kind+\\{hset\_kind}}
\index{vset kind+\\{vset\_kind}}
\index{hpack kind+\\{hpack\_kind}}
\index{vpack kind+\\{vpack\_kind}}
\index{stream kind+\\{stream\_kind}}
\index{page kind+\\{page\_kind}}
\index{range kind+\\{range\_kind}}
\index{adjust kind+\\{adjust\_kind}}
\index{param kind+\\{param\_kind}}
\index{text kind+\\{text\_kind}}
\index{list kind+\\{list\_kind}}
\label{kinddef}
@<kinds@>=
DEF_KIND(t@&ext,t@&ext,0),@/
DEF_KIND(l@&ist,l@&ist,1),@/
DEF_KIND(p@&aram,p@&aram,2),@/
DEF_KIND(x@&dimen,x@&dimen,3),@/
DEF_KIND(a@&djust,a@&djust,4),@/
DEF_KIND(g@&lyph, f@&ont,5),@/
DEF_KIND(k@&ern,d@&imen,6),@/
DEF_KIND(g@&lue,g@&lue,7),@/
DEF_KIND(l@&igature,l@&igature,8),@/
DEF_KIND(d@&isc,d@&isc,9),@/
DEF_KIND(l@&anguage,l@&anguage,10),@/
DEF_KIND(r@&ule,r@&ule,11),@/
DEF_KIND(i@&mage,i@&mage,12),@/
DEF_KIND(l@&eaders,l@&eaders,13),@/
DEF_KIND(b@&aseline,b@&aseline,14),@/
DEF_KIND(h@&b@&ox,h@&b@&ox,15),@/
DEF_KIND(v@&b@&ox,v@&b@&ox,16),@/
DEF_KIND(p@&ar,p@&ar,17),@/
DEF_KIND(m@&ath,m@&ath,18),@/
DEF_KIND(t@&able,t@&able,19),@/
DEF_KIND(i@&tem,i@&tem,20),@/
DEF_KIND(h@&set,h@&set,21),@/
DEF_KIND(v@&set,v@&set,22),@/
DEF_KIND(h@&pack,h@&pack,23),@/
DEF_KIND(v@&pack,v@&pack,24),@/
DEF_KIND(s@&tream,s@&tream,25),@/
DEF_KIND(p@&age,p@&age,26),@/
DEF_KIND(r@&ange,r@&ange,27),@/
DEF_KIND(l@&ink,l@&abel,28),@/
DEF_KIND(u@&ndefined2,u@&ndefined2,29),@/
DEF_KIND(u@&ndefined3,u@&ndefined3,30),@/
DEF_KIND(p@&enalty, i@&nt,31)
@t@>
@

For a few kind-values we have
alternative names; we will use them
to express different intentions when using them.
@<alternative kind names@>=
font_kind=glyph_kind,int_kind=penalty_kind, dimen_kind=kern_kind, label_kind=link_kind, outline_kind=link_kind@/@t{}@>
@

The info\index{info value} values can be used to represent numbers in the range 0 to 7; for an example
see the |hput_glyph| function later in this section.
Mostly, however, the individual bits are used as flags indicating the presence
or absence of immediate parameter values. If the info bit is set, it
means the corresponding parameter is present as an immediate value; if it
is zero, it means that there is no immediate parameter value present, and
the node specification will reveal what value to use instead.
In some cases there is a common default value that can be used, in other
cases a one byte reference number is used to select a predefined value. 

To make the binary
representation of the info bits more readable, we define an
enumeration type.

\index{b000+\\{b000}}
\index{b001+\\{b001}}
\index{b010+\\{b010}}
\index{b011+\\{b011}}
\index{b100+\\{b100}}
\index{b101+\\{b101}}
\index{b110+\\{b110}}
\index{b111+\\{b111}}
@<hint basic types@>=
typedef enum {@+ b000=0,b001=1,b010=2,b011=3,b100=4,b101=5,b110=6,b111=7@+ } Info;
@


After the start byte follows the node content and it is the purpose of
the start byte to reveal the exact syntax and semantics of the node
content. Because we want to be able to read the short form of a \HINT\ 
file in forward direction and in backward direction, the start byte is
duplicated after the content as an end\index{end byte} byte.


We store a kind and an info value in one byte and call this a tag.
The following macros are used to assemble and disassemble tags:\index{TAG+\.{TAG}}
@<hint macros@>=
#define @[KIND(T)@]      (((T)>>3)&0x1F)
#define @[NAME(T)@]      @[content_name[KIND(T)]@]
#define @[INFO(T)@]      ((T)&0x7)
#define @[TAG(K,I)@]     (((K)<<3)|(I))
@

Writing a  short format \HINT\ file is implemented by a collection of {\it hput\_\kern 1pt\dots\/}  functions; 
they follow most of the time the same schema:
\itemize
\item First, we define a variable for |info|.
\item Then follows the main part of the function body, where we 
decide on the output format, do the actual output and set the |info| value accordingly.
\item We combine the info value with the kind-value and return the correct tag.
\item The tag value will be passed to |hput_tags| which generates
debugging information, if requested, and stores the tag before and after the node content.
\enditemize


After these preparations, we turn our attention again to the |hput_glyph| function.
The font number in a glyph node is between 0 and 255 and fits nicely in one byte,
but the character code is more difficult: we want to store the most common character
codes as a single byte and less frequent codes with two, three, or even four byte. 
Naturally, we use the |info| bits to store the number of bytes needed for the character code. 

\codesection{\putsymbol}{Writing the Short Format}\putindex{1}{2}{Glyphs}
@<put functions@>=
static uint8_t hput_n(uint32_t n)
{@+ if (n<=0xFF) @+
  {@+HPUT8(n);@+ return 1;@+}
  else if (n<=0xFFFF) @+
  {@+HPUT16(n);@+ return 2;@+}
  else if (n<=0xFFFFFF)@+ 
  {@+HPUT24(n);@+ return 3;@+}
  else @+
  {@+HPUT32(n);@+ return 4;@+}
}

uint8_t hput_glyph(Glyph *g)
{ Info info;
  info = hput_n(g->c);
  HPUT8(g->f);@/
  return TAG(glyph_kind,info);
}
@
The |hput_tags| function is called after the node content has been written to the
stream. It gets a the position of the start byte and the tag. With this information
it writes the start byte at the given position and the end byte at the current stream position.
@<put functions@>=
void hput_tags(uint32_t pos, uint8_t tag)
{ DBGTAG(tag,hstart+pos);DBGTAG(tag,hpos);
  HPUTX(1); *(hstart+pos)=*(hpos++)=tag; @+
}
@



The variables |hpos| and |hstart|, the macros |HPUT8|, |HPUT16|,
|HPUT24|, |HPUT32|, and |HPUTX| are all defined in
section~\secref{HPUT}; they put 8, 16, 24, or 32 bits into the output
stream and check for sufficient space in the output buffer.  The macro
|DBGTAG| writes debugging output; its definition is found in
section~\secref{error_section}.

Now that we have seen the general outline of the \.{shrink} program,
starting with a long format file and ending with a short format file,
we will look at the program \.{stretch} that reverses this
transformation.


\subsection{Parsing the Short Format}
The inverse of writing the short format with a {\it hput\_\kern 1pt\dots\/}  function
is reading the short format with a {\it hget\_\kern 1pt\dots\/}  function.

The schema of  {\it hget\_\kern 1pt\dots\/}  functions reverse the schema of  {\it hput\_\kern 1pt\dots\/}  functions.
Here is the code for the initial and final part of a get function:

@<read the start byte |a|@>=
uint8_t a,z; /* the start and the end byte*/
uint32_t node_pos=hpos-hstart;
if (hpos>=hend) QUIT("Attempt to read a start byte at the end of the section");
HGETTAG(a);@/@t{}@>
@

@<read and check the end byte |z|@>=
HGETTAG(z);@+
if (a!=z)
  QUIT(@["Tag mismatch [%s,%d]!=[%s,%d] at 0x%x to " SIZE_F "\n"@],@|
    NAME(a),INFO(a),NAME(z),INFO(z),@|node_pos, hpos-hstart-1);
@


The central routine to parse\index{parsing} the content section of a short format
file is the function |hget_content_node| which calls |hget_content| to
do most of the processing.

|hget_content_node| will read a content node in short format and write
it out in long format: It reads the start\index{start byte} byte |a|, writes the |START|
token using the function |hwrite_start|, and based on |KIND(a)|, it
writes the node's keyword found in the |content_name| array.  Then it
calls |hget_content| to read the node's content and write it out.
Finally it reads the end\index{end byte} byte, checks it against the start byte, and
finishes up the content node by writing the |END| token using the
|hwrite_end| function. The function returns the tag byte so that
the calling function might check that the content node meets its requirements.

|hget_content| uses the start byte |a|, passed as a parameter, to
branch directly to the reading routine for the given combination of
kind and info value.  The reading routine will read the data and store
its internal representation in a variable.  All that the \.{stretch}
program needs to do with this internal representation is writing it in
the long format. As we will see, the call to the proper 
{\it hwrite\_\kern 1pt\dots} function is included as final part of the the
reading routine (avoiding another switch statement).


\codesection{\getsymbol}{Reading the Short Format}\getindex{1}{2}{Content Nodes}
@<get functions@>=
void hget_content(uint8_t a);
uint8_t hget_content_node(void)
{ @<read the start byte |a|@>@;@+ hwrite_start();
  hwritef("%s",content_name[KIND(a)]);
  hget_content(a);@/
  @<read and check the end byte |z|@>@; hwrite_end();
  return a;
}

void hget_content(uint8_t a)
{@+
  switch (a)@/
  {@+
    @<cases to get content@>@;@t\1@>@/
    default:
      TAGERR(a);
      break;@t\2@>@/
  }
}
@

We implement the code to read a glyph node in two stages.
First we define a general reading macro |HGET_GLYPH(I,G)| that reads a glyph node with info value |I| into
a |Glyph| variable |G|; then we insert this macro
in the above switch statement for all cases where it applies.
Knowing the function |hput_glyph|, the macro |HGET_GLYPH| should not be a surprise.
It reverses |hput_glyph|, storing the glyph node in its internal representation.
After that, the \.{stretch} program calls |hwrite_glyph| to produce the glyph
node in long format.

\codesection{\getsymbol}{Reading the Short Format}\getindex{1}{2}{Glyphs}
@<get macros@>=
#define @[HGET_N(I,X)@] \
  if ((I)==1) (X)=HGET8;\
  else if ((I)==2) HGET16(X);\
  else if ((I)==3) HGET24(X);\
  else if ((I)==4) HGET32(X);

#define @[HGET_GLYPH(I,G)@] \
  HGET_N(I,(G).c); (G).f=HGET8; @+REF_RNG(font_kind,(G).f);@/\
  hwrite_glyph(&(G));\
@

Note that we allow a glyph to reference a font even before that font is defined.
This is necessary because fonts usually contain definitions---for example
the fonts hyphen character---that reference this or other fonts.


@<cases to get content@>=
@t\1\kern1em@>case TAG(glyph_kind,1): @+{@+Glyph g;@+ HGET_GLYPH(1,g);@+}@+break;
case TAG(glyph_kind,2): @+{@+Glyph g;@+ HGET_GLYPH(2,g);@+}@+break;
case TAG(glyph_kind,3): @+{@+Glyph g;@+ HGET_GLYPH(3,g);@+}@+break;
case TAG(glyph_kind,4): @+{@+Glyph g;@+ HGET_GLYPH(4,g);@+}@+break;
@

If this two stage method seems strange to you, consider what the \CEE\ compiler will
do with it. It will expand the |HGET_GLYPH| macro four times inside the switch
statement. The macro is, however, expanded with a constant |I| value, so the expansion
of the |if| statement in |HGET_GLYPH(1,g)|, for example, 
will become ``|if (1==1)| \dots\ |else if (1==2)| \dots'' 
and the compiler will have no difficulties eliminating the constant tests and
the dead branches altogether. This is the most effective use of the switch statement:
a single jump takes you to a specialized code to handle just the given combination
of kind and info value.

Last not least, we implement the function |hwrite_glyph| to write a
glyph node in long form---that is: in a form that is as readable as possible.

\subsection{Writing the Long Format}

The |hwrite_glyph| function inverts the scanning and parsing process we have described
at the very beginning of this chapter.
To implement the |hwrite_glyph| function, we use the function |hwrite_charcode|
to write the character code.
Besides writing the character code as a decimal number, this function can handle also other
representations of character codes as fully explained in section~\secref{chars}.
We split off the writing of the opening and the closing pointed bracket, because
we will need this function very often and because it will keep track of the |nesting|
of nodes and indent them accordingly. The |hwrite_range| and |hwrite_label| functions
used in |hwrite_end| are discussed in section~\secref{range} and~\secref{hwritelabel}.

\codesection{\wrtsymbol}{Writing the Long Format}\wrtindex{1}{2}{Glyphs}
@<write functions@>=
int nesting=0;
void hwrite_nesting(void)
{ int i;
  hwritec('\n');
  for (i=0;i<nesting;i++) hwritec(' ');
}

void hwrite_start(void)
{ @+hwrite_nesting();@+  hwritec('<');@+ nesting++;
}

void hwrite_range(void);
void hwrite_label(void);

void hwrite_end(void)
{ nesting--; hwritec('>'); 
  if (section_no==2)
  { if (nesting==0) hwrite_range();
    hwrite_label();
  }
}

void hwrite_comment(char *str)
{ char c;
  if (str==NULL) return;
  hwritef(" (");
  while ((c=*str++)!=0)
   if (c=='(' || c==')') hwritec('_');
   else if (c=='\n') hwritef("\n(");
   else hwritec(c);
  hwritec(')');
}

void hwrite_charcode(uint32_t c);
void hwrite_ref(int n);

void hwrite_glyph(Glyph *g)
{ char *n=hfont_name[g->f];
  hwrite_charcode(g->c);
  hwrite_ref(g->f);
  if (n!=NULL) hwrite_comment(n);
}
@

The two primitive operations to write the long format file are defined
as macros:

@<write macros@>=
#define @[hwritec(c)@] @[putc(c,hout)@]
#define @[hwritef(...)@] @[fprintf(hout,__VA_ARGS__)@]
@


Now that we have completed the round trip of shrinking and stretching
glyph nodes, we continue the description of the \HINT\ file formats
in a more systematic way. 


\section{Data Types}\hascode
\subsection{Integers}
\label{integers}
We have already seen the pattern/\kern -1pt action rule for unsigned decimal\index{decimal number} numbers. It remains
to define the macro |SCAN_UDEC| which converts a string containing an unsigned\index{unsigned} decimal 
number into an unsigned integer\index{integer}.
We use the \CEE\ library function | strtoul|:

\readcode
@<scanning macros@>=
#define @[SCAN_UDEC(S)@] @[yylval.u=strtoul(S,NULL,10)@]
@
Unsigned integers can be given in hexadecimal\index{hexadecimal} notation as well. 
@<scanning definitions@>=
::@=HEX@>  :<  @=[0-9A-F]@>  >:
@

@<scanning rules@>=
::@=0x{HEX}+@>           :<     SCAN_HEX(yytext+2); return UNSIGNED; >:
@

Note that the pattern above allows only upper case letters in the 
hexadecimal notation for integers.

@<scanning macros@>=
#define @[SCAN_HEX(S)@] @[yylval.u=strtoul(S,NULL,16)@]
@

Last not least, we add rules for signed\index{signed integer} integers.
@s SIGNED   symbol
@s number   symbol
@s integer  symbol

@<symbols@>=
%token <i> SIGNED
%type <i> integer
@

@<scanning rules@>=
::@=[+-](0|[1-9][0-9]*)@>    :<     SCAN_DEC(yytext); return SIGNED; >:
@

@<scanning macros@>=
#define @[SCAN_DEC(S)@] @[yylval.i=strtol(S,NULL,10)@]
@

@<parsing rules@>=
integer: SIGNED @+| UNSIGNED { RNG("number",$1,0,0x7FFFFFFF);};
@

To preserve the ``signedness'' of an integer also for positive signed integers
in the long format, we implement the function |hwrite_signed|.

\writecode
@<write functions@>=
void hwrite_signed(int32_t i)
{ if (i<0) hwritef(" -%d",-i);
  else hwritef(" +%d",+i);
}
@

Reading and writing integers in the short format is done directly with the {\tt HPUT} and {\tt HGET}
macros.


\subsection{Strings}
\label{strings}
Strings\index{string} are needed in the definition part of a \HINT\ 
file to specify names of objects, and in the long file format, we also use them for file\index{file name} names.
In the long format, strings are sequences of characters delimited by single quote\index{single quote} characters; 
for example: ``\.{'Hello'}'' or ``\.{'cmr10-600dpi.tfm'}''; in the short format, strings are
byte sequences terminated by a zero byte.
Because file names are system dependent, we no not allow arbitrary characters in strings 
but only printable ASCII codes which we can reasonably expect to be available on most operating systems. 
If your file names in a long format \HINT\ file are supposed to be portable, 
you should probably be even more restrictive. For example you should avoid characters like
``\.{\\}'' or ``\.{/}'' which are used in different ways for directories.

The internal representation of a string is a simple zero terminated \CEE\ string.
When scanning a string, we copy it to the |str_buffer| keeping track
of its length in |str_length|. When done,
we make a copy for permanent storage and return the pointer to the parser.
To operate on the |str_buffer|, we define a few macros.
The constant |MAX_STR| determines the maximum size of a string (including the zero byte) to be $2^{10}$ byte.
This restriction is part of the \HINT\ file format specification.

@<scanning macros@>=
#define MAX_STR    (1<<10) /* $2^{10}$ Byte or 1kByte */
static char str_buffer[MAX_STR];
static int str_length;
#define STR_START      @[(str_length=0)@]
#define @[STR_PUT(C)@] @[(str_buffer[str_length++]=(C))@]
#define @[STR_ADD(C)@] @[STR_PUT(C);RNG("String length",str_length,0,MAX_STR-1)@]
#define STR_END        @[str_buffer[str_length]=0@]
#define SCAN_STR       @[yylval.s=str_buffer@]
@


To scan a string, we switch the scanner to |STR| mode when we find a quote character,
then we scan bytes in the range |0x20| to |0x7E|, which is the range of printable ASCII
characters, until we find the closing single\index{single quote} quote.
Quote characters inside the string are written as two consecutive single quote characters.

\readcode
@s STRING symbol
@s STR symbol
@s INITIAL symbol

@<scanning definitions@>=
%x STR
@

@<symbols@>=
%token <s> STRING
@

@<scanning rules@>=
::@='@>       :< STR_START; BEGIN(STR); >:
<STR>{
::@='@>             :< STR_END; SCAN_STR; BEGIN(INITIAL); return STRING; >:
::@=''@>            :< STR_ADD('\''); >:
::@=[\x20-\x7E]@>   :< STR_ADD(yytext[0]); >:
::@=.@>          :< RNG("String character",yytext[0],0x20,0x7E); >:
::@=\n@>          :< QUIT("Unterminated String in line %d",yylineno); >:
}


@
The function |hwrite_string| reverses this process; it must take care of the quote symbols.
\writecode
@<write functions@>=
void hwrite_string(char *str)
{@+hwritec(' '); 
  if (str==NULL) hwritef("''");
  else@/
  { hwritec('\''); 
    while (*str!=0)@/
    { @+if (*str=='\'') hwritec('\'');
      hwritec(*str++);
    }
    hwritec('\''); 
  } 
}


@
In the short format, a string is just a byte sequence terminated by a zero byte.
This makes the function |hput_string|, to write a string, and the macro |HGET_STRING|,
to read a string in short format, very simple. Note that after writing an unbounded
string to the output buffer, the macro |HPUTNODE| will make sure that there is enough
space left to write the remainder of the node.

\putcode
@<put functions@>=
void hput_string(char *str)
{ char *s=str;
  if (s!=NULL)
  { do {
      HPUTX(1);
      HPUT8(*s);
    } while (*s++!=0);
    HPUTNODE;
  }
  else HPUT8(0);
}
@ 

\getcode
@<shared get macros@>=
#define @[HGET_STRING(S)@] @[S=(char*)hpos;\
 while(hpos<hend && *hpos!=0) { RNG("String character",*hpos,0x20,0x7E); hpos++;}\
 hpos++;
@

\subsection{Character Codes}
\label{chars}    
We have already seen in the introduction that character\index{character code} codes can be written as decimal numbers
and section~\secref{integers} adds the possibility to use hexadecimal numbers as well.

It is, however, in most cases more readable if we represent character codes directly
using the characters themselves. Writing ``\.{a}'' is just so much better than writing ``\.{97}''.
To distinguish the character ``\.{9}'' from the number ``\.{9}'', we use the common technique
of enclosing characters within single\index{single quote} quotes. So ``\.{'9'}'' is the character code and
``\.{9}'' is the number. 
Therefore we will define |CHARCODE| tokens and complement the parsing rules of section~\secref{parse_glyph}
with the following rule:
\readcode
@<parsing rules@>=
glyph: CHARCODE REFERENCE  @|{ $$.c=$1; REF(font_kind,$2); $$.f=$2; };
@



If the character codes are small, we can represent them using
ASCII character codes. We do not offer a special notation for very small
character codes that map to the non-printable ASCII control codes; for them, the decimal
or hexadecimal notation will suffice.
For larger character codes, we use the multibyte encoding scheme known from UTF8\index{UTF8} as
follows. Given a character code~|c|:

\itemize
\item
Values in the range |0x00| to |0x7f| are encoded as a single byte with a leading bit of 0.

@<scanning definitions@>=
::@=UTF8_1@>  :<  @=[\x00-\x7F]@>  >:
@
@<scanning macros@>=
#define @[SCAN_UTF8_1(S)@]   @[yylval.u=((S)[0]&0x7F)@]
@


\item
Values in the range |0x80| to |0x7ff| are encoded in two byte with the first byte
having three high bits |110|, indicating a two byte sequence, and the lower five bits equal
to the five high bits of |c|. It is followed by a continuation byte having two high bits |10|
and the lower six bits
equal to the lower six bits of |c|.

@<scanning definitions@>=
::@=UTF8_2@>  :<  @=[\xC0-\xDF][\x80-\xBF]@>  >:
@

@<scanning macros@>=
#define @[SCAN_UTF8_2(S)@]   @[yylval.u=(((S)[0]&0x1F)<<6)+((S)[1]&0x3F)@]
@

\item
Values in the range |0x800| to |0xFFFF| are encoded in three byte with the first byte
having the high bits |1110| indicating a three byte sequence followed by two continuation bytes.

@<scanning definitions@>=
::@=UTF8_3@>  :< @=[\xE0-\xEF][\x80-\xBF][\x80-\xBF]@> >:
@

@<scanning macros@>=
#define @[SCAN_UTF8_3(S)@]   @[yylval.u=(((S)[0]&0x0F)<<12)+(((S)[1]&0x3F)<<6)+((S)[2]&0x3F)@]
@

\item
Values in the range |0x1000| to |0x1FFFFF| are encoded in four byte with the first byte
having the high bits |11110| indicating a four byte sequence followed by three continuation bytes.

@<scanning definitions@>=
::@=UTF8_4@>  :< @=[\xF0-\xF7][\x80-\xBF][\x80-\xBF][\x80-\xBF]@> >:
@

@<scanning macros@>=
#define @[SCAN_UTF8_4(S)@]   @[yylval.u=(((S)[0]&0x03)<<18)+(((S)[1]&0x3F)<<12)+@|(((S)[2]&0x3F)<<6)+((S)[3]&0x3F)@]
@

\enditemize

In the long format file, we enclose a character code in single\index{single quote} quotes, just as we do for strings.
This is convenient but it has the downside that we must exercise special care when giving the 
scanning rules in order
not to confuse character codes with strings. Further we must convert character codes back into strings
in the rare case where the parser expects a string and gets a character code because the string
was only a single character long. 

Let's start with the first problem:
The scanner might confuse a string\index{string} and a character code if the first or second
character of the string is a quote character which is written as two consecutive quotes.
For example \.{'a''b'} is a string with three characters, ``\.{a}'',
``\.{'}'', and ``\.{b}''. Two character codes would need a space to separate
them like this: \.{'a' 'b'}.


@s CHARCODE  symbol
@<symbols@>=
%token <u> CHARCODE      
@

@<scanning rules@>=
::@='''@>          :< STR_START; STR_PUT('\''); BEGIN(STR); >:
::@=''''@>         :< SCAN_UTF8_1(yytext+1); return CHARCODE; >: 
::@='[\x20-\x7E]''@>   :< STR_START; STR_PUT(yytext[1]); STR_PUT('\''); BEGIN(STR); >:
::@='''''@>        :< STR_START; STR_PUT('\''); STR_PUT('\''); BEGIN(STR); >:
::@='{UTF8_1}'@>   :< SCAN_UTF8_1(yytext+1); return CHARCODE; >: 
::@='{UTF8_2}'@>   :< SCAN_UTF8_2(yytext+1); return CHARCODE; >: 
::@='{UTF8_3}'@>   :< SCAN_UTF8_3(yytext+1); return CHARCODE; >: 
::@='{UTF8_4}'@>   :< SCAN_UTF8_4(yytext+1); return CHARCODE; >: 
@

If needed, the parser can convert character codes back to single character strings.

@s string symbol

@<symbols@>=
%type <s> string
@

@<parsing rules@>=
string: STRING @+ | CHARCODE { static char s[2]; 
                   RNG("String element",$1,0x20,0x7E); 
                   s[0]=$1; s[1]=0; $$=s;};
@


The function |hwrite_charcode| will write a character code. While ASCII codes are handled directly,
larger character codes are passed to the function |hwrite_utf8|.
It returns the number of characters written.

\writecode
@<write functions@>=
int hwrite_utf8(uint32_t c)
{@+ if (c<0x80) 
  {  hwritec(c); @+return 1;@+ }
  else if (c<0x800)@/
  { hwritec(0xC0|(c>>6));@+ hwritec(0x80|(c&0x3F));@+ return 2;@+} 
  else if (c<0x10000)@/
  { hwritec(0xE0|(c>>12)); hwritec(0x80|((c>>6)&0x3F));@+ hwritec(0x80|(c&0x3F)); return 3; } 
  else if (c<0x200000)@/
  { hwritec(0xF0|(c>>18));@+ hwritec(0x80|((c>>12)&0x3F)); 
    hwritec(0x80|((c>>6)&0x3F));@+ hwritec(0x80|(c&0x3F)); return 4;} 
  else
   RNG("character code",c,0,0x1FFFFF);
  return 0;
} 

void hwrite_charcode(uint32_t c)
{ @+if (c < 0x20) 
  { if (option_hex) hwritef(" 0x%02X",c); /* non printable ASCII */
    else  hwritef(" %u",c);
  }
  else if (c=='\'') hwritef(" ''''");
  else if (c<=0x7E) hwritef(" \'%c\'",c); /* printable ASCII */
  else if (option_utf8) { hwritef(" \'"); @+ hwrite_utf8(c); @+ hwritec('\'');@+}
  else if (option_hex)  hwritef(" 0x%04X",c); 
  else  hwritef(" %u",c);
}
@

\getcode
@<shared get functions@>=
#define @[HGET_UTF8C(X)@]  (X)=HGET8;@+ if ((X&0xC0)!=0x80) \
  QUIT(@["UTF8 continuation byte expected at " SIZE_F " got 0x%02X\n"@],hpos-hstart-1,X)@;

uint32_t hget_utf8(void)
{ uint8_t a;
  a=HGET8;
  if (a<0x80) return a;
  else
  { if ((a&0xE0)==0xC0) @/
    { uint8_t b; @+ HGET_UTF8C(b);
      return ((a&~0xE0)<<6)+(b&~0xC0);
    }
    else if ((a&0xF0)==0xE0) @/
    { uint8_t b,c;  @+ HGET_UTF8C(b); @+ HGET_UTF8C(c);
      return ((a&~0xF0)<<12)+((b&~0xC0)<<6)+(c&~0xC0);
    }
    else if ((a&0xF8)==0xF0) @/
    { uint8_t b,c,d;  @+ HGET_UTF8C(b); @+ HGET_UTF8C(c); @+ HGET_UTF8C(d);
      return ((a&~0xF8)<<18)@|+ ((b&~0xC0)<<12)+((c&~0xC0)<<6)+(d&~0xC0);
    }
    else QUIT("UTF8 byte sequence expected");
  }
}
@
\putcode
@<put functions@>=
void hput_utf8(uint32_t c)
{ @+HPUTX(4); 
  if (c<0x80) 
    HPUT8(c);
  else if (c<0x800)
  { HPUT8(0xC0|(c>>6));@+ HPUT8(0x80|(c&0x3F));@+ } 
  else if (c<0x10000)@/
  { HPUT8(0xE0|(c>>12)); HPUT8(0x80|((c>>6)&0x3F));@+ HPUT8(0x80|(c&0x3F)); } 
  else if (c<0x200000)@/
  { HPUT8(0xF0|(c>>18));@+ HPUT8(0x80|((c>>12)&0x3F)); 
    HPUT8(0x80|((c>>6)&0x3F));@+ HPUT8(0x80|(c&0x3F)); } 
  else
   RNG("character code",c,0,0x1FFFFF);
}
@

\subsection{Floating Point Numbers}
You know a floating point numbers\index{floating point number} when
you see it because it features a radix\index{radix point} point.  The
optional exponent\index{exponent} allows you to ``float'' the point.

\readcode
@s FPNUM symbol
@s number symbol

@<symbols@>=
%token <f> FPNUM
%type <f> number
@
@<scanning rules@>=
::@=[+-]?[0-9]+\.[0-9]+(e[+-]?[0-9])?@>  :< SCAN_DECFLOAT; return FPNUM;  >:
@

The layout of floating point variables of type |double| 
or |float| typically follows the IEEE754\index{IEEE754} 
standard\cite{IEEE754-1985}\cite{IEEE754-2008}. 
We use the following definitions:

\index{float32 t+\&{float32\_t}}
\index{float64 t+\&{float64\_t}}

@<hint basic types@>=

#define FLT_M_BITS 23
#define FLT_E_BITS 8
#define FLT_EXCESS 127

#define DBL_M_BITS 52
#define DBL_E_BITS 11
#define DBL_EXCESS 1023

@

@s float32_t int
@s float64_t int

We expect a variable of type |float64_t| to have a binary
representation using 64 bit.  The most significant bit is the sign
bit, then follow $|DBL_E_BITS|=11$ bits for the
exponent\index{exponent}, and $|DBL_M_BITS|=52$ bits for the
mantissa\index{mantissa}.  The sign\index{sign bit} bit is 1 for a
negative number and 0 for a positive number.  A floating point number
is stored in normalized\index{normalization} form which means that the
mantissa is shifted such that it has exactly 52+1 bit not counting
leading zeros.  The leading bit is then always 1 and there is no need
to store it. So 52 bits suffice.  To store the exponent, the excess
$q=1023$ is added and the result is stored as an unsigned 11 bit
number.  For example if we regard the exponent bits and the mantissa
bits as unsigned binary numbers $e$ and $m$ then the absolute value of
such a floating point number can be expressed as
$(1+m*2^{-52})\cdot2^{e-1023}$.  We make similar assumptions about
variables of type |float32_t| using the constants as defined above.

To convert the decimal representation of a floating point number to
binary values of type |float64_t|, we use a \CEE\ library function.

@<scanning macros@>=
#define SCAN_DECFLOAT       @[yylval.f=atof(yytext)@]
@

When the parser expects a floating point number and gets an integer number,
it converts it. So whenever in the long format a floating point number is expected,
an integer number will do as well.

@<parsing rules@>=
number: UNSIGNED {$$=(float64_t)$1; } | SIGNED {$$=(float64_t)$1; } | FPNUM;
@

Unfortunately the decimal representation is not optimal for floating
point numbers since even simple numbers in decimal notation like $0.1$
do not have an exact representation as a binary floating point number.
So if we want a notation that allows an exact representation of binary
floating point numbers, we must use a hexadecimal\index{hexadecimal}
representation.  Hexadecimal floating point numbers start with an
optional sign, then as usual the two characters ``{\tt 0x}'', then
follows a sequence of hex digits, a radix point, more hex digits, and
an optional exponent.  The optional exponent starts with the character
``{\tt x}'', followed by an optional sign, and some more hex
digits. The hexadecimal exponent is given as a base 16 number and it
is interpreted as an exponent with the base 16. As an example an
exponent of ``{\tt x10}'', would multiply the mantissa by $16^{16}$.
In other words it would shift any mantissa 16 hexadecimal digits to
the left. Here are the exact rules:

@<scanning rules@>=
::@=[+-]?0x{HEX}+\.{HEX}+(x[+-]?{HEX}+)?@>  :< SCAN_HEXFLOAT; return FPNUM;  >:
@

@<scanning macros@>=
#define SCAN_HEXFLOAT       @[yylval.f=xtof(yytext)@]
@
There is no function in the \CEE\ library for hexadecimal floating point notation
so we have to write our own conversion routine.
The function |xtof| converts a string matching the above regular expression to
its binary representation. Its outline is very simple:

@<scanning functions@>=

float64_t xtof(char *x)
{ int sign, digits, exp;
  uint64_t mantissa=0;
  DBG(DBGFLOAT,"converting %s:\n",x);
  @<read the optional sign@>@;
  x=x+2; /* skip ``\.{0x}'' */
  @<read the mantissa@>@;
  @<normalize the mantissa@>@;
  @<read the optional exponent@>@;
  @<return the binary representation@>@;
}
@

Now the pieces:

@<read the optional sign@>=
  if (*x=='-') { sign=-1;@+ x++;@+ }
  else if (*x=='+') { sign=+1;@+ x++;@+ }
  else @+sign=+1;
  DBG(DBGFLOAT,"\tsign=%d\n",sign);
@

When we read the mantissa, we use the temporary variable |mantissa|, keep track
of the number of digits, and adjust the exponent while reading the fractional part.
@<read the mantissa@>=
  digits=0;
  while (*x=='0') x++; /*ignore leading zeros*/
  while (*x!='.')@/
  { mantissa=mantissa<<4;
    if (*x<'A') mantissa=mantissa+*x-'0';
    else  mantissa=mantissa+*x-'A'+10;
    x++;
    digits++;
  }
  x++; /* skip ``\.{.}'' */
  exp=0;
  while (*x!=0 && *x!='x')@/
  { mantissa=mantissa<<4;
    exp=exp-4;
    if (*x<'A') mantissa=mantissa+*x-'0';
    else  mantissa=mantissa+*x-'A'+10;
    x++;
    digits++;
  } 
  DBG(DBGFLOAT,"\tdigits=%d mantissa=0x%" PRIx64 ", exp=%d\n",@|digits,mantissa,exp);
@

To normalize the mantissa, first we shift it to place exactly one nonzero hexadecimal
digit to the left of the radix point. Then we shift it right bit-wise until there is
just a single 1 bit to the left of the radix point.
To compensate for the shifting, we adjust the exponent accordingly.
Finally we remove the most significant bit because it is
not stored.

@<normalize the mantissa@>=
if (mantissa==0) return 0.0;
{ int s;
  s = digits-DBL_M_BITS/4;
  if (s>1) 
   mantissa=mantissa>>(4*(s-1));
  else if (s<1)
   mantissa=mantissa<<(4*(1-s)); 
  exp=exp+4*(digits-1); 
  DBG(DBGFLOAT,"\tdigits=%d mantissa=0x%" PRIx64 ", exp=%d\n",@|digits,mantissa,exp);
  while ((mantissa>>DBL_M_BITS)>1)@/  { mantissa=mantissa>>1; @+ exp++;@+ }
  DBG(DBGFLOAT,"\tdigits=%d mantissa=0x%" PRIx64 ", exp=%d\n",@|digits,mantissa,exp);
  mantissa=mantissa&~((uint64_t)1<<DBL_M_BITS); 
  DBG(DBGFLOAT,"\tdigits=%d mantissa=0x%" PRIx64 ", exp=%d\n",@|digits,mantissa,exp);
}
@

In the printed representation, 
the exponent is an exponent with base 16. For example, an exponent of 2 shifts
the hexadecimal mantissa two hexadecimal digits to the left, which corresponds to a 
multiplication by ${16}^2$.

@<read the optional exponent@>=
  if (*x=='x')@/
  { int  s;
    x++; /* skip the ``\.{x}'' */
    if (*x=='-') {s=-1;@+x++;@+}
    else if (*x=='+') {s=+1;@+x++;@+}
    else s=+1;
    DBG(DBGFLOAT,"\texpsign=%d\n",s);
    DBG(DBGFLOAT,"\texp=%d\n",exp);
    while (*x!=0 )
    { if (*x<'A') exp=exp+4*s*(*x-'0');
      else exp=exp+4*s*(*x-'A'+10);
      x++;
      DBG(DBGFLOAT,"\texp=%d\n",exp);
    }
  }
  RNG("Floating point exponent",@|exp,-DBL_EXCESS,DBL_EXCESS);
@

To assemble the binary representation, we use a |union| of a |float64_t| and |uint64_t|.


@<return the binary representation@>=
{ union {@+float64_t d; @+uint64_t bits; @+} u;
  if (sign<0) sign=1;@+ else@+ sign=0; /* the sign bit */
  exp=exp+DBL_EXCESS; /* the exponent bits */
  u.bits=((uint64_t)sign<<63)@/ 
        | ((uint64_t)exp<<DBL_M_BITS) | mantissa;
  DBG(DBGFLOAT," return %f\n",u.d);
  return u.d;
}
@

The inverse function is |hwrite_float64|. It strives to print floating point numbers
as readable as possible. So numbers without fractional part are written as integers.
Numbers that can be represented exactly in decimal notation are represented in
decimal notation. All other values are written as hexadecimal floating point numbers. 
We avoid an exponent if it can be avoided by using up to |MAX_HEX_DIGITS|

\writecode
@<write functions@>=
#define MAX_HEX_DIGITS 12
void hwrite_float64(float64_t d)
{ uint64_t bits, mantissa;
  int exp, digits;
  hwritec(' '); 
  if (floor(d)==d) 
  { hwritef("%d",(int)d);@+ return;@+}
  if (floor(10000.0*d)==10000.0*d)
  { hwritef("%g",d); @+return;@+}
  DBG(DBGFLOAT,"Writing hexadecimal float %f\n",d);
  if (d<0) { hwritec('-');@+ d=-d;@+}
  hwritef("0x");
  @<extract mantissa and exponent@>@;
  if (exp>MAX_HEX_DIGITS)
    @<write large numbers@>@;
  else if (exp>=0) @<write medium numbers@>@;
  else  @<write small numbers@>@;
}
@

The extraction just reverses the creation of the binary representation. 

@<extract mantissa and exponent@>=
{  union {@+float64_t d; @+ uint64_t bits; @+} u;
   u.d=d; @+ bits=u.bits;
}
  mantissa= bits&(((uint64_t)1<<DBL_M_BITS)-1); 
  mantissa=mantissa+((uint64_t)1<<DBL_M_BITS);
  exp= ((bits>>DBL_M_BITS)&((1<<DBL_E_BITS)-1))-DBL_EXCESS;
  digits=DBL_M_BITS+1; 
  DBG(DBGFLOAT,"\tdigits=%d mantissa=0x%" PRIx64 " binary exp=%d\n",@|digits,mantissa,exp);
@

After we have obtained the binary exponent, 
we round it down, and convert it to a hexadecimal
exponent.
@<extract mantissa and exponent@>=
  { int r;
    if (exp>=0)
    { r= exp%4; 
      if (r>0)
      { mantissa=mantissa<<r; @+exp=exp-r; @+digits=digits+r; @+}
    }
    else
    { r=(-exp)%4;
      if (r>0)
      { mantissa=mantissa>>r; @+exp=exp+r; @+digits=digits-r;@+}
    }
  }
  exp=exp/4;
  DBG(DBGFLOAT,"\tdigits=%d mantissa=0x%" PRIx64 " hex exp=%d\n",@|digits,mantissa,exp);
@

In preparation for writing, 
we shift the mantissa to the left so that the leftmost hexadecimal
digit of it will occupy the 4 leftmost bits of the variable |bits| .

@<extract mantissa and exponent@>=
  mantissa=mantissa<<(64-DBL_M_BITS-4); /* move leading digit to leftmost nibble */
@

If the exponent is larger than |MAX_HEX_DIGITS|, we need to 
use an exponent even if the mantissa uses only a few digits.
When we use an exponent, we always write exactly one digit preceding the radix point.

@<write large numbers@>=
{ DBG(DBGFLOAT,"writing large number\n");
  hwritef("%X.",(uint8_t)(mantissa>>60));
  mantissa=mantissa<<4;
  do {
	  hwritef("%X",(uint8_t)(mantissa>>DBL_M_BITS)&0xF);
	  mantissa=mantissa<<4;
  } while (mantissa!=0);
  hwritef("x+%X",exp);
}
@
If the exponent is small and non negative, we can write the
number without an exponent by writing the radix point at the
appropriate place.
 @<write medium numbers@>=
  {  DBG(DBGFLOAT,"writing medium number\n");
     do {
	  hwritef("%X",(uint8_t)(mantissa>>60));
	  mantissa=mantissa<<4;
	  if (exp--==0) hwritec('.');
	} while (mantissa!=0 || exp>=-1);
  }
@
Last non least, we write numbers that would require additional zeros after the
radix point with an exponent, because it keeps the mantissa shorter.
@<write small numbers@>=
   { DBG(DBGFLOAT,"writing small number\n");
	hwritef("%X.",(uint8_t)(mantissa>>60));
	mantissa=mantissa<<4;
	do {
	  hwritef("%X",(uint8_t)(mantissa>>60));
	  mantissa=mantissa<<4;
	} while (mantissa!=0);
	hwritef("x-%X",-exp);
  } 
@

Compared to the complications of long format floating point numbers,
the short format is very simple because we just use the binary representation.
Since 32 bit floating point numbers offer sufficient precision we use only 
the |float32_t| type.
It is however not possible to just write |HPUT32(d)| for a |float32_t| variable |d|
or |HPUT32((uint32_t)d)| because in the \CEE\ language this would imply
rounding the floating point number to the nearest integer.
But we have seen how to convert floating point values to bit pattern before.

@<put functions@>=
void hput_float32(float32_t d)
{  union {@+float32_t d; @+ uint32_t bits; @+} u;
   u.d=d; @+ HPUT32(u.bits);
}
@

@<shared get functions@>=
float32_t hget_float32(void)
{  union {@+float32_t d; @+ uint32_t bits; @+} u;
   HGET32(u.bits);
   return u.d;
}
@

\subsection{Fixed Point Numbers}
\TeX\ internally represents most real numbers as fixed\index{fixed
point number} point numbers or ``scaled integers''\index{scaled
integer}.  The type {\bf Scaled} is defined as a signed 32 bit
integer, but we consider it as a fixed point number with the binary
radix point just in the middle with sixteen bits before and sixteen
bits after it.  To convert an integer into a scaled number, we
multiply it by |ONE|; to convert a floating point number into a scaled
number, we multiply it by |ONE| and |ROUND| the result to the nearest
integer; to convert a scaled number to a floating point number we
divide it by |(float64_t)ONE|.

\noindent
@<hint basic types@>=
typedef int32_t Scaled;
#define ONE ((Scaled)(1<<16))
@

@<hint macros@>=
#define ROUND(X)     ((int)((X)>=0.0?floor((X)+0.5):ceil((X)-0.5)))
@

\writecode
@<write functions@>=
void hwrite_scaled(Scaled x)
{ hwrite_float64(x/(float64_t)ONE);
}
@

\subsection{Dimensions}
In the long format, 
the dimensions\index{dimension} of characters, boxes, and other things can be given 
in three units:  \.{pt}, \.{in}, and \.{mm}.

\readcode
@s PT symbol
@s MM symbol
@s INCH symbol
@s dimension symbol
@s DIMEN symbol
@<symbols@>=
%token DIMEN "dimen"
%token PT "pt"
%token MM "mm" 
%token INCH "in"
%type <d> dimension
@

@<scanning rules@>=
::@=dimen@>  :< return DIMEN; >:
::@=pt@>  :< return PT; >:
::@=mm@>  :< return MM; >:
::@=in@>  :< return INCH; >:
@

The unit \.{pt} is a printers point\index{point}\index{pt+{\tt pt}}. 
The unit ``\.{in}'' stands for inches\index{inch}\index{in+{\tt in}} and we have $1\.{in}= 72.27\,\.{pt}$.
The unit ``\.{mm}'' stands for millimeter\index{millimeter}\index{mm+{\tt mm}} and we have $1\.{in}= 25.4\,\.{mm}$.

The definition of a printers\index{printers point} point given above follows the definition used in 
\TeX\ which is slightly larger than the official definition of a printer's
point which was defined to equal exactly 0.013837\.{in} by the American Typefounders
Association in~1886\cite{DK:texbook}.

We follow the tradition of \TeX\ and 
store dimensions as ``scaled points''\index{scaled point} that is a dimension of $d$ points is
stored as $d\cdot2^{16}$ rounded to the nearest integer. 
The maximum absolute value of a dimension is $(2^{30}-1)$ scaled points. 

@<hint basic types@>=
typedef Scaled Dimen;
#define MAX_DIMEN ((Dimen)(0x3FFFFFFF))
@

@<parsing rules@>=
dimension: number PT @|{$$=ROUND($1*ONE); RNG("Dimension",$$,-MAX_DIMEN,MAX_DIMEN); } 
         | number INCH @|{$$=ROUND($1*ONE*72.27); RNG("Dimension",$$,-MAX_DIMEN,MAX_DIMEN);@+}
         | number MM @|{$$=ROUND($1*ONE*(72.27/25.4)); RNG("Dimension",$$,-MAX_DIMEN,MAX_DIMEN);@+};
@

When \.{stretch} is writing dimensions in the long format, 
for simplicity it always uses the unit ``\.{pt}''.
\writecode
@<write functions@>=
void hwrite_dimension(Dimen x)
{ hwrite_scaled(x);
  hwritef("pt");
}
@

In the short format, dimensions are stored as 32 bit scaled point values without conversion.
\getcode
@<get functions@>=
void hget_dimen(uint8_t a)
{ if (INFO(a)==b000)
  {uint8_t r; r=HGET8; REF(dimen_kind,r); hwrite_ref(r);}
  else
  { uint32_t d; HGET32(d); hwrite_dimension(d); }
}
@

\putcode
@<put functions@>=

uint8_t hput_dimen(Dimen d)
{ HPUT32(d);
  return TAG(dimen_kind, b001);
}
@



\subsection{Extended Dimensions}\index{extended dimension}\index{hsize+{\tt hsize}}\index{vsize+{\tt vsize}}
The dimension that is probably used most frequently in a \TeX\ file is {\tt hsize}:
the ho\-ri\-zon\-tal size of a line of text. Common are also assignments
like \.{\\hsize=0.5\\hsize} \.{\\advance\\hsize by -10pt}, for example to
get two columns with lines almost half as wide as usual, leaving a small gap
between left and right column. Similar considerations apply to {\tt vsize}.

Because we aim at a reflowable format for \TeX\ output, we have to postpone 
such computations until the values of \.{hsize} and \.{vsize} are known in the viewer.
Until then, we do symbolic computations on linear functions\index{linear function} of \.{hsize} and \.{vsize}.
We call such a linear function $w+h\cdot\.{hsize}+v\cdot\.{vsize}$
an extended dimension and represent it by the three numbers $w$, $h$, and $v$.

@<hint basic types@>=
typedef struct {@+
Dimen w; @+ float32_t h, v; @+
} Xdimen;
@
Since very often a component of an extended dimension is zero, we
store in the short format only the nonzero components and use the
info bits to mark them: |b100| implies $|w|\ne0$,
|b010| implies $|h|\ne 0$, and |b001| implies  $|v|\ne 0$.

\readcode
@s XDIMEN symbol
@s xdimen symbol
@s xdimen_node symbol
@s H symbol
@s V symbol
@<symbols@>=
%token XDIMEN "xdimen"
%token H "h"
%token V "v"
%type <xd> xdimen
@
@<scanning rules@>=
::@=xdimen@>  :< return XDIMEN; >:
::@=h@>  :< return H; >:
::@=v@>  :< return V; >:
@


@<parsing rules@>=
xdimen: dimension number H number V { $$.w=$1; @+$$.h=$2; @+$$.v=$4; }
      | dimension number H          { $$.w=$1; @+$$.h=$2; @+$$.v=0.0; }
      | dimension number V          { $$.w=$1; @+$$.h=0.0; @+$$.v=$2; }
      | dimension                   { $$.w=$1; @+$$.h=0.0; @+$$.v=0.0; };

xdimen_node: start XDIMEN xdimen END { hput_tags($1,hput_xdimen(&($3))); };
@

\writecode
@<write functions@>=
void hwrite_xdimen(Xdimen *x)
{ hwrite_dimension(x->w); 
  if (x->h!=0.0) {hwrite_float64(x->h); @+hwritec('h');@+}  
  if (x->v!=0.0) {hwrite_float64(x->v); @+hwritec('v');@+}
}

void hwrite_xdimen_node(Xdimen *x)
{ hwrite_start(); hwritef("xdimen"); hwrite_xdimen(x); hwrite_end();}
@

\getcode

@<get macros@>=
#define @[HGET_XDIMEN(I,X)@] \
  if((I)&b100) HGET32((X).w);@+ else (X).w=0;\
  if((I)&b010) (X).h=hget_float32(); @+ else (X).h=0.0;\
  if((I)&b001) (X).v=hget_float32(); @+else (X).v=0.0;
@

@<get functions@>=
void hget_xdimen(uint8_t a, Xdimen *x)
{ switch(a)
  {
    case TAG(xdimen_kind,b001): HGET_XDIMEN(b001,*x);@+break;
    case TAG(xdimen_kind,b010): HGET_XDIMEN(b010,*x);@+break;
    case TAG(xdimen_kind,b011): HGET_XDIMEN(b011,*x);@+break;
    case TAG(xdimen_kind,b100): HGET_XDIMEN(b100,*x);@+break;
    case TAG(xdimen_kind,b101): HGET_XDIMEN(b101,*x);@+break;
    case TAG(xdimen_kind,b110): HGET_XDIMEN(b110,*x);@+break;
    case TAG(xdimen_kind,b111): HGET_XDIMEN(b111,*x);@+break;
    default:
     QUIT("Extent expected got [%s,%d]",NAME(a),INFO(a));
  }
 }
@

Note that the info value |b000|, usually indicating a reference,
is not supported for extended dimensions.
Most nodes that need an extended dimension offer the opportunity to give
a reference directly without the start and end byte. 
An exception is the glue node,
but glue nodes that need an extended width are rare.

@<get functions@>=
void hget_xdimen_node(Xdimen *x)
{ @<read the start byte |a|@>@;
  if (KIND(a)==xdimen_kind)
    hget_xdimen(a,x);
  else
     QUIT("Extent expected at 0x%x got %s",node_pos,NAME(a));
  @<read and check the end byte |z|@>@;
}
@



\putcode
@<put functions@>=
uint8_t hput_xdimen(Xdimen *x)
{ Info info=b000;
  if (x->w==0 && x->h==0.0 && x->v==0.0){ HPUT32(0); @+info|=b100; @+} 
  else
  { if (x->w!=0) { HPUT32(x->w); @+info|=b100; @+} 
    if (x->h!=0.0) { hput_float32(x->h); @+info|=b010; @+} 
    if (x->v!=0.0) {  hput_float32(x->v); @+info|=b001; @+} 
  }
  return TAG(xdimen_kind,info);
}
void hput_xdimen_node(Xdimen *x)
{ uint32_t p=hpos++-hstart;
  hput_tags(p, hput_xdimen(x));
}


@



\subsection{Stretch and Shrink}\label{stretch}
In section~\secref{glue}, we will consider glue\index{glue} which
is something that can stretch  and  shrink.
The stretchability\index{stretchability} and shrinkability\index{shrinkability} of the
glue can be given in ``\.{pt}'' like a dimension,
but there are three more units: \.{fil}, \.{fill}, and \.{filll}.
A glue with a stretchability of $1\,\hbox{\tt fil}$ will stretch infinitely more
than a glue with a stretchability of $1\,\hbox{\tt pt}$. So if you stretch both glues
together, the first glue will do all the stretching and the latter will not stretch
at all. The ``\.{fil}'' glue has simply a higher order of infinity.
You might guess that ``\.{fill}'' glue and ``\.{filll}'' glue have even higher
orders of infinite stretchability. 
The order of infinity is 0 for \.{pt}, 1 for \.{fil}, 2 for \.{fill}, and 3 for \.{filll}.

The internal representation of a stretch is a variable of type |Stretch|.
It stores the floating point value and the order of infinity separate as a |float64_t| and a |uint8_t|. 


The short format tries to be space efficient and because it is not necessary to give the 
stretchability with a precision exceeding about six decimal digits, 
we use a single 32 bit floating point value.
To write a |float32_t| value and an order value as one 32 bit value, 
we round the two lowest bit of the |float32_t| variable to zero
using ``round to even'' and store the order of infinity in these bits.
We define a union type \&{Stch} to simplify conversion.

@<hint basic types@>=
typedef enum { @+ normal_o=0, fil_o=1, fill_o=2, filll_o=3@+} Order;
typedef struct {@+  float64_t f;@+ Order o; @+} Stretch;
typedef union {@+float32_t f; @+ uint32_t u; @+} Stch;
@

\putcode
@<put functions@>=
void hput_stretch(Stretch *s)
{ uint32_t mantissa, lowbits, sign, exponent;
  Stch st;
  st.f=s->f;
  DBG(DBGFLOAT,"joining %f->%f(0x%X),%d:",s->f,st.f,st.u,s->o);
  mantissa = st.u &(((uint32_t)1<<FLT_M_BITS)-1);
  lowbits = mantissa&0x7; /* lowest 3 bits */
  exponent=(st.u>>FLT_M_BITS)&(((uint32_t)1<<FLT_E_BITS)-1);
  sign=st.u & ((uint32_t)1<<(FLT_E_BITS+FLT_M_BITS));
  DBG(DBGFLOAT,"s=%d e=0x%x m=0x%x",sign, exponent, mantissa);
  switch (lowbits) /* round to even */
  { @+case 0: break; /* no change */
    case 1: mantissa = mantissa -1; @+break;/* round down */
    case 2: mantissa = mantissa -2;  @+break;/* round down to even */
    case 3: mantissa = mantissa +1;  @+break; /* round up */
    case 4: break; /* no change */
    case 5: mantissa = mantissa -1;  @+break;/* round down */
    case 6: mantissa = mantissa +1; /* round up to even, fall through */
    case 7: mantissa = mantissa +1; /* round up to even */
            if (mantissa >= ((uint32_t)1<<FLT_M_BITS))@/
            {exponent++; /* adjust exponent */
             RNG("Float32 exponent",exponent,1,2*FLT_EXCESS);
             @+mantissa=mantissa>>1;
            } 
            break;
  }
  DBG(DBGFLOAT," round s=%d e=0x%x m=0x%x",sign, exponent, mantissa);
  st.u=sign| (exponent<<FLT_M_BITS) | mantissa | s->o;
  DBG(DBGFLOAT,"float %f hex 0x%x\n",st.f, st.u);
  HPUT32(st.u);
}
@

\getcode
@<get macros@>=
#define @[HGET_STRETCH(S)@] { Stch st; @+ HGET32(st.u);@+ S.o=st.u&3;  st.u&=~3; S.f=st.f; @+}
@

\readcode
@s FIL symbol
@s FILL symbol
@s FILLL symbol
@s order symbol

@<symbols@>=
%token FIL "fil" 
%token FILL "fill"
%token FILLL "filll"
%type <st> stretch
%type <o> order
@

@<scanning rules@>=
::@=fil@>  :< return FIL; >:
::@=fill@>  :< return FILL; >:
::@=filll@>  :< return FILLL; >:
@

@s stretch symbol
@s Stretch int
@<parsing rules@>=

order: PT {$$=normal_o;} | FIL  {$$=fil_o;}  @+| FILL  {$$=fill_o;} @+| FILLL  {$$=filll_o;};

stretch: number order { $$.f=$1; $$.o=$2; };
@

\writecode

@<write functions@>=
void hwrite_order(Order o)
{ switch (o)
  { case normal_o: hwritef("pt"); @+break;
    case fil_o: hwritef("fil"); @+break;
    case fill_o: hwritef("fill"); @+break;
    case filll_o: hwritef("filll"); @+break;
    default: QUIT("Illegal order %d",o); @+ break;
  }
}

void hwrite_stretch(Stretch *s)
{ hwrite_float64(s->f);
  hwrite_order(s->o);
}
@ 

\section{Simple Nodes}\hascode
\label{simple}
\subsection{Penalties}
Penalties\index{penalty} are very simple nodes. They specify the cost of breaking a
line or page at the present position. For the internal representation
we use an |int32_t|. The full range of integers is, however, not
used. Instead penalties must be between -20000 and +20000.
(\TeX\ specifies a range of -10000 to +10000, but plain \TeX\ uses the value -20000 
when it defines the supereject control sequence.)  
The more general node is called an integer node; 
it shares the same kind-value |int_kind=penalty_kind|
but allows the full range of values.  
The info value of a penalty node is 1 or 2 and indicates the number of bytes
used to store the integer. The info value 4 can be used for general
integers (see section~\secref{definitions}) that need four byte of storage.

\readcode
@s PENALTY symbol
@s INTEGER symbol
@s penalty symbol
@<symbols@>=
%token PENALTY "penalty"
%token INTEGER     "int"
%type <i> penalty
@

@<scanning rules@>=
::@=penalty@>       :< return PENALTY; >:
::@=int@>           :< return INTEGER; >:
@

@<parsing rules@>=
penalty:  integer {RNG("Penalty",$1,-20000,+20000);$$=$1;};
content_node: start PENALTY penalty END { hput_tags($1,hput_int($3));@+};
@

\getcode
@<cases to get content@>=
@t\1\kern1em@>case TAG(penalty_kind,1):  @+{int32_t p;@+ HGET_PENALTY(1,p);@+} @+break;
case TAG(penalty_kind,2):  @+{int32_t p;@+ HGET_PENALTY(2,p);@+} @+break;
@

@<get macros@>=
#define @[HGET_PENALTY(I,P)@] \
if (I==1) {int8_t n=HGET8;  @+P=n;@+ } \
else {int16_t n;@+ HGET16(n);@+RNG("Penalty",n,-20000,+20000); @+ P=n; @+}\
hwrite_signed(P);
@

\putcode
@<put functions@>=
uint8_t hput_int(int32_t n)
{ Info info;
  if (n>=0) @/
  { @+if (n<0x80) { @+HPUT8(n); @+info=1;@+ }
    else if (n<0x8000)  {@+ HPUT16(n);@+ info=2;@+ }
    else  {@+ HPUT32(n);@+ info=4;@+ }
  }
  else@/
  {@+ if (n>=-0x80) {@+ HPUT8(n);@+ info=1;@+ }
    else if (n>=-0x8000)  {@+ HPUT16(n);@+ info=2;@+ }
    else  {@+ HPUT32(n);@+ info=4;@+ }
  }
  return TAG(int_kind,info);
}
@




\subsection{Languages}
To render a \HINT\ file on screen, information about the language is not necessary.
Knowing the language is, however, very important for language translation and
text to speech conversion which makes texts accessible to the visually-impaired.
For this reason, \HINT\ offers the opportunity to add this information
and encourages authors to supply this information.

Language information by itself is not sufficient to decode text. It must be supplemented
by information about the character encoding (see section~\secref{fonts}).

To represent language information, the world wide web has set universally
accepted standards. The Internet Engineering Task Force IETF has defined tags for identifying
languages\cite{rfc5646}: short strings like ``en'' for English
or ``de'' for Deutsch, and longer ones like ``sl-IT-nedis'', for the specific variant of
the Nadiza dialect of Slovenian that is spoken in Italy.
We assume that any \HINT\ file
will contain only a small number of different languages and all language nodes can be
encoded using a reference to a predefined node from the
definition section (see section~\secref{reference}).
In the definition section, a language node will just
contain the language tag as given in~\cite{iana:language} (see section~\secref{definitions}).

\readcode
@s LANGUAGE symbol
@s language symbol

@<symbols@>=
%token LANGUAGE "language"
@

@<scanning rules@>=
::@=language@>  :< return LANGUAGE; >:
@

When encoding language nodes in the short format, 
we use the info value |b000| for language nodes in the definition section
and for language nodes in the content section that contain just a one-byte
reference (see section~\secref{reference}).
We use the info value |1| to |7| as a shorthand for
the references {\tt *0} and {\tt *6} to the predefined language nodes.


\goodbreak
\vbox{\getcode\vskip -\baselineskip\writecode}
@<cases to get content@>=
@t\1\kern1em@>case TAG(language_kind,1): REF(language_kind,0);  @+hwrite_ref(0); @+break;
case TAG(language_kind,2): REF(language_kind,1);  @+hwrite_ref(1); @+break;
case TAG(language_kind,3): REF(language_kind,2);  @+hwrite_ref(2); @+break;
case TAG(language_kind,4): REF(language_kind,3);  @+hwrite_ref(3); @+break;
case TAG(language_kind,5): REF(language_kind,4);  @+hwrite_ref(4); @+break;
case TAG(language_kind,6): REF(language_kind,5);  @+hwrite_ref(5); @+break;
case TAG(language_kind,7): REF(language_kind,6);  @+hwrite_ref(6); @+break;
@

\putcode
@<put functions@>=
uint8_t hput_language(uint8_t n)
{ if (n<7) return TAG(language_kind,n+1);
  HPUT8(n); return TAG(language_kind,0);
}
@



\subsection{Rules}
Rules\index{rule} are simply black rectangles having a height, a depth, and a
width.  All of these dimensions can also be negative but a rule will
not be visible unless its width is positive and its height plus depth
is positive.

As a specialty, rules can have ``running dimensions''\index{running dimension}. If any of the
three dimensions is a running dimension, its actual value will be
determined by running the rule up to the boundary of the innermost
enclosing box.  The width is never running in an horizontal\index{horizontal list} list; the
height and depth are never running in a vertical\index{vertical list} list.  In the long
format, we use a vertical bar ``{\tt \VB}'' or a horizontal bar
``{\tt \_}'' (underscore character) to indicate a running
dimension. Of course the vertical bar is meant to indicate a running
height or depth while the horizontal bar stands for a running
width. The parser, however, makes no distinction between the two and
you can use either of them.  In the short format, we follow \TeX\ and
implement a running dimension by using the special value
$-2^{30}=|0xC0000000|$.


@<hint macros@>=
#define RUNNING_DIMEN 0xC0000000
@

It could have been possible to allow extended dimensions in a rule node,
but in most circumstances, the mechanism of running dimensions is sufficient
and simpler to use. If a rule is needed that requires an extended dimension as
its length, it is always possible to put it inside a suitable box and use a
running dimension.


To make the short format encoding more compact, the first info bit
|b100| will be zero to indicate a running height, bit |b010| will be
zero to indicate a running depth, and bit |b001| will be zero to
indicate a running width.

Because leaders\index{leaders} (see section~\secref{leaders}) may contain a rule
node, we also provide functions to read and write a complete rule
node. While parsing the symbol ``{\sl rule\/}'' will just initialize a variable of type
\&{Rule} (the writing is done with a separate routine),
parsing a {\sl rule\_node\/} will always include writing it.

% Currently no predefined rules.
%Further, a {\sl rule\_node} will permit the
%use of a predefined rule (see section~\secref{reference}), 


@<hint types@>=
typedef struct {@+
Dimen h,d,w; @+
} Rule;
@

\readcode
@s RULE symbol
@s RUNNING symbol
@s rule_dimension symbol
@s rule symbol
@s rule_node symbol
@<symbols@>=
%token RULE "rule"
%token RUNNING "|"
%type <d> rule_dimension
%type <r> rule
@

@<scanning rules@>=
::@=rule@>  :< return RULE; >:
::@="|"@>  :< return RUNNING; >:
::@="_"@>  :< return RUNNING; >:
@

@<parsing rules@>=
rule_dimension: dimension@+ | RUNNING {$$=RUNNING_DIMEN;};
rule: rule_dimension rule_dimension rule_dimension @/
  { $$.h=$1; @+ $$.d=$2; @+ $$.w=$3;  
    if ($3==RUNNING_DIMEN && ($1==RUNNING_DIMEN || $2==RUNNING_DIMEN))
  QUIT("Incompatible running dimensions 0x%x 0x%x 0x%x",@|$1,$2,$3); };
rule_node: start RULE rule END  { hput_tags($1,hput_rule(&($3))); };
content_node: rule_node;
@

\writecode
@<write functions@>=
static void  hwrite_rule_dimension(Dimen d, char c)
{ @+if (d==RUNNING_DIMEN) hwritef(" %c",c);
  else hwrite_dimension(d);
}

void  hwrite_rule(Rule *r)
{ @+hwrite_rule_dimension(r->h,'|'); 
  hwrite_rule_dimension(r->d,'|'); 
  hwrite_rule_dimension(r->w,'_'); 
}
@
\getcode
@<cases to get content@>=
@t\1\kern1em@>
case TAG(rule_kind,b011):  {Rule r;@+ HGET_RULE(b011,r); @+hwrite_rule(&(r));@+ } @+break;
case TAG(rule_kind,b101):  {Rule r;@+ HGET_RULE(b101,r); @+hwrite_rule(&(r));@+ } @+break;
case TAG(rule_kind,b001):  {Rule r;@+ HGET_RULE(b001,r); @+hwrite_rule(&(r));@+ } @+break;
case TAG(rule_kind,b110):  {Rule r;@+ HGET_RULE(b110,r); @+hwrite_rule(&(r));@+ } @+break;
case TAG(rule_kind,b111):  {Rule r;@+ HGET_RULE(b111,r); @+hwrite_rule(&(r));@+ } @+break;
@

@<get macros@>=
#define @[HGET_RULE(I,R)@]@/\
if ((I)&b100) HGET32((R).h); @+else (R).h=RUNNING_DIMEN;\
if ((I)&b010) HGET32((R).d); @+else (R).d=RUNNING_DIMEN;\
if ((I)&b001) HGET32((R).w); @+else (R).w=RUNNING_DIMEN;
@

@<get functions@>=
void hget_rule_node(void)
{ @<read the start byte |a|@>@;
  if (KIND(a)==rule_kind) @/
  { @+Rule r; @+HGET_RULE(INFO(a),r); @/
    hwrite_start();@+ hwritef("rule"); @+hwrite_rule(&r); @+hwrite_end();
  }
  else
    QUIT("Rule expected at 0x%x got %s",node_pos,NAME(a));
  @<read and check the end byte |z|@>@;
}
@

\putcode
@<put functions@>=
uint8_t hput_rule(Rule *r)
{ Info info=b000;
  if (r->h!=RUNNING_DIMEN) { HPUT32(r->h); @+info|=b100; @+} 
  if (r->d!=RUNNING_DIMEN) { HPUT32(r->d); @+info|=b010; @+} 
  if (r->w!=RUNNING_DIMEN) { HPUT32(r->w); @+info|=b001; @+} 
  return TAG(rule_kind,info);
}
@


\subsection{Kerns}
A kern\index{kern} is a bit of white space with a certain length. If the kern is part of a
horizontal list, the length is measured in the horizontal direction,
if it is part of a vertical list, it is measured in the vertical
direction. The length of a kern is mostly given as a dimension
but provisions are made to use extended dimensions as well.

The typical
use of a kern is its insertion between two characters to make the natural 
distance between them a bit wider or smaller. In the latter case, the kern
has a negative length. The typographic optimization just described is called
``kerning'' and has given the kern node its name. 
Kerns inserted from font information or math mode calculations are normal kerns, 
while kerns inserted from \TeX's {\tt \BS kern} or {\tt \BS/} 
commands are explicit kerns. 
Kern nodes do not disappear at a line break unless they are explicit\index{explicit kern}.

In the long format, explicit kerns are marked with an ``!'' sign
and in the short format with the |b100| info bit.
The two low order info bits are: 0 for a reference to a dimension, 1 for a reference to
an extended dimension, 2 for an immediate dimension, and 3 for an immediate extended dimension node.
To distinguish in the long format between a reference to a dimension and a reference to an extended dimension,
the latter is prefixed with the keyword ``{\tt xdimen}'' (see section~\secref{reference}).

@<hint types@>=
typedef struct {@+
bool x;@+
Xdimen d;@+ 
} Kern;
@

\readcode
@s KERN symbol
@s EXPLICIT symbol
@s kern symbol
@s explicit symbol
@<symbols@>=
%token KERN "kern"
%token EXPLICIT "!"
%type <b> explicit 
%type <kt> kern
@

@<scanning rules@>=
::@=kern@>  :< return KERN; >:
::@=!@>     :< return EXPLICIT; >:
@

@<parsing rules@>=
explicit: {$$=false;} @+| EXPLICIT {$$=true;};
kern: explicit xdimen {$$.x=$1; $$.d=$2;};
content_node: start KERN kern END { hput_tags($1,hput_kern(&($3)));}
@

\writecode
@<write functions@>=
void hwrite_explicit(bool x)
{ @+if (x) hwritef(" !"); @+}

void hwrite_kern(Kern *k)
{ @+hwrite_explicit(k->x);
  if (k->d.h==0.0 && k->d.v==0.0 && k->d.w==0) hwrite_ref(zero_dimen_no);
  else hwrite_xdimen(&(k->d));
} 
@


\getcode
@<cases to get content@>=
@t\1\kern1em@>
case TAG(kern_kind,b010): @+  {@+Kern k; @+HGET_KERN(b010,k);@+ } @+break;
case TAG(kern_kind,b011): @+  {@+Kern k; @+HGET_KERN(b011,k);@+ } @+break;
case TAG(kern_kind,b110): @+  {@+Kern k; @+HGET_KERN(b110,k);@+ } @+break;
case TAG(kern_kind,b111): @+  {@+Kern k; @+HGET_KERN(b111,k);@+ } @+break;
@

@<get macros@>=
#define @[HGET_KERN(I,K)@] \
K.x=(I)&b100;\
if (((I)&b011)==2) {HGET32(K.d.w);@+ K.d.h=K.d.v=0.0;@+}\
else if (((I)&b011)==3) hget_xdimen_node(&(K.d));\
hwrite_kern(&k);
@

\putcode
@<put functions@>=
uint8_t hput_kern(Kern *k)
{ Info info;
  if (k->x) info=b100; @+else info=b000;
  if (k->d.h==0.0 && k->d.v==0.0)
  { if (k->d.w==0) HPUT8(zero_dimen_no);
    else {HPUT32(k->d.w); info=info|2;@+}
  }
  else {hput_xdimen_node(&(k->d));info=info|3;@+}
  return TAG(kern_kind,info);
}
@



\subsection{Glue}\label{glue}

%Glue considerations

%So what are the cases:
%\itemize
%\item reference to a dimen (common)
%\item reference to a xdimen
%\item reference to a dimen plus and minus
%\item reference to a xdimen plus and minus
%\item reference to a dimen plus 
%\item reference to a xdimen plus 
%\item reference to a dimen  minus
%\item reference to a xdimen minus
%\item dimen
%\item xdimen
%\item dimen plus and minus
%\item xdimen plus and minus (covers all other cases)
%\item dimen plus 
%\item xdimen plus 
%\item dimen  minus
%\item xdimen minus
%\item plus and minus
%\item plus
%\item minus
%\item zero glue (rare, can be replaced by a reference to the zero glue)
%\item reference to a predefined glue (common)
%\enditemize
%This is a total of 21 cases. Can we use the info bits to specify 7 common
%cases and one catch all? First the use of an extended dimension in a glue
%is probably not very common. More typically is the use of a fill glue
%that extends to the boundaries of the enclosing box.

%Here is the statistics for ctex:
%total 58937 glue entries
%total 49 defined glues (so 200 still available)
%There are three font specific glues defined for each font used in texts.
%The explicit glue nodes are the following:
%\itemize
%\item 35\% is predefined zero glue
%\item 30\% are 39 other predefined glue most of them less than 1%
%\item 8\% (4839) is one glue with 25pt pure stretch with order 0
%\item 25\% (14746) is one glue with 100pt stretch and 10pt shrink with order 0
%\item 2\% (1096) is one glue with 10pt no stretch and shrink
%\item 0\% (13) are 7 different glues with no stretch and shrink
%\item 0\% (3) different glues with width!=0 and some stretch of order 0
%\item 0\% (27) 20 different glues with stretch and shrink
%\enditemize

%Some more glue with 1fil is insider 55  leaders
%one vset has an extent 1 no stretch and shrink
%56 hset specify an extent 2 and 1 fil stretch


We have seen in section~\secref{stretch} how to deal with
stretchability\index{stretchability} and
shrinkability\index{shrinkability} and we will need this now.
Glue\index{glue} has a natural width---which in general can be an
extended dimension---and in addition it can stretch and shrink.  It
might have been possible to allow an extended dimension also for the
stretch\-ability or shrink\-ability of a glue, but this seems of
little practical relevance and so simplicity won over generality.
Even with that restriction, it is an understatement to regard glue
nodes as "simple" nodes.
%, and we could equally well list them in
%section~\secref{composite} as composite nodes.

To use the info bits in the short format wisely, I collected some
statistical data using the \TeX book as an example. It turns out that
about 99\% of all the 58937 glue nodes (not counting the interword
glues used inside texts) could be covered with only 43 predefined
glues.  So this is by far the most common case; we reserve the info
value |b000| to cover it and postpone the description of such glue
nodes until we describe references in section~\secref{reference}.

We expect the remaining cases to contribute not too much to the file
size, and hence, simplicity is a more important aspect than efficiency
when allocating the remaining info values.

Looking at the glues in more detail, we find that the most common
cases are those where either one, two, or all three glue components
are zero. We use the two lowest bits to indicate the presence of a
nonzero stretchability or shrinkability and reserve the info values
|b001|, |b010|, and |b011| for those cases where the width of the glue
is zero.  The zero glue, where all components are zero, is defined as
a fixed, predefined glue instead of reserving a special info value for
it.  The cost of one extra byte when encoding it seems not too high a
price to pay.  After reserving the info value |b111| for the most
general case of a glue, we have only three more info values left:
|b100|, |b101|, and |b110|.  Keeping things simple implies using the
two lowest info bits---as before---to indicate a nonzero
stretchability or shrinkability. For the width, three choices remain:
using a reference to a dimension, using a reference to an extended
dimension, or using an immediate value.  Since references to glues are
already supported, an immediate width seems best for glues that are
not frequently reused, avoiding the overhead of references.

% It also makes parsing simpler because we avoid the confusion
% between references to dimensions
% and references to glues and references to extended dimensions.

Here is a summary of the info bits and the implied layout 
of glue nodes in the short format:
\itemize
\item |b000|: reference to a predefined glue
\item |b001|: zero width and nonzero shrinkability
\item |b010|: zero width and nonzero stretchability
\item |b011|: zero width and nonzero stretchability and  shrinkability
\item |b100|: nonzero width
\item |b101|: nonzero width and nonzero shrinkability
\item |b110|: nonzero width and nonzero stretchability
\item |b111|: extended dimension and nonzero stretchability and  shrinkability
\enditemize


@<hint basic types@>=
typedef struct {@+
Xdimen w; @+
Stretch p, m;@+  
} Glue;
@


To test for a zero glue,
we implement a macro:
@<hint macros@>=
#define @[ZERO_GLUE(G)@] ((G).w.w==0  && (G).w.h==0.0  && (G).w.v==0.0  && (G).p.f==0.0 && (G).m.f==0.0)
@

Because other nodes (leaders, baselines, and fonts)
contain glue nodes as parameters, we provide functions 
to read and write a complete glue node in the same way as we did
for rule nodes.
Further, such an internal {\sl glue\_node\/} has the special property that  
in the short format a node for the zero glue might be omitted entirely.
   
\readcode
@s GLUE symbol
@s glue symbol
@s glue_node symbol
@s PLUS symbol
@s MINUS symbol
@s plus symbol
@s minus symbol

@<symbols@>=
%token GLUE "glue"
%token PLUS  "plus"
%token MINUS   "minus"
%type <g> glue
%type <b> glue_node
%type <st> plus minus
@

@<scanning rules@>=
::@=glue@>  :< return GLUE; >:
::@=plus@>       :< return PLUS; >:
::@=minus@>       :< return MINUS; >:
@

@<parsing rules@>=
plus: { $$.f=0.0; $$.o=0; } | PLUS stretch {$$=$2;};
minus: { $$.f=0.0; $$.o=0; } | MINUS stretch {$$=$2;};
glue: xdimen plus minus {$$.w=$1; $$.p=$2; $$.m=$3; };
content_node: start GLUE glue END {if (ZERO_GLUE($3)) {HPUT8(zero_skip_no);
 hput_tags($1,TAG(glue_kind,0)); } else hput_tags($1,hput_glue(&($3)));  }; 
glue_node: start GLUE glue END @/
           {@+ if (ZERO_GLUE($3)) { hpos--; $$=false;@+}@/
                 else { hput_tags($1,hput_glue(&($3))); $$=true;@+}@+ }; 
@

\writecode
@<write functions@>=
void hwrite_plus(Stretch *p)
{ @+if (p->f!=0.0) {  hwritef(" plus");@+hwrite_stretch(p); @+}
}
void hwrite_minus(Stretch *m)
{@+ if (m->f!=0.0) {  hwritef(" minus");@+hwrite_stretch(m); @+}
}
 
void hwrite_glue(Glue *g)
{ hwrite_xdimen(&(g->w)); @+
  hwrite_plus(&g->p); @+hwrite_minus(&g->m);
}

void hwrite_ref_node(Kind k, uint8_t n);
void hwrite_glue_node(Glue *g)
{@+ 
    if (ZERO_GLUE(*g)) hwrite_ref_node(glue_kind,zero_skip_no);
    else @+{  hwrite_start(); @+hwritef("glue"); @+hwrite_glue(g); @+hwrite_end();@+}
}
@

\getcode
@<cases to get content@>=
@t\1\kern1em@>
case TAG(glue_kind,b001): { Glue g;@+ HGET_GLUE(b001,g);@+ hwrite_glue(&g);@+}@+break;
case TAG(glue_kind,b010): { Glue g;@+ HGET_GLUE(b010,g);@+ hwrite_glue(&g);@+}@+break;
case TAG(glue_kind,b011): { Glue g;@+ HGET_GLUE(b011,g);@+ hwrite_glue(&g);@+}@+break;
case TAG(glue_kind,b100): { Glue g;@+ HGET_GLUE(b100,g);@+ hwrite_glue(&g);@+}@+break;
case TAG(glue_kind,b101): { Glue g;@+ HGET_GLUE(b101,g);@+ hwrite_glue(&g);@+}@+break;
case TAG(glue_kind,b110): { Glue g;@+ HGET_GLUE(b110,g);@+ hwrite_glue(&g);@+}@+break;
case TAG(glue_kind,b111): { Glue g;@+ HGET_GLUE(b111,g);@+ hwrite_glue(&g);@+}@+break;
@

@<get macros@>=
#define @[HGET_GLUE(I,G)@] {\
  if((I)!=b111) { if ((I)&b100) HGET32((G).w.w);@+ else (G).w.w=0;}\
  if((I)&b010) HGET_STRETCH((G).p) @+else (G).p.f=0.0, (G).p.o=0;\
  if((I)&b001) HGET_STRETCH((G).m) @+else  (G).m.f=0.0, (G).m.o=0;\
  if((I)==b111) hget_xdimen_node(&((G).w)); else (G).w.h=(G).w.v=0.0;@+}
@

The |hget_glue_node| can cope with a glue node that is omitted and
will supply a zero glue instead.

@<get functions@>=
void hget_glue_node(void)
{ @<read the start byte |a|@>@;
  if (KIND(a)!=glue_kind)
  {@+ hpos--; hwrite_ref_node(glue_kind,zero_skip_no);@+return; @+}
  if (INFO(a)==b000)
  { uint8_t n=HGET8;@+ REF(glue_kind,n);@+hwrite_ref_node(glue_kind,n); @+}
  else
  { @+Glue g; @+HGET_GLUE(INFO(a),g);@+ hwrite_glue_node(&g);@+}
  @<read and check the end byte |z|@>@;
}
@


\putcode
@<put functions@>=
uint8_t hput_glue(Glue *g)
{ Info info=b000;
  if (ZERO_GLUE(*g)) { HPUT8(zero_skip_no); @+ info=b000; }
  else if ( (g->w.w==0 && g->w.h==0.0 && g->w.v==0.0)) 
  { if (g->p.f!=0.0) { hput_stretch(&g->p); @+info|=b010; @+} 
    if (g->m.f!=0.0) { hput_stretch(&g->m); @+info|=b001; @+} 
  }
  else if ( g->w.h==0.0 && g->w.v==0.0 && (g->p.f==0.0 || g->m.f==0.0))
  { HPUT32(g->w.w); @+ info=b100;
    if (g->p.f!=0.0) { hput_stretch(&g->p); @+info|=b010; @+} 
    if (g->m.f!=0.0) { hput_stretch(&g->m); @+info|=b001; @+} 
  }
  else@/
  { hput_stretch(&g->p);@+ hput_stretch(&g->m);
    hput_xdimen_node(&(g->w));
    info=b111;   
  }
  return TAG(glue_kind,info);
}
@

\section{Lists}\hascode\label{lists}
When a node contains multiple other nodes, we package these nodes into
a list\index{list} node.  It is important to note that list nodes
never occur as individual nodes, they only occur as parts of other
nodes.  In total, we have three different types of lists: plain lists
that use the kind-value |list_kind|, text\index{text} lists that use
the kind-value |text_kind|, and parameter\index{parameter} lists that use the
kind-value |param_kind|.  A description of the first two types of
lists follows here. Parameter lists are described in section~\secref{paramlist}.

Because lists are of variable size, it is not possible in the short
format to tell from the kind and info bits of a tag byte the size of
the list node.  So advancing from the beginning of a list node to the
next node after the list is not as simple as usual.  To solve this
problem, we store the size of the list immediately after the start
byte and before the end byte.  Alternatively we could require programs
to traverse the entire list.  The latter solution is more compact but
inefficient for list with many nodes; our solution will cost some
extra bytes, but the amount of extra bytes will only grow
logarithmically with the size of the \HINT\ file.  It would be
possible to allow both methods so that a \HINT\ file could balance
size and time trade-offs by making small lists---where the size can be
determined easily by reading the entire list---without size
information and making large lists with size information so that they
can be skipped easily without reading them. But the added complexity
seems too high a price to pay.
 

Now consider the problem of reading a content stream starting at an arbitrary
position $i$ in the middle of the stream. This situation occurs
naturally when resynchronizing\index{resynchronization} a content stream after 
an error has been detected, but implementing links poses a similar problem.
We can inspect the byte at position $i$ and see
if it is a valid tag. If yes, we are faced with the problem of
verifying that this is not a mere coincidence. 
So we determine the size $s$ of the node. If the byte in question is a start byte,
we should find a matching byte $s$ bytes later in the stream; if it is an end byte,
we should find the matching byte $s$ bytes earlier in the stream; if we
find no matching byte, this was neither a start nor an end byte. 
If we find exactly one matching byte, we can be quite confident (error
probability 1/256 if assuming equal probability of all byte values) 
that we have found a tag, and we know whether
it is the beginning or the end tag. If we find two matching byte, we
have most likely the start or the end of a node, but we do not know which
of the two. To find out which of the two possibilities is true 
or to reduce the probability of an error, we can
check the start and end byte of the node immediately preceding a start byte or
immediately following an end byte in a similar way.
By testing two more byte, this additional check will reduce the error
probability further to $1/2^{24}$ (under the same assumption as before). So 
checking more nodes is rarely necessary.  This whole schema
would, however, not work if we happen to find a tag byte that indicated
either the begin or the end of a list without specifying the size
of the list. Sure, we can verify the bytes before and after it to
find out whether the byte following it is the begin of a node and the
byte preceding it is the end of a node, but we still don't know if the
byte itself starts a node list or ends a node list. Even reading along
in either direction until finding a matching tag will not answer the
question. The situation is better if we specify a
size: we can read the suspected size after or before the tag and check if we
find a matching tag and size at the position indicated. 
In the short format, we use the |info| value to indicate the number of
byte used to store the list size: A list with $0<|info|\le 5$ 
uses $|info|-1$ byte to store the size.
The info value zero is reserved for references to predefined lists
(which are currently not implemented).

Storing the list size immediately preceding the end tag creates a new
problem: If we try to recover from an error, we might not know the
size of the list and searching for the end of a list, we might be
unable to tell the difference between the bytes that encode the list
size and the start tag of a possible next node.  If we parse the
content backward, the problem is completely symmetric.

To solve the problem, we insert an additional byte immediately before
the final size and after the initial size marking the size boundary.
We choose the byte values |0xFF|, |0xFE|, |0xFD|, and |0xFC| which can
not be confused with valid tag bytes and indicate that the size is
stored using 1, 2, 3, or 4 byte respectively.  Under regular
circumstances, these bytes are simply skipped.  When searching for the
list end (or start) these bytes would correspond to
|TAG(penalty_kind,i)| with $7 \ge \hbox{|i|} \ge 4$ and can not be
confused with valid penalty nodes which use only the info values 0, 1,
and~2. An empty list uses the info value 1 and has neither a size bytes
nor boundary bytes; it consists only of the two tags. 

We are a bit lazy when it comes to the internal representation of a list.
Since we need the representation as a short format byte sequence anyway, 
it consists of the position |p| of the start of the byte sequence 
combined with an integer |s| giving the size of the byte sequence.
If the list is empty, |s| is zero.

@<hint types@>=
typedef struct {@+
Kind k; @+
uint32_t p;@+
uint32_t s;@+
} List;
@

The major drawback of this choice of representation is that it ties
together the reading of the long format and the writing of the short
format; these are no longer independent.  
So starting with the present section, we have to take the short format
representation of a node into account already when we parse the long
format representation.

In the long format, we may start a list node with an
estimate\index{estimate} of the size needed to store the list in the
short format. We do not want to require the exact size because this
would make editing of long format \HINT\ files almost impossible. Of
course this makes it also impossible to derive the exact |s| value of
the internal representation from the long format
representation. Therefore we start by parsing the estimate of the list
size and use it to reserve the necessary number of byte to store the
size.  Then we parse the |content_list|. As a side effect---and this
is an important point---this will write the list content in short
format into the output buffer.  As mentioned above, whenever a node
contains a list, we need to consider this side effect when we give the
parsing rules.  We will see examples for this in
section~\secref{composite}.

The function |hput_list| will be called {\it after} the short format
of the list is written to the output.  Before we pass the internal
representation of the list to the |hput_list|
function, we update |s| and |p|. Further, we pass the position in the stream where the
list size and its boundary mark is supposed to be. 
Before |hput_list| is called, space for the tag, the size, and the boundary mark
is allocated based on the estimate. The function
|hsize_bytes| computes the number of byte required to store the list
size, and the function |hput_list_size| will later write the list
size.  If the estimate turns out to be wrong, the list data can be moved
to make room for a larger or smaller size field.


If the long format does not specify a size estimate, a suitable default must be chosen.
A statistical analysis shows 
%
%statistics about list sizes using my old prototype
%
%name        type size_byte list_count total_size
%hello.hnt  text 1         6          748
%            text 2         2          1967
%            list 1         65         3245
%            list 2         1          352
%web2w.hnt  text 1         1043       121925
%            text 2         1344       859070
%            list 1         19780      725514
%            list 2         487        199243
%ctex.hnt   text 1         9121       4241128
%            text 2         12329      7872687
%            text 3         1          75010
%            list 1         121557     4600743
%            list 2         222        147358
%
that most plain lists need only a single byte to store the size; and even the 
total amount of data contained in these lists exceeds the amount of data stored
in longer lists by a factor of about 3. Hence if we do not have an estimate, 
we reserve only a single byte to store the size of a list.
The statistics looks different for lists stored as a text: The number of texts
that require two byte for the size is slightly larger than the number of texts that 
need only one byte, and the total amount of data stored in these texts is larger
by a factor of 2 to 7 than the total amount of data found in all other texts.
Hence as a default, we reserve two byte to store the size for texts.


\subsection{Plain Lists}\label{plainlists}
Plain list nodes start and end with a tag of kind |list_kind|.

Not uncommon are empty\index{empty list} lists; these are the only lists that can be
stored using $|info|=1$; such a list has zero bytes of size
information, and no boundary bytes either; implicitly its size is zero. 
The |info| value 0 is not used since we do not use predefined plain lists.

Writing the long format uses the fact that the function
|hget_content_node|, as implemented in the \.{stretch} program, will
output the node in the long format.

\readcode
@s list symbol
@s content_list symbol
@s estimate symbol
@s position symbol

@<symbols@>=
%type <l>  list
%type <u> position content_list
@

@<parsing rules@>=
position: {$$=hpos-hstart;};
content_list: @+ position @+
            | content_list content_node;
estimate: {hpos+=2; } @+
        | UNSIGNED  {hpos+=hsize_bytes($1)+1; } ;
list: start estimate content_list END @/
          {@+$$.k=list_kind;@+ $$.p=$3; @+ $$.s=(hpos-hstart)-$3;
           hput_tags($1,hput_list($1+1, &($$)));@+};
@

\writecode
@<write functions@>=
void hwrite_list(List *l)
{ uint32_t h=hpos-hstart, e=hend-hstart; /* save |hpos| and |hend| */
  hpos=l->p+hstart;@+ hend=hpos+l->s;
  if (l->k==list_kind ) @<write a list@>@;
  else if (l->k==text_kind)  @<write a text@>@;
  else QUIT("List expected got %s", content_name[l->k]);
  hpos=hstart+h;@+  hend=hstart+e; /* restore  |hpos| and |hend| */
}
@

@<write a list@>=
{@+if (l->s==0) hwritef(" <>");@/
   else@/
   {@+DBG(DBGNODE,"Write list at 0x%x size=%u\n", l->p, l->s); 
    @+hwrite_start();@+
     if (section_no==2) hwrite_label();
     if (l->s>0xFF) hwritef("%d",l->s); 
     while(hpos<hend)
       hget_content_node();
     hwrite_end();
   }
}
@
\getcode
@<shared get functions@>=
void hget_size_boundary(Info info)
{ uint32_t n;
  if (info<2) return;
  n=HGET8;
  if (n-1!=0x100-info) QUIT(@["Size boundary byte 0x%x with info value %d at " SIZE_F@],
                            n, info,hpos-hstart-1);
}

uint32_t hget_list_size(Info info)
{ uint32_t n=0;  
  if (info==1) return 0;
  else if (info==2) n=HGET8;
  else if (info==3) HGET16(n);
  else if (info==4) HGET24(n);
  else if (info==5) HGET32(n);
  else QUIT("List info %d must be 1, 2, 3, 4, or 5",info);
  return n;
} 

void hget_list(List *l)
{@+if (KIND(*hpos)!=list_kind && @/
        KIND(*hpos)!=text_kind  &&@| KIND(*hpos)!=param_kind) @/
    QUIT("List expected at 0x%x", (uint32_t)(hpos-hstart)); 
  else
  {
    @<read the start byte |a|@>@;
    l->k=KIND(a);
    HGET_LIST(INFO(a),*l);
    @<read and check the end byte |z|@>@;
    DBG(DBGNODE,"Get list at 0x%x size=%u\n", l->p, l->s);
  }
}
@

@<shared get macros@>=
#define @[HGET_LIST(I,L)@] \
    (L).s=hget_list_size(I); hget_size_boundary(I);\
    (L).p=hpos-hstart; \
    hpos=hpos+(L).s; hget_size_boundary(I);\
    { uint32_t s=hget_list_size(I); \
      if (s!=(L).s) \
      QUIT(@["List sizes at 0x%x and " SIZE_F " do not match 0x%x != 0x%x"@],node_pos+1,hpos-hstart-I-1,(L).s,s);}
@

\putcode

@<put functions@>=
uint8_t hsize_bytes(uint32_t n)
{ @+if (n==0)  return 0;
  else if (n<0x100)  return 1;
  else if (n<0x10000)  return 2;
  else if (n<0x1000000)  return 3;
  else return 4;
}

void hput_list_size(uint32_t n, int i)
{ @+if (i==0) ;
  else if (i==1) HPUT8(n);
  else if (i==2) HPUT16(n);
  else if (i==3) HPUT24(n);
  else  HPUT32(n);
}

uint8_t hput_list(uint32_t start_pos, List *l)
{ @+if (l->s==0)
  { hpos=hstart+start_pos; return TAG(l->k,1);@+}
  else@/
  { uint32_t list_end=hpos-hstart;
    int i=l->p -start_pos-1; /* number of byte allocated for size */
    int j=hsize_bytes(l->s); /* number of byte needed for size */
    DBG(DBGNODE,"Put list at 0x%x size=%u\n", l->p, l->s);
    if (i>j && l->s> 0x100) j=i; /* avoid moving large lists */
    if (i!=j)@/
    { int d= j-i;
      DBG(DBGNODE,"Moving %u byte by %d\n", l->s,d);
      if (d>0) HPUTX(d);
      memmove(hstart+l->p+d,hstart+l->p,l->s);
      @<adjust label positions after moving a list@>@;
      l->p=l->p+d;@+
      list_end=list_end+d;
    }
    hpos=hstart+start_pos; @+  hput_list_size(l->s,j);@+ HPUT8(0x100-j);
    hpos=hstart+list_end;@+  HPUT8(0x100-j);@+ hput_list_size(l->s,j);
    return TAG(l->k,j+1);
  }
}

@



\subsection{Texts}\label{text}
A Text\index{text} is a list of nodes with a representation optimized
for character nodes.  In the long format, a sequence of characters
like ``{\tt Hello}'' is written ``\.{<glyph 'H'} \.{*0>} \.{<glyph} \.{'e'}
\.{*0>} \.{<glyph 'l' *0>} \.{<glyph 'l' *0>} \.{<glyph 'o' *0>}'', and
even in the short format it requires 4 byte per character! As a text,
the same sequence is written ``{\tt\,"Hello"\,}'' in the long format and the
short format requires usually just 1 byte per character.  Indeed
except the bytes with values from |0x00| to |0x20|, which are
considered control\index{control code} codes, all bytes and all
\hbox{UTF-8}\index{UTF8} multibyte sequences are simply considered
character\index{character code} codes. They are equivalent to a glyph
node in the ``current font''. The current\index{current font}
font\index{font} is font number 0 at the beginning of a text and it
can be changed using the control codes. We introduce the concept of a
``current font'' because we do not expect the font to change too
often, and it allows for a more compact representation if we do not
store the font with every character code. It has an important
disadvantage though: storing only font changes prevents us from
parsing a text backwards; we always have to start at the beginning of
the text, where the font is known to be font number~0.

Defining a second format for encoding lists of nodes adds another
difficulty to the problem we had discussed at the beginning of
section~\secref{lists}. When we try to recover from an error and start
reading a content stream at an arbitrary position, the first thing we
need to find out is whether at this position we have the tag byte of
an ordinary node or whether we have a position inside a text.

Inside a text, character nodes start with a byte in the range
|0x21|--|0xF7|. This is a wide range and it overlaps considerably with
the range of valid tag bytes. It is however possible to choose the
kind-values in such a way that the control codes do not overlap with
the valid tag bytes that start a node. For this reason, the values
|text_kind==0|, |list_kind==1|, |param_kind==2|, |xdimen_kind==3|, and
|adjust_kind==4| were chosen on page~\pageref{kinddef}.  Texts, lists,
parameter lists, and extended dimensions occur only {\it inside} of
content nodes, but are not content nodes in their own right; so the
values |0x00| to |0x1F| are not used as tag bytes of content
nodes. The value |0x20| would, as a tag byte, indicate an adjust node
(|adjust_kind==4|) with info value zero. Because there are no
predefined adjustments, |0x20| is not used as a tag byte either.
(An alternative choice would be to use the kind value 4 for paragraph
nodes because there are no predefined paragraphs.)

The largest byte that starts an UTF8 code is |0xF7|; hence, there are
eight possible control codes, from |0xF8| to |0xFF|, available.  The
first three values |0xF8|, |0xF9|, and |0xFA| are actually used for
penalty nodes with info values, 0, 1, and 2. The last four |0xFC|,
|0xFD|, |0xFE|, and |0xFF| are used as boundary marks for the text
size and therefore we use only |0xFB| as control code.

In the long format, we do not provide a syntax for specifying a size
estimate\index{estimate} as we did for plain lists, because we expect
text to be quite short. We allocate two byte for the size and hope
that this will prove to be sufficient most of the time.  Further, we
will disallow the use of non-printable ASCII codes, because these
are---by definition---not very readable, and we will give special
meaning to some of the printable ASCII codes because we will need a
notation for the beginning and ending of a text, for nodes inside a
text, and the control codes.

Here are the details:
\itemize

\item In the long format, a text starts and ends with a
double\index{double quote} quote character ``{\tt "}''.  In the short
format, texts are encoded similar to lists using the kind-value
|text_kind|.

\item Arbitrary nodes can be embedded inside a text. In the long
format, they are enclosed in pointed brackets \.{<} \dots \.{>} as
usual. In the short format, an arbitrary node can follow the control
code $|txt_node|=|0x1E|$. Because text may occur in nodes, the scanner
needs to be able to parse texts nested inside nodes nested inside
nodes nested inside texts \dots\ To accomplish this, we use the
``stack'' option of \.{flex} and include the  pushing and popping of the
stack in the macros |SCAN_START| and |SCAN_END|.

\item The space\index{space character} character ``\.{\ }'' with ASCII
value |0x20| stands in both formats for the font specific interword
glue node (control code |txt_glue|).

\item The hyphen\index{hyphen character} character ``\.{-}'' in the
long format and the control code $|txt_hyphen|=|0x1F|$ in the short
format stand for the font specific discretionary hyphenation node.

\item In the long format, the backslash\index{backslash} character
``\.{\\}'' is used as an escape character.  It is used to introduce
notations for control codes, as described below, and to access the
character codes of those ASCII characters that otherwise carry a
special meaning.  For example ``{\tt \BS "}'' denotes the character code
of the double quote character ``{\tt "}''; and similarly ``\.{\\\\}'',
``\.{\\<}'', ``\.{\\>}'', ``\.{\\\ }'', and ``\.{\\-}'' denote the
character codes of ``\.{\\}'', ``\.{<}'', ``\.{>}'', ``\.{\ }'', and
``\.{-}'' respectively.


\item In the long format, a TAB-character (ASCII code
|0x09|)\index{tab character} is silently converted to a
space\index{space character} character (ASCII code |0x20|); 
a NL-character\index{newline character} (ASCII code |0x0A|), together
with surrounding spaces, TAB-characters, 
and CR-characters\index{carriage return character} (ASCII code |0x0D|), 
is silently converted to a single space character.  All other ASCII
characters in the range |0x00| to |0x1F| are not allowed inside a
text. This rule avoids the problems arising from ``invisible''
characters embedded in a text and it allows to break texts into lines,
even with indentation\index{indentation}, at word boundaries.

To allow breaking a text into lines without inserting spaces, a
NL-character together with surrounding spaces, TAB-characters, and
CR-characters is completely ignored if the whole group of spaces,
TAB-characters, CR-characters, and the NL-character is preceded by a
backslash character.

For example, the text ``\.{"There\ is\ no\ more\ gas\ in\ the\
tank."}''\hfil\break can be written as \medskip
 
\qquad\vbox{\hsize=0.5\hsize\noindent
\.{"There\ is\ }\hfil\break
\.{\hbox to 2em {$\rightarrow$\hfill}no more g\\\ \ }\hfil\break
\.{\hbox to 2em {$\rightarrow$\hfill}as in the tank."}
}\hss

To break long lines when writing a long format file, we use the
variable |txt_length| to keep track of the approximate length of the
current line.

\item The control codes $|txt_font|=|0x00|$, |0x01|, |0x02|, \dots,
and |0x07| are used to change the current font to font 
number 0, 1, 2, \dots, and 7. In the long format these control 
codes are written \.{\\0}, \.{\\1}, \.{\\2}, \dots, and \.{\\7}.

\item The control code $|txt_global|=|0x08|$ is followed by a second
parameter byte. If the value of the parameter byte is $n$, it will set
the current font to font number $n$.  In the long format, the two byte
sequence is written ``\.{\\F}$n$\.{\\}'' where $n$ is the decimal
representation of the font number.


\item The control codes |0x09|, |0x0A|, |0x0B|, |0x0C|, |0x0E|,
|0x0E|, |0x0F|, and |0x10| are also followed by a second parameter
byte. They are used to reference the global definitions of
penalty\index{penalty}, kern\index{kern}, ligature\index{ligature},
disc\index{discretionary hyphen}, glue\index{glue}, language\index{language},
rule\index{rule}, and image\index{image} nodes.  The parameter byte
contains the reference number.  For example, the byte sequence |0x09|
|0x03| is equivalent to the node \.{<penalty *3>}.
In the long format these two-byte sequences are written,
``\.{\\P}$n$\.{\\}'' (penalty),
``\.{\\K}$n$\.{\\}'' (kern),
``\.{\\L}$n$\.{\\}'' (ligature),
``\.{\\D}$n$\.{\\}'' (disc),
``\.{\\G}$n$\.{\\}'' (glue),
``\.{\\S}$n$\.{\\}'' (speak or German ``Sprache''),
``\.{\\R}$n$\.{\\}'' (rule), and
``\.{\\I}$n$\.{\\}'' (image), where $n$ is the decimal representation 
                     of the parameter value.


\item The control codes from $|txt_local|=|0x11|$ to |0x1C| are used
to reference one of the 12 font specific parameters\index{font
parameter}. In the long format they are written ``\.{\\a}'',
``\.{\\b}'', ``\.{\\c}'', \dots, ``\.{\\j}'', ``\.{\\k}'',``\.{\\l}''.


\item The control code $|txt_cc|=|0x1D|$ is used as a prefix for an
arbitrary character code represented as an UTF-8 multibyte sequence.
Its main purpose is providing a method for including character codes
less or equal to |0x20| which otherwise would be considered control
codes.  In the long format, the byte sequence is written ``\.{\\C}$n$\.{\\}'' 
where $n$ is the decimal representation of the character code.


\item The control code $|txt_node|=|0x1E|$ is used as a prefix for an
arbitrary node in short format.  In the long format, it is written
``\.{<}'' and is followed by the node content in long format
terminated by ``\.{>}''.

\item The control code $|txt_hyphen|=|0x1F|$ is used to access the
font specific discretionary hyphen\index{hyphen}.  In the long format
it is simply written as ``\.{-}''.

\item The control code $|txt_glue|=|0x20|$ is the space character, it
is used to access the font specific interword\index{interword glue}
glue. In the long format, we use the space character\index{space
character} ``\.{\ }'' as well.

\item The control code $|txt_ignore|=|0xFB|$ is ignored, its position
can be used in a link to specify a position between two characters. In
the long format it is written as ``\.{\\@@}''.

\enditemize
For the control codes, we define an enumeration type 
and for references, a reference type.
@<hint types@>=
typedef enum { @+txt_font=0x00, txt_global=0x08, txt_local=0x11, 
               txt_cc=0x1D, txt_node=0x1E, txt_hyphen=0x1F,
               txt_glue=0x20, txt_ignore=0xFB} Txt;
@

\readcode
@s TXT symbol
@s TXT_START symbol
@s TXT_END symbol
@s TXT_FONT symbol
@s TXT_LOCAL symbol
@s TXT_GLOBAL symbol
@s TXT_FONT_GLUE symbol
@s TXT_FONT_HYPHEN symbol
@s TXT_CC symbol
@s TXT_IGNORE symbol
@s text symbol
@<scanning definitions@>=
%x TXT
@

@<symbols@>=
%token TXT_START TXT_END TXT_IGNORE
%token TXT_FONT_GLUE TXT_FONT_HYPHEN 
%token <u> TXT_FONT TXT_LOCAL
%token <rf> TXT_GLOBAL
%token <u> TXT_CC 
%type <u> text
@

@<scanning rules@>=
::@=\"@>            :< SCAN_TXT_START; return TXT_START; >:

<TXT>{ 
::@=\"@>            :< SCAN_TXT_END; return TXT_END; >:

::@="<"@>           :< SCAN_START; return START; >:
::@=">"@>           :< QUIT("> not allowed in text mode");>:

::@=\\\\@>          :< yylval.u='\\'; return TXT_CC; >:
::@=\\\"@>          :< yylval.u='"'; return TXT_CC; >:
::@=\\"<"@>         :< yylval.u='<'; return TXT_CC; >:
::@=\\">"@>         :< yylval.u='>'; return TXT_CC; >:
::@=\\" "@>         :< yylval.u=' '; return TXT_CC; >:
::@=\\"-"@>         :< yylval.u='-'; return TXT_CC; >:
::@=\\"@@"@>        :< return TXT_IGNORE; >:

::@=[ \t\r]*(\n[ \t\r]*)+@>  :< return TXT_FONT_GLUE; >:
::@=\\[ \t\r]*\n[ \t\r]*@>   :< ; >:

::@=\\[0-7]@>       :< yylval.u=yytext[1]-'0'; return TXT_FONT; >:

::@=\\F[0-9]+\\@>   :< SCAN_REF(font_kind); return TXT_GLOBAL; >:
::@=\\P[0-9]+\\@>   :< SCAN_REF(penalty_kind); return TXT_GLOBAL; >:
::@=\\K[0-9]+\\@>   :< SCAN_REF(kern_kind); return TXT_GLOBAL; >:
::@=\\L[0-9]+\\@>   :< SCAN_REF(ligature_kind); return TXT_GLOBAL; >:
::@=\\D[0-9]+\\@>   :< SCAN_REF(disc_kind); return TXT_GLOBAL; >:
::@=\\G[0-9]+\\@>   :< SCAN_REF(glue_kind); return TXT_GLOBAL; >:
::@=\\S[0-9]+\\@>   :< SCAN_REF(language_kind); return TXT_GLOBAL; >: 
::@=\\R[0-9]+\\@>   :< SCAN_REF(rule_kind); return TXT_GLOBAL; >:
::@=\\I[0-9]+\\@>   :< SCAN_REF(image_kind); return TXT_GLOBAL; >:


::@=\\C[0-9]+\\@>   :< SCAN_UDEC(yytext+2); return TXT_CC; >:

::@=\\[a-l]@>       :< yylval.u=yytext[1]-'a'; return TXT_LOCAL; >:
::@=" "@>           :< return TXT_FONT_GLUE; >:
::@="-"@>           :< return TXT_FONT_HYPHEN; >:

::@={UTF8_1}@>            :< SCAN_UTF8_1(yytext); return TXT_CC; >:
::@={UTF8_2}@>            :< SCAN_UTF8_2(yytext); return TXT_CC; >:
::@={UTF8_3}@>            :< SCAN_UTF8_3(yytext); return TXT_CC; >:
::@={UTF8_4}@>            :< SCAN_UTF8_4(yytext); return TXT_CC; >:
}
@

@<scanning macros@>=
#define @[SCAN_REF(K)@] @[yylval.rf.k=K;@+ yylval.rf.n=atoi(yytext+2)@;@]
static int scan_level=0;
#define SCAN_START          @[yy_push_state(INITIAL);@+if (1==scan_level++) hpos0=hpos;@]
#define SCAN_END            @[if (scan_level--) yy_pop_state(); @/else QUIT("Too many '>' in line %d",yylineno)@]
#define SCAN_TXT_START      @[BEGIN(TXT)@;@]
#define SCAN_TXT_END        @[BEGIN(INITIAL)@;@]
@
@s txt symbol

@<parsing rules@>=
list: TXT_START position @|
          {hpos+=4;  /* start byte, two size byte, and boundary byte */ }
           text TXT_END@|
          { $$.k=text_kind;$$.p=$4; $$.s=(hpos-hstart)-$4;
            hput_tags($2,hput_list($2+1, &($$)));@+};
text: position @+| text txt;

txt: TXT_CC { hput_txt_cc($1); }
   | TXT_FONT {  REF(font_kind,$1); hput_txt_font($1); }
   | TXT_GLOBAL { REF($1.k,$1.n); hput_txt_global(&($1)); }
   | TXT_LOCAL  { RNG("Font parameter",$1,0,11); hput_txt_local($1); }
   | TXT_FONT_GLUE { HPUTX(1); HPUT8(txt_glue); }
   | TXT_FONT_HYPHEN {  HPUTX(1);HPUT8(txt_hyphen); }
   | TXT_IGNORE {  HPUTX(1);HPUT8(txt_ignore); }
   | { HPUTX(1); HPUT8(txt_node);} content_node;
@

The following function keeps track of the position in the current line.
It the line gets too long it will break the text at the next space
character. If no suitable space character comes along,
the line will be broken after any regular character.

\writecode
@<write a text@>=
{@+if (l->s==0) hwritef(" \"\"");
   else@/
   { int pos=nesting+20; /* estimate */
     hwritef(" \"");
    while(hpos<hend)@/
    { int i=hget_txt();
      if (i<0)
      { if (pos++<70) hwritec(' '); 
        else hwrite_nesting(), pos=nesting;
      } 
      else if (i==1 && pos>=100)@/
      { hwritec('\\'); @+hwrite_nesting(); @+pos=nesting; @+}
      else
        pos+=i;
    }
    hwritec('"');
   }
}
@


The function returns the number of characters written 
because this information is needed in |hget_txt| below.

@<write functions@>=
int hwrite_txt_cc(uint32_t c)
{@+ if (c<0x20)
    return hwritef("\\C%d\\",c);
  else@+
  switch(c)
  { case '\\': return hwritef("\\\\");
    case '"': return hwritef("\\\"");
    case '<': return hwritef("\\<");
    case '>': return hwritef("\\>");
    case ' ': return hwritef("\\ ");
    case '-': return hwritef("\\-");
    default: return option_utf8?hwrite_utf8(c):hwritef("\\C%d\\",c);
  }
}
@

\getcode
@<get macros@>=
#define @[HGET_GREF(K,S)@] {uint8_t n=HGET8;@+ REF(K,n); @+ return hwritef("\\" S "%d\\",n);@+} 

@

The function |hget_txt| reads a text element and writes it immediately.
To enable the insertion of line breaks when writing a text, we need to keep track
of the number of characters in the current line. For this purpose
the function |hget_txt| returns the number of characters written.
It returns $-1$ if a space character needs to be written
providing a good opportunity for a break.

@<get functions@>=
int hget_txt(void)
{@+ if (*hpos>=0x80 && *hpos<=0xF7)
  { if (option_utf8) 
     return hwrite_utf8(hget_utf8());
    else
     return hwritef("\\C%d\\",hget_utf8());
  }
  else @/
  { uint8_t a;
    a=HGET8; 
    switch (a)
    { case txt_font+0: return hwritef("\\0");
      case txt_font+1: return hwritef("\\1");
      case txt_font+2: return hwritef("\\2");
      case txt_font+3: return hwritef("\\3");
      case txt_font+4: return hwritef("\\4");
      case txt_font+5: return hwritef("\\5");
      case txt_font+6: return hwritef("\\6");
      case txt_font+7: return hwritef("\\7");
      case txt_global+0: HGET_GREF(font_kind,"F");
      case txt_global+1: HGET_GREF(penalty_kind,"P");
      case txt_global+2: HGET_GREF(kern_kind,"K");
      case txt_global+3: HGET_GREF(ligature_kind,"L");
      case txt_global+4: HGET_GREF(disc_kind,"D");
      case txt_global+5: HGET_GREF(glue_kind,"G");
      case txt_global+6: HGET_GREF(language_kind,"S");
      case txt_global+7: HGET_GREF(rule_kind,"R");
      case txt_global+8: HGET_GREF(image_kind,"I");
      case txt_local+0: return hwritef("\\a");
      case txt_local+1: return hwritef("\\b");
      case txt_local+2: return hwritef("\\c");
      case txt_local+3: return hwritef("\\d");
      case txt_local+4: return hwritef("\\e");
      case txt_local+5: return hwritef("\\f");
      case txt_local+6: return hwritef("\\g");
      case txt_local+7: return hwritef("\\h");
      case txt_local+8: return hwritef("\\i");
      case txt_local+9: return hwritef("\\j");
      case txt_local+10: return hwritef("\\k");
      case txt_local+11: return hwritef("\\l");
      case txt_cc: return hwrite_txt_cc(hget_utf8()); 
      case txt_node: { int i;
                        @<read the start byte |a|@>@;
                        i=hwritef("<");
                        i+= hwritef("%s",content_name[KIND(a)]);@+ hget_content(a);
                        @<read and check the end byte |z|@>@;
                        hwritec('>');@+ return i+10; /* just an estimate */
                     }
      case txt_hyphen: hwritec('-'); @+return 1;
      case txt_glue: return -1;
      case '<': return hwritef("\\<");
      case '>': return hwritef("\\>");
      case '"': return hwritef("\\\"");
      case '-': return hwritef("\\-");
      case txt_ignore: return hwritef("\\@@");
      default: hwritec(a); @+return 1;
    }
  }
}

@


\putcode
@<put functions@>=

void hput_txt_cc(uint32_t c)
{ @+ if (c<=0x20) {  HPUTX(2); HPUT8(txt_cc);@+ HPUT8(c); @+ }
  else  hput_utf8(c);
}

void hput_txt_font(uint8_t f)
{@+ if (f<8)  HPUTX(1),HPUT8(txt_font+f);
  else QUIT("Use \\F%d\\ instead of \\%d for font %d in a text",f,f,f); 
}

void hput_txt_global(Ref *d)
{ @+ HPUTX(2);
  switch (d->k)
  { case font_kind:   HPUT8(txt_global+0);@+ break;
    case penalty_kind:   HPUT8(txt_global+1);@+ break;
    case kern_kind:   HPUT8(txt_global+2);@+ break;
    case ligature_kind:   HPUT8(txt_global+3);@+ break;
    case disc_kind:   HPUT8(txt_global+4);@+ break;
    case glue_kind:   HPUT8(txt_global+5);@+ break;
    case language_kind:   HPUT8(txt_global+6);@+ break;
    case rule_kind:   HPUT8(txt_global+7);@+ break;
    case image_kind:   HPUT8(txt_global+8);@+ break;
    default: QUIT("Kind %s not allowed as a global reference in a text",NAME(d->k));
  }
  HPUT8(d->n);
}

void hput_txt_local(uint8_t n)
{ HPUTX(1);
  HPUT8(txt_local+n);
}
@


@<hint types@>=
typedef struct { @+Kind k; @+int n; @+} Ref;
@


\section{Composite Nodes}\hascode
\label{composite}
The nodes that we consider in this section can contain one or more list nodes.
When we implement the parsing\index{parsing} routines
for composite nodes in the long format, we have to take into account 
that parsing such a list node will already write the list node
to the output. So we split the parsing of composite nodes into several parts
and store the parts immediately after parsing them. On the parse stack, we will only
keep track of the info value.
This new strategy is not as transparent as  our previous strategy used for 
simple nodes where we had a clean separation of reading and writing:
reading would store the internal representation of a node and writing the internal
representation to output would start only after reading is completed.
The new strategy, however, makes it easier to reuse 
the grammar\index{grammar} rules for the component nodes.

Another rule applies to composite nodes: in the short format, the subnodes
will come at the end of the node, and especially a list node that contains content nodes
comes last. This helps when traversing the content section as we will see in
appendix~\secref{fastforward}.

\subsection{Boxes}\label{boxnodes}
The central structuring elements of \TeX\ are boxes\index{box}.
Boxes have a height |h|, a depth |d|, and a width |w|. 
The shift amount |a| shifts the contents of the box, 
the glue ratio\index{glue ratio} |r| is a factor applied to the glue inside the box,
the glue order |o| is its order of stretchability\index{stretchability},
and the glue sign |s| is $-1$ for shrinking\index{shrinkability},
0 for rigid, and $+1$ for stretching.
Most importantly, a box contains a list |l| of content nodes inside the box.


@<hint types@>=
typedef struct @/{@+ Dimen h,d,w,a;@+ float32_t r;@+ int8_t s,o; @+List l; @+} Box;
@

There are two types of boxes: horizontal\index{horizontal box} boxes 
and vertical\index{vertical box} boxes.
The difference between the two is simple: 
a horizontal box aligns the reference\index{reference point}
points of its content nodes horizontally, and a positive shift amount\index{shift amount} |a| 
shifts the box down; 
a vertical box aligns\index{alignment} the reference\index{reference point} 
points vertically, and a positive shift amount |a| shifts the box right.

Not all box parameters are used frequently. In the short format, we use the info bits
to indicated which of the parameters are used.
Where as the width of a horizontal box is most of the time (80\%) nonzero, 
other parameters are most of the time zero, 
like the shift amount (99\%) or the glue settings (99.8\%). 
The depth is zero in about 77\%, the height in about 53\%, 
and both together are zero in about 47\%. The results for vertical boxes, 
which constitute about 20\% of all boxes, are similar, 
except that the depth is zero in about 89\%, 
but the height and width are almost never zero.
For this reason we use bit |b001| to indicate a nonzero depth,
bit |b010|  for a nonzero shift amount, and |b100| for nonzero glue settings.
Glue sign and glue order can be packed as two nibbles in a single byte.
% A different use of the info bits for vertical and horizontal boxes is possible, 
% but does not warrant the added complexity.



\goodbreak
\readcode
@s HBOX symbol
@s VBOX symbol
@s box symbol
@s boxparams symbol
@s hbox_node symbol
@s vbox_node symbol
@s box_dimen symbol
@s box_shift symbol
@s box_glue_set symbol
@<symbols@>=
%token HBOX     "hbox"
%token VBOX     "vbox"
%token SHIFTED  "shifted"
%type <info> box box_dimen box_shift box_glue_set

@
@<scanning rules@>=
::@=hbox@>       :< return HBOX; >:
::@=vbox@>       :< return VBOX; >:
::@=shifted@>    :< return SHIFTED; >:
@

@<parsing rules@>=@/

box_dimen: dimension dimension dimension @/
           {$$= hput_box_dimen($1,$2,$3); };
box_shift: {$$=b000;} @+ 
   | SHIFTED dimension {$$=hput_box_shift($2);};

box_glue_set:  {$$=b000;}
        | PLUS stretch { $$=hput_box_glue_set(+1,$2.f,$2.o); }
        | MINUS stretch  { $$=hput_box_glue_set(-1,$2.f,$2.o); }; 


box: box_dimen box_shift box_glue_set list  {$$=$1|$2|$3; };

hbox_node: start HBOX box END { hput_tags($1, TAG(hbox_kind,$3)); };
vbox_node: start VBOX box END { hput_tags($1, TAG(vbox_kind,$3)); };
content_node: hbox_node @+ | vbox_node;
@

\writecode
@<write functions@>=
void hwrite_box(Box *b)
{ hwrite_dimension(b->h); 
  hwrite_dimension(b->d); 
  hwrite_dimension(b->w);
  if (b->a!=0)  { hwritef(" shifted"); @+hwrite_dimension(b->a); @+}
  if (b->r!=0.0 && b->s!=0  )@/ 
  { @+if (b->s>0) @+hwritef(" plus"); @+else @+hwritef(" minus");
    @+hwrite_float64(b->r); @+hwrite_order(b->o);
  }
  hwrite_list(&(b->l));
}
@

\getcode
@<cases to get content@>=
@t\1\kern1em@>
case TAG(hbox_kind,b000): {Box b; @+HGET_BOX(b000,b); @+hwrite_box(&b);@+} @+ break;
case TAG(hbox_kind,b001): {Box b; @+HGET_BOX(b001,b); @+hwrite_box(&b);@+} @+ break;
case TAG(hbox_kind,b010): {Box b; @+HGET_BOX(b010,b); @+hwrite_box(&b);@+} @+ break;
case TAG(hbox_kind,b011): {Box b; @+HGET_BOX(b011,b); @+hwrite_box(&b);@+} @+ break;
case TAG(hbox_kind,b100): {Box b; @+HGET_BOX(b100,b); @+hwrite_box(&b);@+} @+ break;
case TAG(hbox_kind,b101): {Box b; @+HGET_BOX(b101,b); @+hwrite_box(&b);@+} @+ break;
case TAG(hbox_kind,b110): {Box b; @+HGET_BOX(b110,b); @+hwrite_box(&b);@+} @+ break;
case TAG(hbox_kind,b111): {Box b; @+HGET_BOX(b111,b); @+hwrite_box(&b);@+} @+ break;
case TAG(vbox_kind,b000): {Box b; @+HGET_BOX(b000,b); @+hwrite_box(&b);@+} @+ break;
case TAG(vbox_kind,b001): {Box b; @+HGET_BOX(b001,b); @+hwrite_box(&b);@+} @+ break;
case TAG(vbox_kind,b010): {Box b; @+HGET_BOX(b010,b); @+hwrite_box(&b);@+} @+ break;
case TAG(vbox_kind,b011): {Box b; @+HGET_BOX(b011,b); @+hwrite_box(&b);@+} @+ break;
case TAG(vbox_kind,b100): {Box b; @+HGET_BOX(b100,b); @+hwrite_box(&b);@+} @+ break;
case TAG(vbox_kind,b101): {Box b; @+HGET_BOX(b101,b); @+hwrite_box(&b);@+} @+ break;
case TAG(vbox_kind,b110): {Box b; @+HGET_BOX(b110,b); @+hwrite_box(&b);@+} @+ break;
case TAG(vbox_kind,b111): {Box b; @+HGET_BOX(b111,b); @+hwrite_box(&b);@+} @+ break;
@

@<get macros@>=
#define @[HGET_BOX(I,B)@] \
HGET32(B.h);\
if ((I)&b001) HGET32(B.d); @+ else B.d=0;\ 
HGET32(B.w);\
if ((I)&b010) HGET32(B.a); @+else B.a=0;\ 
if ((I)&b100) @/{ B.r=hget_float32();@+ B.s=HGET8; @+ B.o=B.s&0xF; @+B.s=B.s>>4;@+ }\
else {  B.r=0.0;@+ B.o=B.s=0;@+ }\
hget_list(&(B.l));
@

@<get functions@>=
void hget_hbox_node(void)
{ Box b;
  @<read the start byte |a|@>@;
   if (KIND(a)!=hbox_kind) QUIT("Hbox expected at 0x%x got %s",node_pos,NAME(a));
   HGET_BOX(INFO(a),b);@/
   @<read and check the end byte |z|@>@;
   hwrite_start();@+
   hwritef("hbox");@+
   hwrite_box(&b);@+
   hwrite_end();
}


void hget_vbox_node(void)
{ Box b;
  @<read the start byte |a|@>@;
  if (KIND(a)!=vbox_kind) QUIT("Vbox expected at 0x%x got %s",node_pos,NAME(a));
  HGET_BOX(INFO(a),b);@/
  @<read and check the end byte |z|@>@;
  hwrite_start();@+
  hwritef("vbox");@+
  hwrite_box(&b);@+
  hwrite_end();
}
@

\putcode
@<put functions@>=

Info hput_box_dimen(Dimen h, Dimen d, Dimen w)
{ Info i; 
 @+HPUT32(h);
  if (d!=0) { HPUT32(d); @+i=b001;@+ } @+else@+ i=b000; 
  HPUT32(w);
  return i;
}
Info hput_box_shift(Dimen a)
{ @+if (a!=0) { @+ HPUT32(a);  @+return @+ b010;@+} @+ else  @+return b000;
}

Info hput_box_glue_set(int8_t s, float32_t r, Order o)
{ @+if (r!=0.0 && s!=0 ) 
  { hput_float32(r);@+
    HPUT8((s<<4)|o);@+
    return b100;@+
  }
  else return b000;
}

@

\subsection{Extended Boxes}
Hi\TeX\ produces two kinds of extended\index{extended box} horizontal
boxes, |hpack_kind| and |hset_kind|, and the same for vertical boxes
using |vpack_kind| and |vset_kind|.  Let us focus on horizontal boxes;
the handling of vertical boxes is completely parallel.

The \\{hpack} procedure of Hi\TeX\ produces an extended box of |hset_kind|
either if it is given an extended\index{extended dimension} dimension as its width 
or if it discovers that the width of its content is an extended
dimension.  After the final width of the box has been computed in the
viewer, it just remains to set the glue; a very simple operation
indeed.

If the \\{hpack} procedure of Hi\TeX\ can not determine the natural
dimensions of the box content because it contains
paragraphs\index{paragraph} or other extended boxes, it produces a box
of |hpack_kind|.  Now the viewer needs to traverse the list of content
nodes to determine the natural\index{natural dimension}
dimensions. Even the amount of stretchability\index{stretchability}
and shrinkability\index{shrinkability} has to be determined in the
viewer. For example, the final stretchability of a paragraph with some
stretchability in the baseline\index{baseline skip} skip will depend
on the number of lines which, in turn, depends on \.{hsize}.  It is
not possible to merge these traversals of the box content with the
traversal necessary when displaying the box. The latter needs to
convert glue nodes into positioning instructions which requires a
fixed glue\index{glue ratio} ratio. The computation of the glue ratio,
however, requires a complete traversal of the content.

In the short format of a box node of type |hset_kind|, |vset_kind|,
|hpack_kind|, or |vpack_kind|, the info bit |b100| indicates, if set,
a complete extended dimension, and if unset, a reference to a
predefined extended dimension for the target size; the info bit |b010|
indicates a nonzero shift amount.  For a box of type |hset_kind| or
|vset_kind|, the info bit |b001| indicates, if set, a nonzero depth.
For a box of type |hpack_kind| or |vpack_kind|, the info bit |b001|
indicates, if set, an additional target size, and if unset, an exact
target size.  For a box of type |vpack_kind| also the maximum depth is
given.

\readcode
@s xbox symbol
@s hpack symbol
@s vpack symbol
@s box_goal symbol
@s HPACK symbol
@s HSET symbol
@s VPACK symbol
@s VSET symbol
@s TO symbol
@s ADD symbol
@s box_flex symbol
@s vxbox_node symbol
@s hxbox_node symbol
@s DEPTH symbol

@<symbols@>=
%token HPACK "hpack"
%token HSET  "hset"
%token VPACK "vpack"
%token VSET  "vset"
%token DEPTH "depth"
%token ADD "add"
%token TO "to"
%type <info> xbox box_goal hpack vpack
@

@<scanning rules@>=
::@=hpack@>  :< return HPACK; >:
::@=hset@>  :< return HSET; >:
::@=vpack@>  :< return VPACK; >:
::@=vset@>  :< return VSET; >:
::@=add@>  :< return ADD; >:
::@=to@>  :< return TO; >:
::@=depth@> :< return DEPTH; >:
@

@<parsing rules@>=
box_flex: plus minus { hput_stretch(&($1));hput_stretch(&($2)); };
xbox:  box_dimen box_shift box_flex xdimen_ref list  {$$=$1|$2;} 
     | box_dimen box_shift box_flex  xdimen_node list {$$=$1|$2|b100;};

box_goal: TO xdimen_ref {$$=b000;} 
      | ADD xdimen_ref  {$$=b001;} 
      | TO xdimen_node {$$=b100;} 
      | ADD xdimen_node {$$=b101;}; 

hpack: box_shift box_goal list {$$=$2;};
vpack: box_shift MAX DEPTH dimension {HPUT32($4);} @/ box_goal list {$$= $1|$6;};

vxbox_node: start VSET xbox END   { hput_tags($1, TAG(vset_kind,$3)); }
          | start VPACK vpack END  { hput_tags($1, TAG(vpack_kind,$3)); };


hxbox_node: start HSET xbox END   { hput_tags($1, TAG(hset_kind,$3)); }
          | start HPACK hpack END  { hput_tags($1, TAG(hpack_kind,$3)); };

content_node: vxbox_node | hxbox_node;
 @

\getcode
@<cases to get content@>=
@t\1\kern1em@>
case TAG(hset_kind,b000): HGET_SET(b000); @+ break;
case TAG(hset_kind,b001): HGET_SET(b001); @+ break;
case TAG(hset_kind,b010): HGET_SET(b010); @+ break;
case TAG(hset_kind,b011): HGET_SET(b011); @+ break;
case TAG(hset_kind,b100): HGET_SET(b100); @+ break;
case TAG(hset_kind,b101): HGET_SET(b101); @+ break;
case TAG(hset_kind,b110): HGET_SET(b110); @+ break;
case TAG(hset_kind,b111): HGET_SET(b111); @+ break;@#

case TAG(vset_kind,b000): HGET_SET(b000); @+ break;
case TAG(vset_kind,b001): HGET_SET(b001); @+ break;
case TAG(vset_kind,b010): HGET_SET(b010); @+ break;
case TAG(vset_kind,b011): HGET_SET(b011); @+ break;
case TAG(vset_kind,b100): HGET_SET(b100); @+ break;
case TAG(vset_kind,b101): HGET_SET(b101); @+ break;
case TAG(vset_kind,b110): HGET_SET(b110); @+ break;
case TAG(vset_kind,b111): HGET_SET(b111); @+ break;@#

case TAG(hpack_kind,b000): HGET_PACK(hpack_kind,b000); @+ break;
case TAG(hpack_kind,b001): HGET_PACK(hpack_kind,b001); @+ break;
case TAG(hpack_kind,b010): HGET_PACK(hpack_kind,b010); @+ break;
case TAG(hpack_kind,b011): HGET_PACK(hpack_kind,b011); @+ break;
case TAG(hpack_kind,b100): HGET_PACK(hpack_kind,b100); @+ break;
case TAG(hpack_kind,b101): HGET_PACK(hpack_kind,b101); @+ break;
case TAG(hpack_kind,b110): HGET_PACK(hpack_kind,b110); @+ break;
case TAG(hpack_kind,b111): HGET_PACK(hpack_kind,b111); @+ break;@#

case TAG(vpack_kind,b000): HGET_PACK(vpack_kind,b000); @+ break;
case TAG(vpack_kind,b001): HGET_PACK(vpack_kind,b001); @+ break;
case TAG(vpack_kind,b010): HGET_PACK(vpack_kind,b010); @+ break;
case TAG(vpack_kind,b011): HGET_PACK(vpack_kind,b011); @+ break;
case TAG(vpack_kind,b100): HGET_PACK(vpack_kind,b100); @+ break;
case TAG(vpack_kind,b101): HGET_PACK(vpack_kind,b101); @+ break;
case TAG(vpack_kind,b110): HGET_PACK(vpack_kind,b110); @+ break;
case TAG(vpack_kind,b111): HGET_PACK(vpack_kind,b111); @+ break;
@


@<get macros@>=
#define @[HGET_SET(I)@] @/\
 { Dimen h; @+HGET32(h); @+hwrite_dimension(h);@+}\
 { Dimen d; @+if ((I)&b001) HGET32(d); @+ else d=0;@+hwrite_dimension(d); @+}\ 
 { Dimen w; @+HGET32(w); @+hwrite_dimension(w);@+} \
if ((I)&b010)  { Dimen a; @+HGET32(a); hwritef(" shifted"); @+hwrite_dimension(a);@+}\
 { Stretch p; @+HGET_STRETCH(p);@+hwrite_plus(&p);@+}\
 { Stretch m; @+HGET_STRETCH(m);@+hwrite_minus(&m);@+}\
 if ((I)&b100) {Xdimen x;@+ hget_xdimen_node(&x); @+hwrite_xdimen_node(&x);@+} else HGET_REF(xdimen_kind);\
 { List l; @+hget_list(&l);@+ hwrite_list(&l); @+} 
@#

#define @[HGET_PACK(K,I)@] @/\
 if ((I)&b010)  { Dimen d; @+HGET32(d); hwritef(" shifted");  @+hwrite_dimension(d);  @+ }\
 if (K==vpack_kind) { Dimen d; @+HGET32(d); hwritef(" max depth");@+hwrite_dimension(d);  @+ }\
 if ((I)&b001) hwritef(" add");@+ else hwritef(" to");\
 if ((I)&b100) {Xdimen x;@+ hget_xdimen_node(&x);@+hwrite_xdimen_node(&x);@+}\
 else @+HGET_REF(xdimen_kind);\
 { List l; @+hget_list(&l);@+ hwrite_list(&l); @+} 
@


\subsection{Leaders}\label{leaders}
Leaders\index{leaders} are a special type of glue that is best explained by a few
examples.  
Where as ordinary glue fills its designated space with \hfil\ whiteness,\break 
leaders fill their designated space with either a rule \xleaders\hrule\hfil\ or\break 
some sort of repeated\leaders\hbox to 15pt{$\hss.\hss$}\hfil content.\break 
In multiple leaders, the dots\leaders\hbox to 15pt{$\hss.\hss$}\hfil are usually aligned\index{alignment} across lines,\break 
as in the last\leaders\hbox to 15pt{$\hss.\hss$}\hfil three lines.\break
Unless you specify centered\index{centered}\cleaders\hbox to 15pt{$\hss.\hss$}\hfil leaders\break 
or you specify expanded\index{expanded}\xleaders\hbox to 15pt{$\hss.\hss$}\hfil leaders.\break 
The former pack the repeated content tight and center
the repeated content in the available space, the latter distributes
the extra space between all the repeated instances. 

In the short format, the two lowest info bits store the type
of leaders: 1 for aligned, 2 for centered, and 3 for expanded.
The |b100| info bit is usually set and only zero in the unlikely
case that the glue is zero and therefore not present.

\readcode
@s LEADERS symbol
@s ALIGN symbol
@s CENTER symbol
@s EXPAND symbol
@s leaders symbol
@s ltype symbol
@<symbols@>=
%token LEADERS "leaders"
%token ALIGN "align"
%token CENTER "center"
%token EXPAND "expand"
%type <info> leaders
%type <info> ltype
@

@<scanning rules@>=
::@=leaders@>       :< return LEADERS; >:
::@=align@>         :< return ALIGN; >:
::@=center@>        :< return CENTER; >:
::@=expand@>        :< return EXPAND; >:
@
@<parsing rules@>=
ltype: {$$=1;} | ALIGN {$$=1;} @+| CENTER {$$=2;} @+| EXPAND {$$=3;};
leaders: glue_node ltype rule_node {@+if ($1) $$=$2|b100;@+else $$=$2; @+}
       | glue_node ltype hbox_node {@+if ($1) $$=$2|b100;@+else $$=$2;@+}
       | glue_node ltype vbox_node {@+if ($1) $$=$2|b100;@+else $$=$2;@+};
content_node: start LEADERS leaders END @| {@+ hput_tags($1, TAG(leaders_kind, $3));}
@

\writecode
@<write functions@>=
void  hwrite_leaders_type(int t)
{@+ 
  if (t==2) hwritef(" center");
  else if (t==3) hwritef(" expand");
}
@

\getcode
@<cases to get content@>=
@t\1\kern1em@>
case TAG(leaders_kind,1):       @+ HGET_LEADERS(1); @+break;
case TAG(leaders_kind,2):        @+ HGET_LEADERS(2); @+break;
case TAG(leaders_kind,3):        @+ HGET_LEADERS(3); @+break;
case TAG(leaders_kind,b100|1):       @+ HGET_LEADERS(b100|1); @+break;
case TAG(leaders_kind,b100|2):        @+ HGET_LEADERS(b100|2); @+break;
case TAG(leaders_kind,b100|3):        @+ HGET_LEADERS(b100|3); @+break;
@
@<get macros@>=
#define @[HGET_LEADERS(I)@]@/ \
if ((I)&b100) hget_glue_node();\
hwrite_leaders_type((I)&b011);\
if (KIND(*hpos)==rule_kind) hget_rule_node(); \
else if (KIND(*hpos)==hbox_kind) hget_hbox_node(); \
else  hget_vbox_node();
@

\subsection{Baseline Skips}
Baseline\index{baseline skip} skips are small amounts of glue inserted
between two consecutive lines of text. To get nice looking pages, the
amount of glue\index{glue} inserted must take into account the depth
of the line above the glue and the height of the line below the glue
to achieve a constant distance of the baselines. For example, if we
have the lines
\medskip

\qquad\vbox{\hsize=0.5\hsize\noindent
``There is no\hfil\break
more gas\hfil\break
in the tank.''
}\hss

\medskip\noindent
\TeX\ will insert 7.69446pt of baseline skip between the first and the
second line and 3.11111pt of baseline skip between the second and the
third line. This is due to the fact that the first line has no
descenders, its depth is zero, the second line has no ascenders but
the ``g'' descends below the baseline, and the third line has
ascenders (``t'', ``h'',\dots) so it is higher than the second line.
\TeX's choice of baseline skips ensures that the baselines are exactly
12pt apart in both cases.

Things get more complicated if the text contains mathematical formulas because then
a line can get so high or deep that it is impossible to keep the distance between
baselines constant without two adjacent lines touching each other. In such cases,
\TeX\ will insert a small minimum line skip glue\index{line skip glue}.

For the whole computation, \TeX\ uses three parameters: {\tt base\-line\-skip},
{\tt line\-skip\-limit},\index{line skip limit} and
{\tt lineskip}.  {\tt baselineskip} is a glue value; its size is the
normal distance of two baselines.  \TeX\ adjusts the size of the 
{\tt baselineskip} glue for the height and the depth of the two lines and
then checks the result against {\tt lineskiplimit}.  If the result is
smaller than {\tt lineskiplimit} it will use the {\tt lineskip} glue
instead.

Because the depth and the height of lines depend on the outcome 
of the line breaking\index{line breaking}
routine, baseline computations must be done in the viewer.
The situation gets even more complicated because \TeX\ can manipulate the insertion
of baseline skips in various ways. Therefore \HINT\ requires the insertion of 
baseline nodes wherever the viewer is supposed to perform a baseline skip
computation.

In the short format of a baseline definition, we store only 
the nonzero components and use the
info bits to mark them: |b100| implies $|bs|\ne0$,
|b010| implies $|ls|\ne 0$, and |b001| implies  $|lslimit|\ne 0$.
If the baseline has only zero components, we put a reference to baseline number 0
in the output.

@<hint basic types@>=
typedef struct {@+
Glue bs, ls;@+
Dimen lsl;@+
} Baseline;
@



\readcode
@s BASELINE symbol
@s baseline symbol
@<symbols@>=
%token BASELINE "baseline"
%type <info> baseline
@
@<scanning rules@>=
::@=baseline@>  :< return BASELINE; >:
@

@<parsing rules@>=
baseline: dimension { if ($1!=0) HPUT32($1); }
          glue_node glue_node @/{ $$=b000; if ($1!=0) $$|=b001;
                                           if ($3) $$|=b100;
                                           if ($4) $$|=b010;
                              @+};
content_node: start BASELINE baseline END @/
{ @+if ($3==b000) HPUT8(0); @+hput_tags($1,TAG(baseline_kind, $3)); };
@

\getcode
@<cases to get content@>=
@t\1\kern1em@>
case TAG(baseline_kind,b001): { Baseline b;@+ HGET_BASELINE(b001,b);@+ }@+break;
case TAG(baseline_kind,b010): { Baseline b;@+ HGET_BASELINE(b010,b);@+ }@+break;
case TAG(baseline_kind,b011): { Baseline b;@+ HGET_BASELINE(b011,b);@+ }@+break;
case TAG(baseline_kind,b100): { Baseline b;@+ HGET_BASELINE(b100,b);@+ }@+break;
case TAG(baseline_kind,b101): { Baseline b;@+ HGET_BASELINE(b101,b);@+ }@+break;
case TAG(baseline_kind,b110): { Baseline b;@+ HGET_BASELINE(b110,b);@+ }@+break;
case TAG(baseline_kind,b111): { Baseline b;@+ HGET_BASELINE(b111,b);@+ }@+break;
@

@<get macros@>=
#define @[HGET_BASELINE(I,B)@] \
  if((I)&b001) HGET32((B).lsl); @+else B.lsl=0; hwrite_dimension(B.lsl);\
  if((I)&b100) hget_glue_node(); \
  else {B.bs.p.o=B.bs.m.o=B.bs.w.w=0; @+B.bs.w.h=B.bs.w.v=B.bs.p.f=B.bs.m.f=0.0; @+hwrite_glue_node(&(B.bs));@+}\
  if((I)&b010) hget_glue_node(); \
  else {B.ls.p.o=B.ls.m.o=B.ls.w.w=0; @+B.ls.w.h=B.ls.w.v=B.ls.p.f=B.ls.m.f=0.0; @+hwrite_glue_node(&(B.ls));@+}
@


\putcode
@<put functions@>=
uint8_t hput_baseline(Baseline *b)
{ Info info=b000;
  if (!ZERO_GLUE(b->bs)) @+info|=b100;
  if (!ZERO_GLUE(b->ls)) @+ info|=b010; 
  if (b->lsl!=0) { @+ HPUT32(b->lsl); @+info|=b001; @+} 
  return TAG(baseline_kind,info);
}
@



\subsection{Ligatures}
Ligatures\index{ligature} occur only in horizontal lists.  They specify characters
that combine the glyphs of several characters into one specialized
glyph. For example in the word ``{\it difficult\/}'' the three letters
``{\it f{}f{}i\/}'' are combined into the ligature ``{\it ffi\/}''.
Hence, a ligature is very similar to a simple glyph node; the
characters that got replaced are, however, retained in the ligature
because they might be needed for example to support searching. Since
ligatures are therefore only specialized list of characters and since
we have a very efficient way to store such lists of characters, namely
as a |text|, input and output of ligatures is quite simple.

The info value zero is reserved for references to a ligature.  If the
info value is between 1 and 6, it gives the number of bytes used to encode
the characters in UTF8.  Note that a ligature will always include a
glyph byte, so the minimum size is 1. A typical ligature like ``{\it fi\/}'' 
will need 3 byte: the ligature character ``{\it fi\/}'', and
the replacement characters ``f'' and ''i''. More byte might be
required if the character codes exceed |0x7F| since we use the UTF8
encoding scheme for larger character codes.  If the info value is 7,
a full text node follows the font byte. In the long
format, we give the font, the character code, and then the replacement
characters represented as a text.

@<hint types@>=
typedef struct{@+uint8_t f; @+List l;@+} Lig;
@

\readcode
@s ref symbol
@s LIGATURE  symbol
@s ligature symbol
@s cc_list symbol
@s lig_cc symbol
@<symbols@>=
%token LIGATURE     "ligature"
%type <u>  lig_cc 
%type <lg> ligature
%type <u> ref
@
@<scanning rules@>=
::@=ligature@>              :<     return LIGATURE;    >:
@

@<parsing rules@>=@/
cc_list:@+ | cc_list TXT_CC { hput_utf8($2); };
lig_cc:  UNSIGNED {RNG("UTF-8 code",$1,0,0x1FFFFF);$$=hpos-hstart; hput_utf8($1); };
lig_cc:  CHARCODE {$$=hpos-hstart; hput_utf8($1); };
ref: REFERENCE { HPUT8($1); $$=$1; };
ligature:  ref { REF(font_kind,$1);}   lig_cc TXT_START cc_list TXT_END @/
          { $$.f=$1; $$.l.p=$3; $$.l.s=(hpos-hstart)-$3; 
            RNG("Ligature size",$$.l.s,0,255);};
content_node: start LIGATURE ligature END {hput_tags($1,hput_ligature(&($3)));};
@

\writecode
@<write functions@>=
void hwrite_ligature(Lig *l)
{ uint32_t pos=hpos-hstart;
  hwrite_ref(l->f);
  hpos=l->l.p+hstart;
  hwrite_charcode(hget_utf8());
  hwritef(" \"");
  while (hpos<hstart+l->l.p+l->l.s)
    hwrite_txt_cc(hget_utf8());
  hwritec('"');
  hpos=hstart+pos;
}
@

\getcode
@<cases to get content@>=
@t\1\kern1em@>
case TAG(ligature_kind,1):@+ {Lig l; @+HGET_LIG(1,l);@+} @+break;
case TAG(ligature_kind,2):@+ {Lig l; @+HGET_LIG(2,l);@+} @+break;
case TAG(ligature_kind,3):@+ {Lig l; @+HGET_LIG(3,l);@+} @+break;
case TAG(ligature_kind,4):@+ {Lig l; @+HGET_LIG(4,l);@+} @+break;
case TAG(ligature_kind,5):@+ {Lig l; @+HGET_LIG(5,l);@+} @+break;
case TAG(ligature_kind,6):@+ {Lig l; @+HGET_LIG(6,l);@+} @+break;
case TAG(ligature_kind,7):@+ {Lig l; @+HGET_LIG(7,l);@+} @+break;
@
@<get macros@>=
#define @[HGET_LIG(I,L)@] @/\
(L).f=HGET8;REF(font_kind,(L).f);\
if ((I)==7) hget_list(&((L).l)); \
else { (L).l.s=(I); (L).l.p=hpos-hstart; @+ hpos+=(L).l.s;} \
hwrite_ligature(&(L));
@

\putcode
@<put functions@>=
uint8_t hput_ligature(Lig *l)
{ @+if (l->l.s < 7) return TAG(ligature_kind,l->l.s);
  else@/
  { uint32_t pos=l->l.p;
    hput_tags(pos,hput_list(pos+1, &(l->l)));
    return TAG(ligature_kind,7);
  }
}
@


\subsection{Discretionary breaks}\label{discbreak}\index{discretionary break}
\HINT\ is capable to break lines into paragraphs. It does this
primarily at interword spaces but it might also break a line in the
middle of a word if it finds a discretionary\index{discretionary break}
line break there. These discretionary breaks are usually
provided by an automatic hyphenation algorithm but they might be also
explicitly\index{explicit} inserted by the author of a
document.

When a line break occurs at such a discretionary break, the line
before the break ends with a |pre_break| list of nodes, the line after
the break starts with a |post_break| list of nodes, and the next
|replace_count| nodes after the discretionary break will be
ignored. Both lists must consist entirely of glyphs\index{glyph},
kerns\index{kern}, boxes\index{box}, rules\index{rule}, or
ligatures\index{ligature}.  For example, an ordinary discretionary
break will have a |pre_break| list containing ``-'', an empty
|post_break| list, and a |replace_count| of zero.

The long format starts with an optional ``{\tt !}'', indicating an
explicit discretionary break, followed by the replace-count.
Then comes the pre-break list followed by the post-break list.
The replace-count can be omitted if it is zero;
an empty post-break list may be omitted as well.
Both list may be omitted only if both are empty.

In the short format, the three components of a disc node are stored
in this order: |replace_count|, |pre_break| list, and |post_break| list.
The |b100| bit in the info value indicates the presence of a  replace-count,
the |b010| bit the presence of a |pre_break| list, 
and the |b001| bit the presence of a |post_break| list.
Since the info value |b000| is reserved for references, at least one
of these must be specified; so we represent a node with empty lists
and a replace\index{replace count} count of zero using the info value
|b100| and a zero byte for the replace count.

Replace counts must be in the range 0 to 31; so the short format can
set the high bit of the replace count to indicate an explicit\index{explicit} break.

@<hint types@>= 
typedef struct@+ {@+ bool x; @+List p,q;@+ uint8_t r;@+ } Disc; 
@


\readcode
@s DISC  symbol
@s disc  symbol
@s disc_node  symbol
@s replace_count symbol

@<symbols@>=
%token DISC     "disc"
%type <dc> disc
%type <u> replace_count
@
@<scanning rules@>=
::@=disc@>              :<     return DISC;    >:
@

@<parsing rules@>=@/
replace_count: explicit {@+ if ($1) {$$=0x80; HPUT8(0x80);@+}@+ else $$=0x00;@+}
	     | explicit UNSIGNED { RNG("Replace count",$2,0,31); 
               $$=($2)|(($1)?0x80:0x00); @+ if ($$!=0) HPUT8($$);@+};
disc: replace_count list list { $$.r=$1;$$.p=$2; $$.q=$3; 
          if ($3.s==0) { hpos=hpos-2;@+ if ($2.s==0) hpos=hpos-2; @+}@+}
      | replace_count list { $$.r=$1;$$.p=$2; if ($2.s==0) hpos=hpos-2;@+ $$.q.s=0; }
      | replace_count { $$.r=$1;$$.p.s=0; $$.q.s=0; };


disc_node: start DISC disc END 
       {hput_tags($1,hput_disc(&($3)));};

content_node: disc_node;
@

\writecode
@<write functions@>=
void  hwrite_disc(Disc *h)
{ @+hwrite_explicit(h->x);
    if (h->r!=0) hwritef(" %d",h->r);
    if (h->p.s!=0 || h->q.s!=0) hwrite_list(&(h->p));
    if (h->q.s!=0) hwrite_list(&(h->q));
}
void hwrite_disc_node(Disc *h)
{ @+ hwrite_start(); @+hwritef("disc"); @+ hwrite_disc(h); @+hwrite_end();}
@

\getcode
@<cases to get content@>=
@t\1\kern1em@>
case TAG(disc_kind,b001): {Disc h; @+HGET_DISC(b001,h);@+ hwrite_disc(&h); @+} @+break;
case TAG(disc_kind,b010): {Disc h; @+HGET_DISC(b010,h);@+ hwrite_disc(&h); @+} @+break;
case TAG(disc_kind,b011): {Disc h; @+HGET_DISC(b011,h);@+ hwrite_disc(&h); @+} @+break;
case TAG(disc_kind,b100): {Disc h; @+HGET_DISC(b100,h);@+ hwrite_disc(&h); @+} @+break;
case TAG(disc_kind,b101): {Disc h; @+HGET_DISC(b101,h);@+ hwrite_disc(&h); @+} @+break;
case TAG(disc_kind,b110): {Disc h; @+HGET_DISC(b110,h);@+ hwrite_disc(&h); @+} @+break;
case TAG(disc_kind,b111): {Disc h; @+HGET_DISC(b111,h);@+ hwrite_disc(&h); @+} @+break;
@

@<get macros@>=
#define @[HGET_DISC(I,Y)@]\
if ((I)&b100) {uint8_t r=HGET8; (Y).r=r&0x7F; @+ RNG("Replace count",(Y).r,0,31); @+(Y).x=(r&0x80)!=0; @+}\
@+else { (Y).r=0; @+ (Y).x=false;@+}\
if ((I)&b010) hget_list(&((Y).p)); else { (Y).p.p=hpos-hstart; @+(Y).p.s=0; @+(Y).p.k=list_kind; @+}\
if ((I)&b001) hget_list(&((Y).q)); else { (Y).q.p=hpos-hstart; @+(Y).q.s=0; @+(Y).q.k=list_kind; @+}
@

@<get functions@>=
void hget_disc_node(Disc *h)
{ @<read the start byte |a|@>@;
   if (KIND(a)!=disc_kind || INFO(a)==b000) 
      QUIT("Hyphen expected at 0x%x got %s,%d",node_pos,NAME(a),INFO(a));
   HGET_DISC(INFO(a),*h);
   @<read and check the end byte |z|@>@;
}
@

When |hput_disc| is called, the node is already written to the output,
but empty lists might have been deleted, and the info value needs to be determined.
Because the info value |b000| is reserved for references, a zero reference
count is written to avoid this case.
\putcode
@<put functions@>=
uint8_t hput_disc(Disc *h)
{ Info info=b000;
  if (h->r!=0)  info|=b100; 
  if (h->q.s!=0) info|=b011;
  else if (h->p.s!=0) info|=b010;
  if (info==b000) { @+info|=b100; @+HPUT8(0);@+}
  return TAG(disc_kind,info);
}
@
\subsection{Paragraphs}
The most important procedure that the \HINT\ viewer inherits from \TeX\ is the
line breaking routine. If the horizontal size of the paragraph is not known,
breaking the paragraph\index{paragraph} into lines must be postponed and this is done by creating
a paragraph node. The paragraph node must contain all information that \TeX's
line breaking\index{line breaking} algorithm needs to do its job.

Besides the horizontal list describing the content of the paragraph and 
the extended dimension describing the horizontal size,
this is the set of parameters that guide the line breaking algorithm:

\itemize 
\item
Integer parameters:\hfill\break
{\tt pretolerance} (badness tolerance before hyphenation),\hfill\break
{\tt tolerance} (badness tolerance after hyphenation),\hfill\break
{\tt line\_penalty} (added to the badness of every line, increase to get fewer lines),\hfill\break
{\tt hy\-phen\_pe\-nal\-ty} (penalty for break after hyphenation break),\hfill\break
{\tt ex\_hy\-phen\_pe\-nal\-ty} (penalty for break after explicit\index{explicit} break),\hfill\break
{\tt doub\-le\_hy\-phen\_de\-merits} (demerits for double hyphen break),\hfill\break
{\tt final\_hyphen\_de\-me\-rits} (demerits for final hyphen break),\hfill\break
{\tt adj\_demerits} (demerits for adjacent incompatible lines),\hfill\break
{\tt looseness} (make the paragraph that many lines longer than its optimal size),\hfill\break
{\tt inter\_line\_penalty} (additional penalty between lines),\hfill\break
{\tt club\_pe\-nal\-ty} (penalty for creating a club line),\hfill\break
{\tt widow\_penalty} (penalty for creating a widow line),\hfill\break
{\tt display\_widow\_penalty} (ditto, just before a display),\hfill\break
{\tt bro\-ken\_pe\-nal\-ty} (penalty for breaking a page at a broken line),\hfill\break
{\tt hang\_af\-ter} (start/end hanging indentation at this line).
\item
Dimension parameters:\hfill\break
{\tt line\_skip\_limit} (threshold for {\tt line\_skip} instead of {\tt base\-line\_skip}),\hfill\break
{\tt hang\_in\-dent} (amount of hanging indentation),\hfill\break
{\tt emergency\_stretch} (stretchability added to every line in the final pass of line breaking).
\item
Glue parameters:\hfill\break
{\tt baseline\_skip} (desired glue between baselines),\hfill\break
{\tt line\_skip} (interline glue if {\tt baseline\_skip} is infeasible),\hfill\break
{\tt left\_skip} (glue at left of justified lines),\hfill\break
{\tt right\_skip} (glue at right of justified lines),\hfill\break
{\tt par\_fill\_skip} (glue on last line of paragraph).
\enditemize


For a detailed explanation of these parameters and how they influence
line breaking, you should consult the {\TeX}book\cite{DK:texbook};
\TeX's {\tt parshape} feature is currently not implemented.  There are
default values for all of these parameters (see section~\secref{defaults}),
and therefore it might not be necessary to specify any of them. 
Any local adjustments are contained in a list of
parameters contained in the paragraph node.

A further complication arises from displayed\index{displayed formula} formulas
that interrupt a paragraph.  Such displays are described in the next
section.

To summarize, a paragraph node in the long format specifies an
extended dimension,  a parameter list,
and a node list.  The extended dimension is given either as an
|xdimen| node (info bit |b100|) or as a reference; similarly the parameter list
can be embedded in the node (info bit |b010|) or again it is given by a reference.


\readcode
@s PAR symbol
@s par symbol
@s xdimen_ref symbol
@s param_ref symbol
@s par_dimen symbol


@<symbols@>=
%token PAR "par"
%type <info> par
@

@<scanning rules@>=
::@=par@>       :< return PAR; >:
@


The following parsing rules are slightly more complicated than I would
like them to be, but it seems more important to achieve a regular
layout of the short format nodes where all sub nodes are located at
the end of a node.  In this case, I want to put a |param_ref| before
an |xdimen| node, but otherwise have the |xdimen_ref| before a
|param_list|.  The |par_dimen| rule is introduced only to avoid a
reduce/reduce conflict in the parser.  The parsing of
|empty_param_list| and |non_empty_param_list| is explained in
section~\secref{paramlist}.

@<parsing rules@>=
par_dimen: xdimen { hput_xdimen_node(&($1)); };
par: xdimen_ref param_ref list {$$=b000;}
   | xdimen_ref empty_param_list non_empty_param_list list { $$=b010;}
   | xdimen_ref empty_param_list list { $$=b010;}
   | xdimen param_ref { hput_xdimen_node(&($1)); } list { $$=b100;}
   | par_dimen empty_param_list non_empty_param_list list { $$=b110;}
   | par_dimen empty_param_list list { $$=b110;};

content_node: start PAR par END { hput_tags($1,TAG(par_kind,$3));};
@

\getcode
@<cases to get content@>=
@t\1\kern1em@>
case TAG(par_kind,b000): @+HGET_PAR(b000);@+break;
case TAG(par_kind,b010): @+HGET_PAR(b010);@+break;
case TAG(par_kind,b100): @+HGET_PAR(b100);@+break;
case TAG(par_kind,b110): @+HGET_PAR(b110);@+break;
@

@<get macros@>=
#define @[HGET_PAR(I)@] @/\
{ uint8_t n;\
 if ((I)==b100) {n=HGET8; @+REF(param_kind,n);@+}\
 if ((I)&b100)  {Xdimen x; @+hget_xdimen_node(&x); @+hwrite_xdimen(&x);@+}  else HGET_REF(xdimen_kind);\
 if ((I)&b010) { List l; @+hget_param_list(&l); @+hwrite_param_list(&l); @+} \
 else if ((I)!=b100) HGET_REF(param_kind)@; else hwrite_ref(n);\
 { List l; @+hget_list(&l);@+ hwrite_list(&l); @+}}
@


\subsection{Mathematics}\index{Mathematics}\index{displayed formula}
\gdef\subcodetitle{Displayed Math}
Being able to handle mathematics\index{mathematics} nicely is one
of the primary features of \TeX\ and
so you should expect the same from \HINT.
We start here with the more complex case---displayed equations---and finish with the
simpler case of mathematical formulas that are part of the normal flow of text.

Displayed equations occur inside a paragraph\index{paragraph}
node. They interrupt normal processing of the paragraph and the
paragraph processing is resumed after the display. Positioning of the
display depends on several parameters, the shape of the paragraph, and
the length of the last line preceding the display.  Displayed formulas
often feature an equation number which can be placed either left or
right of the formula.  Also the size of the equation number will
influence the placement of the formula.

In a \HINT\ file, the parameter list is followed by a list of content
nodes, representing the formula, and an optional horizontal box
containing the equation number.

In the short format, we use the info bit |b100| to indicate the
presence of a parameter list (which might be empty---so it's actually the absence of a 
reference to a parameter list); the info bit |b010| to indicate the presence of 
a left equation number; and the info bit |b001| for a right
equation\index{equation number} number.

In the long format, we use ``{\tt eqno}'' or ``{\tt left eqno}'' to indicate presence and
placement of the equation number.

\readcode
@s MATH symbol
@s math symbol
@<symbols@>=
%token MATH "math"
%type <info> math 
@

@<scanning rules@>=
::@=math@>       :< return MATH; >:
@

@<parsing rules@>=
math:    param_ref  list {$$=b000;}
       | param_ref  list hbox_node {$$=b001;}
       | param_ref  hbox_node list {$$=b010;}
       | empty_param_list list {$$=b100;} 
       | empty_param_list list hbox_node {$$=b101;} 
       | empty_param_list hbox_node list {$$=b110;} 
       | empty_param_list non_empty_param_list list {$$=b100;} 
       | empty_param_list non_empty_param_list list hbox_node {$$=b101;} 
       | empty_param_list non_empty_param_list hbox_node list {$$=b110;};

content_node: start MATH math END @/{ hput_tags($1,TAG(math_kind,$3));};
@

\getcode
@<cases to get content@>=
@t\1\kern1em@>
case TAG(math_kind,b000): HGET_MATH(b000); @+ break;
case TAG(math_kind,b001): HGET_MATH(b001); @+ break;
case TAG(math_kind,b010): HGET_MATH(b010); @+ break;
case TAG(math_kind,b100): HGET_MATH(b100); @+ break;
case TAG(math_kind,b101): HGET_MATH(b101); @+ break;
case TAG(math_kind,b110): HGET_MATH(b110); @+ break;
@

@<get macros@>=
#define @[HGET_MATH(I)@] \
if ((I)&b100) { List l; @+hget_param_list(&l); @+hwrite_param_list(&l); @+} \
else HGET_REF(param_kind);\
if ((I)&b010) hget_hbox_node(); \
{ List l; @+hget_list(&l);@+ hwrite_list(&l); @+} \
if ((I)&b001) hget_hbox_node();
@

\gdef\subcodetitle{Text Math}
Things are much simpler if mathematical formulas are embedded in regular text.
Here it is just necessary to mark the beginning and the end of the formula
because glue inside a formula is not a possible point for a line break.
To break the line within a formula you can insert a penalty node.

In the long format, such a simple math node just consists of the keyword ``on''
or ``off''. In the short format, there are two info values still unassigned:
we use |b011| for ``off'' and |b111| for ``on''.


\readcode
@s ON symbol
@s OFF symbol
@s on_off symbol
@<symbols@>=
%token ON "on"
%token OFF "off"
%type <i> on_off
@

@<scanning rules@>=
::@=on@>  :< return ON; >:
::@=off@>  :< return OFF; >:
@

@<parsing rules@>=
on_off:  ON {$$=1;} | OFF {$$=0;};
math: on_off  { $$=b011|($1<<2); };
@

\getcode
@<cases to get content@>=
@t\1\kern1em@>
case TAG(math_kind,b111): hwritef(" on");@+break;
case TAG(math_kind,b011): hwritef(" off");@+break;
@

Note that \TeX\ allows math nodes to specify a width using the current value of
mathsurround. If this width is nonzero, it is equivalent to inserting a
kern node before the math on node and after the math off node.

\subsection{Adjustments}\label{adjust}
An adjustment\index{adjustment} occurs only in paragraphs\index{paragraph}.
When the line breaking\index{line breaking} routine finds an adjustment, it inserts
the vertical material contained in the adjustment node right after the current line.
Adjustments simply contain a list node.

\vbox{\readcode\vskip -\baselineskip\putcode}
@s ADJUST symbol
@<symbols@>=
%token ADJUST "adjust"
@

@<scanning rules@>=
::@=adjust@>       :< return ADJUST; >:
@

@<parsing rules@>=
content_node: start ADJUST list END { hput_tags($1,TAG(adjust_kind,1));};
@

\vbox{\getcode\vskip -\baselineskip\writecode}
@<cases to get content@>=
@t\1\kern1em@>
case TAG(adjust_kind,1):@+  { List l;@+hget_list(&l); @+ hwrite_list(&l); @+} @+ break;
@

\subsection{Tables}\index{alignment}
As long as a table contains no dependencies on \.{hsize} and \.{vsize},
Hi\TeX\ can expand an alignment into a set of nested horizontal and
vertical boxes and no special processing is required.
As long as only the size of the table itself but neither the tabskip
glues nor the table content depends on \.{hsize} or \.{vsize}, the table
just needs an outer node of type |hset_kind| or |vset_kind|. If there
is non aligned material inside the table that depends on \.{hsize} or
\.{vsize}, a vpack or hpack node is still sufficient.

While it is reasonable to restrict the tabskip glues to be ordinary
glue values without \.{hsize} or \.{vsize} dependencies, it might be
desirable to have content in the table that does depend on \.{hsize} or
\.{vsize}. For the latter case, we need a special kind of table
node. Here is why:

As soon as the dimension of an item in the table is an extended
dimension, it is no longer possible to compute the maximum natural with
of a column, because it is not possible to compare extended dimensions
without knowing \.{hsize} and \.{vsize}.  Hence the computation of maximum
widths needs to be done in the viewer.  After knowing the width of the columns,
the setting of tabskip glues is easy to compute.

To implement these extended tables, we will need a table node that
specifies a direction, either horizontal or vertical; a list of
tabskip glues, with the provision that the last tabskip glue in the
list is repeated as long as necessary; and a list of table content.
The table's content is stacked, either vertical or
horizontal, orthogonal to the alignment direction of the table.
The table's content consists of nonaligned content, for example extra glue 
or rules, and aligned content.
Each element of aligned content 
is called an outer item and it consist of a list of inner items.
For example in a horizontal alignment, each row is an outer item
and each table entry in that row is an inner item.
An inner item contains a box node (of kind |hbox_kind|, |vbox_kind|,
|hset_kind|, |vset_kind|, |hpack_kind|, or |vpack_kind|) followed by
an optional span count.

The glue of the boxes in the inner items will be reset so that all boxes in the same
column reach the same maximum column with.  The span counts will be replaced by
the appropriate amount of empty boxes and tabskip glues.  Finally the
glue in the outer item will be set to obtain the desired size
of the table.

The definitions below specify just a |list| for the list of tabskip glues and a
list for the outer table items. 
This is just for convenience; the first list must contain glue
nodes and the second list must contain nonaligned content and inner item nodes. 

We reuse the |H| and |V| tokens, defined as part of the specification
of extended dimensions, to indicate the alignment direction of the
table. To tell a reference to an extended dimension from a reference
to an ordinary dimension, we prefix the former with an |XDIMEN| token;
for the latter, the |DIMEN| token is optional. The scanner will
recognize not only ``item'' as an |ITEM| token but also ``row'' and
''column''. This allows a more readable notation, for example by
marking the outer items as rows and the inner items as columns.

In the short format, the |b010| bit is used to mark a vertical table
and the |b101| bits indicate how the table size is specified; an outer
item node has the info value |b000|, an inner item node with info
value |b111| contains an extra byte for the span count, otherwise the
info value is equal to the span count.






\readcode
@s TABLE symbol
@s ITEM symbol
@s table symbol
@s span_count symbol

@<symbols@>=
%token TABLE "table"
%token ITEM "item"
%type <info> table span_count
@

@<scanning rules@>=
::@=table@>       :< return TABLE; >:
::@=item@>        :< return ITEM; >:
::@=row@>        :< return ITEM; >:
::@=column@>        :< return ITEM; >:
@

@<parsing rules@>=
span_count: UNSIGNED { $$=hput_span_count($1); };
content_node: start ITEM content_node END { hput_tags($1,TAG(item_kind,1)); };
content_node: start ITEM span_count content_node END {@+ hput_tags($1,TAG(item_kind,$3));};
content_node: start ITEM list END { hput_tags($1,TAG(item_kind,b000));};

table: H box_goal list list {$$=$2;};
table: V box_goal list list {$$=$2|b010;};

content_node: start TABLE table END { hput_tags($1,TAG(table_kind,$3));};
@

\getcode
@<cases to get content@>=
@t\1\kern1em@>
case TAG(table_kind,b000): @+ HGET_TABLE(b000); @+ break;
case TAG(table_kind,b001): @+ HGET_TABLE(b001); @+ break;
case TAG(table_kind,b010): @+ HGET_TABLE(b010); @+ break;
case TAG(table_kind,b011): @+ HGET_TABLE(b011); @+ break;
case TAG(table_kind,b100): @+ HGET_TABLE(b100); @+ break;
case TAG(table_kind,b101): @+ HGET_TABLE(b101); @+ break;
case TAG(table_kind,b110): @+ HGET_TABLE(b110); @+ break;
case TAG(table_kind,b111): @+ HGET_TABLE(b111); @+ break;@#

case TAG(item_kind,b000):  @+{@+ List l;@+ hget_list(&l);@+ hwrite_list(&l);@+ } @+ break;
case TAG(item_kind,b001):  hget_content_node(); @+ break;
case TAG(item_kind,b010):  hwritef(" 2");@+hget_content_node(); @+ break;
case TAG(item_kind,b011):  hwritef(" 3");@+hget_content_node(); @+ break;
case TAG(item_kind,b100):  hwritef(" 4");@+hget_content_node(); @+ break;
case TAG(item_kind,b101):  hwritef(" 5");@+hget_content_node(); @+ break;
case TAG(item_kind,b110):  hwritef(" 6");@+hget_content_node(); @+ break;
case TAG(item_kind,b111):  hwritef(" %u",HGET8);@+hget_content_node(); @+ break;
@

@<get macros@>=
#define @[HGET_TABLE(I)@] \
if(I&b010) hwritef(" v"); @+else hwritef(" h"); \
if ((I)&b001) hwritef(" add");@+ else hwritef(" to");\
if ((I)&b100) {Xdimen x; hget_xdimen_node(&x); @+hwrite_xdimen_node(&x);@+} else HGET_REF(xdimen_kind)@;\
{@+ List l; @+hget_list(&l);@+ hwrite_list(&l);@+ } /* tabskip */ \
{@+ List l; @+hget_list(&l);@+ hwrite_list(&l);@+ }  /* items */
@


\putcode
@<put functions@>=
Info hput_span_count(uint32_t n)
{ if (n==0) QUIT("Span count in item must not be zero");
  else if (n<7) return n;
  else if (n>0xFF)  QUIT("Span count %d must be less than 255",n);
  else
  { HPUT8(n); return 7; }
}
@
\section{Extensions to \TeX}\hascode

\subsection{Images}
In the first implementation attempt, images behaved pretty much
like glue\index{glue}. They could stretch (or shrink) together with
the surrounding glue to fill a horizontal or vertical box.  While I
thought this would be in line with \TeX's concepts, it proved to be a
bad decission because images, as opposed to glue, would stretch or
shrink horizontaly {\it and} vertically at the same time.
This would require a two pass algorithm to pack boxes: first to
determine the glue setting and a secondf pass to determine the proper
image dimensions. Otherwise incorrect width or height values would
propagate all the way through a sequence of nested boxes. Even worse
so, this two pass algorithm would be needed in the viewer if images
were contained in boxes that had extended dimensions.

The new design described below allows images with extended dimensions.
This covers the case of stretchable or shrinkable images inside of
extended boxes.  The given extended dimensions are considered maximum
values. The stretching or shrinking of images will always preserve the
relation of width${}/{}$height, the aspect ratio.

For convenience, we allow missing values in the long format, for
example the aspect ratio, if they can be determined from the image
data.  In the short format, the necessary information for a correct
layout must be available without using the image data.

In the long format, the only required parts of an image node are the
number of the auxiliary section where the image data can be found and
the descriptive text which is there to make the document more
accessible.  The section number is followed by the optional aspect
ratio, width, and height of the image.  If some of these values are
missing, it must be possible to determine them from the image
data. The node ends with the description.

The short format, starts with the section number of the image data and
ends with the description. Missing values for aspect ratio, width, and
height are only allowed if they can be recomputed from the given data.
A missing width or height is represented by a reference to the zero
extended dimension.  If the |b100| bit is set, the aspect ratio is
present as a 32 bit floating point value followed by extended
dimensions for width and height.  The info value |b100| indicates a
width reference followed by a height reference; the value |b111|
indicates a width node followed by a height node; the value |b110|
indicates a height reference followed by a width node; and the value
|b101| indicates a width reference followed by a height node.  The
last two rules reflect the requirement that subnodes are always
located at the end of a node.

The remaining info values are used as follows:
The value |b000| is used for a reference to an image.
The value |b011| indicates an immediate width and an immediate height.
The value |b010| indicates an aspect ratio and an immediate width.
The value |b001| indicates an aspect ratio and an immediate height.

@<hint types@>=
typedef struct {@+
uint16_t n;@+
float32_t a;@+
Xdimen w,h;@+
uint8_t wr,hr;@+
} Image;
@


\readcode
@s IMAGE symbol
@s image symbol
@s image_aspect symbol
@s image_aspect symbol
@s image_width symbol
@s image_height symbol
@s image_spec symbol
@<symbols@>=
%token IMAGE "image"
%token WIDTH "width"
%token HEIGHT "height"
%type <xd> image_width image_height
%type <f> image_aspect
%type <info> image_spec image
@

@<scanning rules@>=
::@=image@>       :< return IMAGE; >:
::@=width@>       :< return WIDTH; >:
::@=height@>       :< return HEIGHT; >:
@

@<parsing rules@>=
image_aspect: number {$$=$1;} | {$$=0.0;};
image_width: WIDTH xdimen { $$=$2;}
           | { $$=xdimen_defaults[zero_xdimen_no];};
image_height: HEIGHT xdimen { $$=$2; }
           | { $$=xdimen_defaults[zero_xdimen_no];};

image_spec: UNSIGNED image_aspect image_width image_height 
            {$$=hput_image_spec($1,$2,0,&($3),0,&($4));}
          | UNSIGNED image_aspect WIDTH REFERENCE image_height 
            {$$=hput_image_spec($1,$2,$4,NULL,0,&($5));}
          | UNSIGNED image_aspect image_width HEIGHT REFERENCE 
            {$$=hput_image_spec($1,$2,0,&($3),$5,NULL);}
          | UNSIGNED image_aspect WIDTH REFERENCE HEIGHT REFERENCE 
            {$$=hput_image_spec($1,$2,$4,NULL,$6,NULL);};
  
image: image_spec list {$$=$1;};

content_node: start IMAGE image END { hput_tags($1,TAG(image_kind,$3));};
@

\writecode
@<write functions@>=
void hwrite_image(Image *x)
{ RNG("Section number",x->n,3,max_section_no); hwritef(" %u",x->n);
  if (x->a!=0.0) hwrite_float64(x->a);
  if (x->wr!=0) hwritef(" width *%u",x->wr);
  else if (x->w.w!=0 ||x->w.h!=0.0 || x->w.v!=0.0)
  { hwritef(" width"); hwrite_xdimen(&x->w); }
  if (x->hr!=0) hwritef(" height *%u",x->hr);
  else if (x->h.w!=0 || x->h.h!=0.0 || x->h.v!=0.0)
  { hwritef(" height"); hwrite_xdimen(&x->h); }
}
@

\getcode
@<cases to get content@>=
@t\1\kern1em@>
case TAG(image_kind,b001): @+ HGET_IMAGE(b001);@+break;
case TAG(image_kind,b010): @+ HGET_IMAGE(b010);@+break;
case TAG(image_kind,b011): @+ HGET_IMAGE(b011);@+break;
case TAG(image_kind,b100): @+ HGET_IMAGE(b100);@+break;
case TAG(image_kind,b101): @+ HGET_IMAGE(b101);@+break;
case TAG(image_kind,b110): @+ HGET_IMAGE(b110);@+break;
case TAG(image_kind,b111): @+ HGET_IMAGE(b111);@+break;
@

@<get macros@>=
#define @[HGET_IMAGE(I)@] @/\
{ Image x={0};\
HGET16(x.n);\
if ((I)&b100) { x.a=hget_float32();\
 if ((I)==b111) {hget_xdimen_node(&x.w);hget_xdimen_node(&x.h);}\
 else if ((I)==b110) {x.hr=HGET8;hget_xdimen_node(&x.w);}\
 else if ((I)==b101) {x.wr=HGET8;hget_xdimen_node(&x.h);}\
 else  {x.wr=HGET8;x.hr=HGET8;}}\
else if((I)==b011) {HGET32(x.w.w);HGET32(x.h.w);} \
else if((I)==b010) { x.a=hget_float32(); HGET32(x.w.w);}\
else if((I)==b001){ x.a=hget_float32(); HGET32(x.h.w);}\
hwrite_image(&x);\
{List d;  hget_list(&d);hwrite_list(&d);}}@/
@



Because the long format can omit part of the image specification
which is required for the short format if the necessary information 
is contained in the image data, we have to implement the extraction
of image information before we can implement the |hput_image_spec|
function.

\putcode
@<put functions@>=
@<image functions@>@;
Info hput_image_spec(uint32_t n, float32_t a, 
                     uint32_t wr, Xdimen *w, uint32_t hr, Xdimen *h)
{ HPUT16(n);
  if (w!=NULL && h!=NULL)
  { if (w->h==0.0 && w->v==0.0 && h->h==0.0 && h->v==0.0)
     return hput_image_dimens(n,a,w->w,h->w);
    else
    { hput_image_aspect(n,a);
      hput_xdimen_node(w);hput_xdimen_node(h);
      return b111;
    }
  }
  else if (w!=NULL && h==NULL)
  { if (w->h==0.0 && w->v==0.0 && hr==zero_xdimen_no)
     return hput_image_dimens(n,a,w->w,0);
    else
    { hput_image_aspect(n,a);
      HPUT8(hr);hput_xdimen_node(w);
      return b110;
    }
  } 
  else if (w==NULL && h!=NULL)
  { if (wr==zero_xdimen_no && h->h==0.0 && h->v==0.0)
     return hput_image_dimens(n,a,0,h->w);
    else
    { hput_image_aspect(n,a);
      HPUT8(wr);hput_xdimen_node(h);
      return b101;
    }
  }
  else
  { if (wr==zero_xdimen_no && hr==zero_xdimen_no)
     return hput_image_dimens(n,a,0,0);
    else
    { hput_image_aspect(n,a);
      HPUT8(wr);HPUT8(hr);
      return b100;
    }
  }
}
@

If no extended dimensions are involved in an image specification,
we use |hput_image_dimen|.

@<image functions@>=
@<auxiliar image functions@>@;
static Info hput_image_dimens(int n,float32_t a, Dimen w, Dimen h)
{ Dimen iw,ih;
  double ia;
  hget_image_dimens(n,&ia,&iw,&ih);
  @<merge stored image dimensions with dimensions given@>@;
  if (w!=0 && h!=0)
  { HPUT32(iw); HPUT32(ih); return b011; }
  else if (a!=0.0)
  { if (h!=0)
    { hput_float32((float32_t)ia); HPUT32(ih); return b001; }
    else
    { hput_float32((float32_t)ia); HPUT32(iw); return b010; }
  }
  else 
  { HPUT32(iw); HPUT32(ih); return b011; }
}
@

If extended dimensions are involved, we need |hput_image_aspect|.
@<image functions@>=
static void hput_image_aspect(int n,double a)
{ 
  if (a==0.0) {Dimen w,h; hget_image_dimens(n,&a,&w,&h);}
  if (a!=0.0) hput_float32(a);
  else  QUIT("Unable to determine aspect ratio of image %d",n);
}
@


When we have found the width, height or aspect ratio of the stored
image, we can merge this information with the information given by the
user.  Note that from width and height the aspect ratio can always be
determined.  The user might very well specify different values than
stored in the image.  In this case the user given dimensions are
interpreted as maximum dimensions and the aspect ratio as given in the
image file takes precedence over an user specified value.  This is
accomplished by the following:

@<merge stored image dimensions with dimensions given@>=
{ if (ia==0.0)
  { if (a!=0.0) ia=a;
    else if(w!=0 && h!=0) ia=(double)w/(double)h;
    else QUIT("Unable to determine dimensions of image %d",n);
  }
  if (w==0 && h==0)
  { if (iw==0) iw=round(ih * ia);
    else if (ih==0) ih=round(iw/ia);
  }
  else if (h==0) 
  { iw=w; ih=round(w/ia); }
  else if (w==0) 
  { ih=h; iw=round(h*ia);}
  else 
  { Dimen x;
    x =  round(h*ia);
    if (w>x) w = x;
    x =  round(w/ia);
    if (h>x) h=x;
    ih = h;
    iw = w;
  }
}
@

We define a few macros and variables for the reading of image files.

@<auxiliar image functions@>=
#define IMG_BUF_MAX 54
#define IMG_HEAD_MAX 2
static unsigned char img_buf[IMG_BUF_MAX];
static size_t img_buf_size;
#define @[LittleEndian32(X)@]   (img_buf[(X)]+(img_buf[(X)+1]<<8)+\
                                (img_buf[(X)+2]<<16)+(img_buf[(X)+3]<<24))

#define @[BigEndian16(X)@]   (img_buf[(X)+1]+(img_buf[(X)]<<8))

#define @[BigEndian32(X)@]   (img_buf[(X)+3]+(img_buf[(X)+2]<<8)+\
                                (img_buf[(X)+1]<<16)+(img_buf[(X)]<<24))

#define Match2(X,A,B)  ((img_buf[(X)]==(A)) && (img_buf[(X)+1]==(B)))
#define Match4(X,A,B,C,D)  (Match2(X,A,B)&&Match2((X)+2,C,D))

#define @[GET_IMG_BUF(X)@] \
if (img_buf_size<X) \
  { size_t i=fread(img_buf+img_buf_size,1,(X)-img_buf_size,f); \
    if (i<0) QUIT("Unable to read image %s",fn); \
    else if (i==0) QUIT("Unable to read image header %s",fn); \
    else img_buf_size+=i; \
  }
@

Considering the different image formats, we start with Windows
Bitmaps.  A Windows bitmap file usually has the extension {\tt .bmp}
but the better way to check for a Windows bitmap file ist to examine
the first two byte of the file: the ASCII codes for `B' and `M'.  Once
we have verified the file type, we find the width and height of the
bitmap in pixels at offsets |0x12| and |0x16| stored as little-endian
32 bit integers. At offsets |0x26| and |0x2A|, we find the horizontal
and vertical resolution in pixel per meter stored in the same format.
This is sufficient to compute the true width and height of the image
in scaled points.  If either the width or the height is already known,
we just use the aspect ratio and compute the missing value.

The Windows Bitmap format is easy to process but not very
efficient. So the support for this format in the \HINT\ format is
deprecated and will disappear.  You should use one of the formats
described next.

@<auxiliar image functions@>=
static bool get_BMP_info(FILE *f, char *fn, double *a, Dimen *w, Dimen *h)
{ double wpx,hpx;
  double xppm,yppm;
  GET_IMG_BUF(2);
  if (!Match2(0,'B','M')) return false;
  GET_IMG_BUF(0x2E);
  wpx=(double)LittleEndian32(0x12); /*width in pixel*/
  hpx=(double)LittleEndian32(0x16); /*height in pixel*/
  xppm=(double)LittleEndian32(0x26); /* horizontal pixel per meter*/
  yppm=(double)LittleEndian32(0x2A); /* vertical pixel per meter*/
  *w= floor(0.5+ONE*(72.00*1000.0/25.4)*wpx/xppm);
  *h= floor(0.5+ONE*(72.00*1000.0/25.4)*hpx/yppm);
  *a = (wpx/xppm)/(hpx/yppm);
  return true;
}
@ 

Now we repeat this process for image files using the Portable Network
Graphics file format. This file format is well suited to simple
graphics that do not use color gradients.  These images usually have
the extension {\tt .png} and start with an eight byte signature:
|0x89| followed by the ASCII Codes `P', `N', `G', followd by a
carriage return (|0x0D| and line feed (|0x0A|), an DOS end-of-file
character (|0x1A|) and final line feed (|0x0A|).  After the signature
follows a list of chunks. The first chunk is the image header chunk.
Each chunk starts with the size of the chunk stored as big-endian 32
bit integer, followed by the chunk name stored as four ASCII codes
followed by the chunk data and a CRC.  The size, as stored in the
chunk, does not include the size itself, nor the name, and neither the
CRC.  The first chunk is the IHDR chunk.  The chunk data of the IHDR
chunk starts with the width and the height of the image in pixels
stored as 32 bit big-endian integers.

Finding the image resolution takes some more effort. The image
resolution is stored in an optional chunk named ``pHYs'' for the
physical pixel dimensions.  All we know is that this chunk, if it
exists, will appear after the IHDR chunk and before the (required)
IDAT chunk. The pHYs chunk contains two 32 bit big-endian integers,
giving the horizontal and vertical pixels per unit, and a one byte
unit specifier, which is either 0 for an undefined unit or 1 for the
meter as unit. With an undefined unit, only the aspect ratio of the
pixels and hence the aspect ratio of the image can be determined.


@<auxiliar image functions@>=
static bool get_PNG_info(FILE *f, char *fn, double *a, Dimen *w, Dimen *h)
{ int pos, size;
  double wpx,hpx;
  double xppu,yppu;
  int unit;
  GET_IMG_BUF(24);
  if (!Match4(0, 0x89, 'P', 'N', 'G') ||
      !Match4(4, 0x0D, 0x0A, 0x1A, 0x0A)) return false;
  size=BigEndian32(8);
  if (!Match4(12,'I', 'H', 'D', 'R')) return false;
  wpx=(double)BigEndian32(16);
  hpx=(double)BigEndian32(20);
  pos=20+size;
  while (true)
  { if (fseek(f,pos,SEEK_SET)!=0) return false;
    img_buf_size=0;
    GET_IMG_BUF(17);
    size=BigEndian32(0);
    if (Match4(4,'p', 'H', 'Y', 's'))
    { xppu =(double)BigEndian32(8);  
      yppu =(double)BigEndian32(12);
      unit=img_buf[16];
      if (unit==0)
      { *a =(wpx/xppu)/(hpx/yppu);
        return true;
      }
      else if (unit==1)
      {
        *w=floor(0.5+ONE*(72.00/0.0254)*wpx/xppu);
        *h=floor(0.5+ONE*(72.00/0.0254)*hpx/yppu);
        *a = (wpx/xppu)/(hpx/yppu);
        return true;
      }
      else
        return false;
    }
    else if  (Match4(4,'I', 'D', 'A', 'T'))
      return false;
    else
      pos=pos+12+size;
  }
  return false;
}
@ 

For photographs, the JPEG File Interchange Format (JFIF) is more
appropriate.  JPEG files come with all sorts of file extensions like
{\tt .jpg}, {\tt .jpeg}, or {\tt .jfif}.  We check the file siganture:
it starts with the the SOI (Start of Image) marker |0xFF|, |0xD8|
followed by the JIFI-Tag. The JIFI-Tag starts with the segment marker
APP0 (|0xFF|, |0xE0|) followed by the 2 byte segment size, followed by
the ASCII codes `J', `F', `I', `F' followed by a zero byte.  Next is a
two byte version number which we do not read.  Before the resolution
proper there is a resolution unit indicator byte (0 = no units, 1 =
dots per inch, 2 = dots per cm) and then comes the horizontal and
vertical resolution both as 16 Bit big-endian integers.  To find the
actual width and height, we have to search for a start of frame marker
(|0xFF|, |0xC0|+$n$ with $0\le n\le 15$). Which is followed by the 2
byte segment size, the 1 byte sample precission, the 2 byte height and
the 2 byte width.


@<auxiliar image functions@>=
static bool get_JPG_info(FILE *f, char *fn,  double *a, Dimen *w, Dimen *h)
{ int pos, size;
  double wpx,hpx;
  double xppu,yppu;
  int unit;
  GET_IMG_BUF(18);

  if (!Match4(0, 0xFF,0xD8, 0xFF, 0xE0)) return false;
  size=BigEndian16(4);
  if (!Match4(6,'J', 'F', 'I', 'F')) return false;
  if (img_buf[10] != 0) return false; 
  unit=img_buf[13];
  xppu=(double)BigEndian16(14);
  yppu=(double)BigEndian16(16);
  pos=4+size;
  while (true)
  { if (fseek(f,pos,SEEK_SET)!=0) return false;
    img_buf_size=0;
    GET_IMG_BUF(10);
    if (img_buf[0] != 0xFF) return false; /* Not the start of a segment */
    if ( (img_buf[1]&0xF0) == 0xC0) /* Start of Frame */
    { hpx =(double)BigEndian16(5);  
      wpx =(double)BigEndian16(7);
      if (unit==0)
      { *a = (wpx/xppu)/(hpx/yppu);
        return true;
      }
      else if (unit==1)
      { *w = floor(0.5+ONE*72.00*wpx/xppu);
        *h = floor(0.5+ONE*72.00*hpx/yppu);
        *a = (wpx/xppu)/(hpx/yppu);
        return true;
      }
      else if (unit==2)
      { *w = floor(0.5+ONE*(72.00/2.54)*wpx/xppu);
        *h = floor(0.5+ONE*(72.00/2.54)*hpx/yppu);
        *a = (wpx/xppu)/(hpx/yppu);
        return true;
      }
      else
        return false;
    }
    else
    { size=  BigEndian16(2);
      pos=pos+2+size;
    }
  }
  return false;
}
@ 

There is still one image format missing: scalable vector graphics.
In the moment, I tend not to include a further image format into
the definition of the \HINT\ file format but instead use the
PostScript subset that is used for Type 1 fonts to encode
vector graphics. Any \HINT\ viewer must support Type 1
PostScript fonts and hence it has already the necessary interpreter.
So it seems reasonable to put the burden of converting vector graphics
into a Type 1 PostScript font on the generator of \HINT\ files
and keep the \HINT\ viewer as small and simple as possible.
Now we determine width, height
and aspect ratio  based on an image file.


We combine all three functions into the |hget_image_dimens|
function.

@<auxiliar image functions@>=
static void hget_image_dimens(int n, double *a, Dimen *w, Dimen *h)
{ char *fn;
  FILE *f;
  *a=0.0;
  *w=*h=0;
  fn=dir[n].file_name;
  f=fopen(fn,"rb");
  if (f!=NULL)
  { img_buf_size=0;
    if (!get_BMP_info(f,fn,a,w,h) &&
      !get_PNG_info(f,fn,a,w,h) &&
      !get_JPG_info(f,fn,a,w,h))
    DBG(DBGDEF,"Unknown image type %s",fn);
    fclose(f); 
    DBG(DBGDEF,"image %d: width= %fpt height= %fpt\n",
             n,*w/(double)ONE,*h/(double)ONE);
  }
}
@

\subsection{Positions, Outlines, Links, and Labels}\label{labels}
\index{position}\index{outline}\index{link}\index{label}
A viewer can usually not display the entire content section of
a \HINT\ file. Instead it will display a page of content and will give
its user various means to change the page. This might be as simple as
a ``page down'' or ``page up'' button (or gesture) and as
sophisticated as searching using regular expressions.  More
traditional ways to navigate the content include the use of a table of
content or an index of keywords. All these methods of changing a page
have in common that a part of the content that fits nicely in the
screen area provided by the output device must be rendered given a
position inside the content section.


Let's assume that the viewer uses a \HINT\ file in short
format---after all that's the format designed for precisely this use.
A position inside the content section is then the position of the
starting byte of a node. Such a position can be stored as a 32 bit
number. Because even the smallest node contains two tag bytes,
the position of any node is strictly smaller than the maximum 32 bit
number which we can conveniently use as a ``non position''.

@<hint macros@>=
#define HINT_NO_POS 0xFFFFFFFF
@

To render a page starting at a given position is not difficult:
We just read content nodes, starting at the given position and feed
them to \TeX's page builder until the page is complete. To implement a
``clickable'' table of content this is good enough. We store with
every entry in the table of content the position of the section
header, and when the user clicks the entry, the viewer can display a
new page starting exactly with that section header.

Things are slightly more complex if we want to implement a ``page
down'' button. If we press this button, we want the next page to 
start exactly where the current page has ended.  This is
typically in the middle of a paragraph node, and it might even be in
the middle of an hyphenated word in that paragraph. Fortunately,
paragraph and table nodes are the only nodes that can be broken across page
boundaries. But broken paragraph nodes are a common case non the less, 
and unless we want to search for the enclosing node, we need to
augment in this case the primary 32 bit position inside the content
section with a secondary position. Most of the
time, 16 bit will suffice for this secondary position if we give it
relative to the primary position. Further, if the list of nodes forming the
paragraph is given as a text, we need to know the current font at the
secondary position. Of course, the viewer can find it by scanning the
initial part of the text, but when we think of a page down button, the
viewer might already know it from rendering the previous page.

Similar is the case of a ``page up'' button. Only here we need a page
that ends precisely where our current page starts. Possibly even with
the initial part of a hyphenated word. Here we need a reverse version
of \TeX's page builder that assembles a ``good'' page from the bottom
up instead of from the top down.  Sure the viewer can cache the start
position of the previous page (or the rendering of the entire page) if
the reader has reached the current page using the page down
button. But this is not possible in all cases. The reader might have
reached the current page using the table of content or even an index
or a search form.

This is the most complex case to consider: a link from an index or a
search form to the position of a keyword in the main text. Let's assume
someone looks up the word ``M\"unchen''.  Should the viewer then
generate a page that starts in the middle of a sentence with the word
``M\"unchen''? Probably not! We want a page that shows at least the whole sentence if
not the whole paragraph.  Of course the program that generates the
link could specify the position of the start of the paragraph instead
of the position of the word. But that will not solve the problem. Just
imagine reading the groundbreaking masterpiece of a German philosopher
on a small hand-held device: the paragraph will most likely be very
long and perhaps only part of the first sentence will fit on the small
screen. So the desired keyword might not be found on the page that
starts with the beginning of the paragraph; it might not even be on
the next or next to next page. Only the viewer can decide what is the
best fragment of content to display around the position of the given
keyword.

To summarize, we need three different ways to render a page for a given position:
\itemize
\item A page that starts exactly at the given position.
\item A page that ends exactly at the given position.
\item The ``best'' page that contains the given position somewhere in the middle.
\enditemize

\noindent
A possible way to find the ``best'' page for the latter case 
could be the following:
\itemize
\item If the position is inside a paragraph, break the paragraph 
  into lines. One line will contain
  the given position. Let's call this the destination line.
\item If the paragraph will not fit entirely on the page, 
  start the page with the beginning of the 
  paragraph if that will place the destination line on the page, otherwise
  start with a line in the paragraph that is about half a page 
  before the destination line. 
\item Else traverse the content list backward for about $2/3$ of the
  page height and forward for about $2/3$ of the page height, searching
  for the smallest negative penalty node.  Use the penalty node found as
  either the beginning or ending of the page.  
\item If there are several equally low negative penalty nodes. Prefer
  penalties preceding the destination line over penalty nodes following
  it. A good page start is more important than a good page end.
\item If there are are still several equally low negative penalty
  nodes, choose the one whose distance to the destination line is closest
  to $1/2$ of the page height.  
\item If no negative penalty nodes could be found, start the page with
  the paragraph containing the destination line.  
\item Once the page start (or end) is found, use \TeX's page builder
  (or its reverse variant) to complete the page.
\enditemize

We call content nodes that reference some position inside the content section 
``link'' nodes. The position that is referenced is called the destination of the link.
Link nodes occur always in pairs of an ``on'' link 
followed by a corresponding ``off'' link that both reference the same position
%, the same nesting level, % not sure!
and no other link nodes between them. 
The content between the two will constitute the visible part of the link.

To encode a position inside the content section that can be used
as the destination of a link node, an other kind of node is needed which
we call a ``label''.

Links are not the only way to navigate inside a large
document. The user interface can also present an ``outline'' 
of the document that can be used for navigation.
An outline node implements an association between a name displayed by the
user interface of the \HINT\ viewer and the destination position in the \HINT\ document.

It is possible though that outline nodes, link nodes, and label nodes can share
the same kind-value and we have |outline_kind==link_kind==label_kind|.
To distinguish an outline node from a label node---both occur
in the short format definition section---the |b100| info bit is set in an 
outline node.


@<get functions@>=
void hget_outline_or_label_def(Info i,  uint32_t node_pos)
{ @+if (i&b100)
   @<get and write an outline node@>@;
  else
    @<get and store a label node@>@;
}
@

The next thing we need to implement is a new maximum number
for outline nodes. We store this number in the variable
|max_outline| and limit it to a 16 bit value.

In the short format, the value of |max_outline| is stored with the 
other maximum values using the kind value |outline_kind==label_kind| and the info 
value |b100| for single byte and |b101| for a two byte value.

\codesection{\getsymbol}{Reading the Short Format}\getindex{1}{7}{Special Maximum Values}
@<cases of getting special maximum values@>=
@t\1\kern1em@>
case TAG(outline_kind,b100):
case TAG(outline_kind,b101): max_outline=n;
   DBG(DBGDEF|DBGLABEL,"max(outline) = %d\n",max_outline); break;
@

\codesection{\putsymbol}{Writing the Short Format}\putindex{1}{7}{Special Maximum Values}
@<cases of putting special maximum values@>=
if (max_outline>-1)
{ uint32_t pos=hpos++-hstart;
  DBG(DBGDEF|DBGLABEL,"max(outline) = %d\n",max_outline);
  hput_tags(pos,TAG(outline_kind,b100|(hput_n(max_outline)-1)));
}
@

\codesection{\wrtsymbol}{Writing the Long Format}\wrtindex{1}{7}{Special Maximum Values}
@<cases of writing special maximum values@>=
@t\1\kern1em@>
case label_kind:
if (max_ref[label_kind]>-1)@/
{ hwrite_start();
  hwritef("label %d",max_ref[label_kind]);
  hwrite_end();@+
}
if (max_outline>-1)@/
{ hwrite_start();
  hwritef("outline %d", max_outline);
  hwrite_end();@+
}
break;
@

\codesection{\redsymbol}{Reading the Long Format}\redindex{1}{7}{Special Maximum Values}
@<parsing rules@>=
max_value: OUTLINE UNSIGNED  { max_outline=$2;
     RNG("max outline",max_outline,0, 0xFFFF);
     DBG(DBGDEF|DBGLABEL,"Setting max outline to %d\n",max_outline);
 };
@

After having seen the maximum values, we now explain labels, then links,
and finally outlines.


To store labels, we define a data type |Label| and an array |labels| 
indexed by the  labels reference number.

@<hint basic types@>=
typedef struct 
{@+ uint32_t pos; /* position */
    uint8_t where; /* where on the rendered page */
    bool used; /* label used in a link or an outline */
    int next; /* reference in a linked list */
    uint32_t pos0;@+ uint8_t f; /* secondary position */
} Label;
@

The |where| field indicates where the label position
should be on the rendered page: at the top,
at the bottom, or somewhere in the middle.
An undefined label has |where| equal to zero. 

@<hint macros@>=
#define LABEL_UNDEF 0
#define LABEL_TOP 1
#define LABEL_BOT 2
#define LABEL_MID 3
@

@<common variables@>=
Label *labels;
int first_label=-1;
@
The variable |first_label| will be used together with the |next| field of
a label to construct a linked list of labels.

@<initialize definitions@>=
if (max_ref[label_kind]>=0)@/
  ALLOCATE(labels,max_ref[label_kind]+1,Label);
@

The implementation of labels has to solve the
problem of forward links:
a link node that references a label
that is not yet defined. 
We solve this problem by
keeping all labels in the definition section.
So for every label at least a definition is available 
before we start with the content section and we can fill
in the position when the label is found.
If we restrict labels to the definition section and
do not have an alternative representation, the number of possible references
is a hard limit on the number of labels in a document.
Therefore label references are allowed to use 16 bit reference numbers.
In the short format, 
the |b001| bit indicates a two byte reference number if set, and a one byte
reference number otherwise.

In the short format, the complete information about a label is in the definition section.
In the long format, this is not possible because we do not have node positions. 
Therefore we will put label nodes at appropriate points in the content section
and compute the label position when writing the short format.

\gdef\subcodetitle{Labels}
\readcode
@s LABEL symbol
@s BOT symbol
@s MID symbol
@s placement symbol

@<symbols@>=
%token LABEL "label"
%token BOT "bot"
%token MID "mid"
%type <i> placement
@

@<scanning rules@>=
::@=label@>         :< return LABEL; >:
::@=bot@>          :< return BOT; >:
::@=mid@>          :< return MID; >:
@

A label node specifies the reference number and a placement.

@<parsing rules@>=
placement: TOP {$$=LABEL_TOP;} |  BOT {$$=LABEL_BOT;} |  MID {$$=LABEL_MID;} | {$$=LABEL_MID;};
content_node: START LABEL REFERENCE placement END @|
              {  hset_label($3,$4); @+}
@


After parsing a label, the function |hset_label| is called.

@<put functions@>=
void hset_label(int n,int w )
{ Label *t;
  REF_RNG(label_kind,n);
  t=labels+n;@/
  if (t->where!=LABEL_UNDEF)
    MESSAGE("Duplicate definition of label %d\n",n);
  t->where=w;
  t->pos=hpos-hstart;
  t->pos0=hpos0-hstart;
  t->next=first_label; first_label=n;
}
@


All that can be done by the above function
is storing the data obtained in the |labels| array.
The generation of the short format output is
postponed until the entire content section has been parsed and
the positions of all labels are known.

One more complication needs to be considered: The |hput_list| function
is allowed to move lists in the output stream and if positions
inside the list were recorded in a label, these labels need an
adjustment. To find out quickly if any labels are affected, 
the |hset_label| function 
constructs a linked list of labels starting with the reference number
of the most recent label in |first_label| and the 
reference number of the label preceding label |i| in |labels[i].next|.
Because labels are recorded with increasing positions,
the list will be sorted with positions decreasing.

@<adjust label positions after moving a list@>=
{ int i;
  for (i=first_label;i>=0 && labels[i].pos>=l->p;i=labels[i].next)
  { DBG(DBGNODE|DBGLABEL,"Moving label *%d by %d\n", i,d);@/
    labels[i].pos+=d;
    if (labels[i].pos0>=l->p) labels[i].pos0+=d;
  }
}
@


The |hwrite_label| function\label{hwritelabel} is the reverse of the above parsing rule.
Note that it is different from the
usual |hwrite_|\dots\ functions. And we will see shortly why that is so.

%see |hwrite_range|
\writecode
@<write functions@>=
void hwrite_label(void)  /* called in |hwrite_end| and at the start of a list */
{@+ while (first_label>=0 && (uint32_t)(hpos-hstart)>=labels[first_label].pos)@/
  { Label *t=labels+first_label;
    DBG(DBGLABEL,"Inserting label *%d\n", first_label);
    hwrite_start();
    hwritef("label *%d",first_label);
    if (t->where==LABEL_TOP) hwritef(" top");
    else if (t->where==LABEL_BOT) hwritef(" bot");
    nesting--;hwritec('>'); /* avoid a recursive call to |hwrite_end| */
    first_label=labels[first_label].next;
  }
}
@

The short format specifies the label positions in the definition section.
This is not possible in the long format because there are no ``positions''
in the long format. Therefore long format label nodes must
be inserted in the content section just before those nodes
that should come after the label. The function |hwrite_label| is called
in |hwrite_end|. At that point |hpos| is the position of the next node
and it can be compared with the positions of the labels taken from
the definition section. 
Because |hpos| is strictly increasing while reading the content section,
the comparison can be made efficient by sorting the labels. 
The sorting uses the |next| field in the 
array of |labels| to construct a linked list. After sorting, the value of 
|first_label| is the index of the label with the smallest position; 
and for each |i|, the value of |labels[i].next| is the index of
the label with the next bigger position. If |labels[i].next| is negative,
there is no next bigger position.
Currently a simple insertion sort is used.
The insertion sort will work well if the labels are already
mostly in ascending order.
If we expect lots of labels in random order,
a more sophisticated sorting algorithm might be appropriate.



@<write functions@>=
void hsort_labels(void)
{ int i;
  if (max_ref[label_kind]<0)
  { first_label=-1; return; @+} /* empty list */
  first_label=max_ref[label_kind];
  while (first_label>=0 && labels[first_label].where==LABEL_UNDEF)
    first_label--;
  if (first_label<0) return; /* no defined labels */  
  labels[first_label].next=-1;
  DBG(DBGLABEL,"Sorting %d labels\n",first_label+1);
  for (i=first_label-1; i>=0; i--) /* insert label |i| */
    if (labels[i].where!=LABEL_UNDEF)@/
    { uint32_t pos=labels[i].pos;
      if (labels[first_label].pos >= pos)@/
      {  labels[i].next= first_label; first_label=i;@+ } /* new smallest */
      else @/
      { int j;
        for (j= first_label;
             labels[j].next>=0 && labels[labels[j].next].pos<pos; 
             j=labels[j].next) continue;
        labels[i].next=labels[j].next; labels[j].next=i;
      }
    }
}
@


The following code is used to get label information from the
definition section and store it in the |labels| array. 
The |b010| bit indicates the presence of a secondary position for the label.

\getcode
@<get and store a label node@>=
{ Label *t;
  int n;
  if (i&b001) HGET16(n); @+else n=HGET8;
  REF_RNG(label_kind,n);
  t=labels+n;
  if (t->where!=LABEL_UNDEF)
     DBG(DBGLABEL,"Duplicate definition of label %d at 0x%x\n",n, node_pos);
  HGET32(t->pos);
  t->where=HGET8;
  if (t->where==LABEL_UNDEF || t->where>LABEL_MID) 
    DBG(DBGLABEL,"Label %d where value invalid: %d at 0x%x\n",n,t->where,node_pos);
  if (i&b010) /* secondary position */
  { HGET32(t->pos0); t->f=HGET8;@+}
  else t->pos0=t->pos;
  DBG(DBGLABEL,"Defining label %d at 0x%x\n",n,t->pos);
}
@


The function |hput_label| is simply the reverse of the above code.

\putcode
@<put functions@>=
uint8_t hput_label(int n, Label *l)
{ Info i=b000;
  HPUTX(13); 
  if (n>0xFF) {i|=b001; HPUT16(n);@+}@+ else HPUT8(n);
  HPUT32(l->pos);
  HPUT8(l->where);
  if (l->pos!=l->pos0)
  { i|=b010; HPUT32(l->pos0); HPUT8(l->f); @+} 
  return TAG(label_kind,i);
}
@

|hput_label_defs| is called by the parser after the entire content
section has been processed; it appends the label definitions 
to the definition section. 
%Using the fact that the linked list
%starting at |first_label| already contains all labels in
%order of descending position, we could easily output the
%labels in sorted order and reconstruct the sorting while reading
%in the labels. The \HINT\ format however does not require
%label nodes to be sorted and the |hsort_labels| function
%can not be avoided.
The outlines are stored after the labels because they reference the labels.
@<put functions@>=
extern void hput_definitions_end(void);
extern uint8_t hput_outline(Outline *t);
void hput_label_defs(void)
{ int n;
  section_no=1;
  hstart=dir[1].buffer;
  hend=hstart+ dir[1].bsize;
  hpos=hstart+dir[1].size;@/
  @<output the label definitions@>@;
  @<output the outline definitions@>@;
  hput_definitions_end();
}
@

@<output the label definitions@>= 
 for (n=0; n<=max_ref[label_kind]; n++)@/
  { Label *l=labels+n;
    uint32_t pos;
    if (l->used)@/
    { pos=hpos++-hstart;
      hput_tags(pos,hput_label(n,l));
      if (l->where==LABEL_UNDEF)
        MESSAGE("WARNING: Label *%d is used but not defined\n",n);
      else 
        DBG(DBGDEF|DBGLABEL,"Label *%d defined 0x%x\n",n,pos);@/
    }
    else
    { if (l->where!=LABEL_UNDEF)
      { pos=hpos++-hstart;
        hput_tags(pos,hput_label(n,l));
        DBG(DBGDEF|DBGLABEL,"Label *%d defined but not used 0x%x\n",n,pos);@/
      }
    }
  }
@

Links are simpler than labels. They are found only in the
content section and resemble pretty much what we have seen for other
content nodes. Let's look at them next.
When reading a short format link node,
we use again the |b001| info bit to indicate a 16 bit reference
number to a label. The |b010| info bit indicates an ``on'' link.
\gdef\subcodetitle{Links}
\getcode
@<get macros@>=
#define @[HGET_LINK(I)@] @/\
{ int n; if (I&b001) HGET16(n);@+ else n=HGET8; @+ hwrite_link(n,I&b010); @+}
@

@<cases to get content@>=
@t\1\kern1em@>
case TAG(link_kind,b000): @+ HGET_LINK(b000);@+ break;
case TAG(link_kind,b001): @+ HGET_LINK(b001);@+ break;
case TAG(link_kind,b010): @+ HGET_LINK(b010);@+ break;
case TAG(link_kind,b011): @+ HGET_LINK(b011);@+ break;
@

The function |hput_link| will insert the link in the output stream and return
the appropriate tag.

\putcode
@<put functions@>=
uint8_t hput_link(int n, int on)
{ Info i;
  REF_RNG(label_kind,n);
  labels[n].used=true;
  if (on) i=b010;@+ else i=b000;
  if (n>0xFF) { i|=b001; HPUT16(n);@+} @+else HPUT8(n);
  return TAG(link_kind,i);
}
@

\readcode
@s LINK symbol
@<symbols@>=
%token LINK "link"
@
@<scanning rules@>=
::@=link@>          :< return LINK; >:
@

@<parsing rules@>=
content_node:start LINK REFERENCE on_off END
    {@+ hput_tags($1,hput_link($3,$4));@+ };
@

\writecode
@<write functions@>=
void hwrite_link(int n, uint8_t on)
{ REF_RNG(label_kind,n);
  if (labels[n].where==LABEL_UNDEF)
    MESSAGE("WARNING: Link to an undefined label %d\n",n);
  hwrite_ref(n);
  if (on) hwritef(" on");
  else hwritef(" off");
}
@

Now we look at the
outline nodes which are found only in the definition section. 
Every outline node is associated with a label node, giving the position in the
document, and a unique title that should tell the user
what to expect when navigating to this position. For example
an item with the title ``Table of Content'' should navigate
to the page that shows the table of content.
The sequence of outline nodes found in the definition section
gets a tree structure by assigning to each item a depth level.

@<hint types@>=
typedef struct {@+
uint8_t *t; /* title */
int      s; /* title size */
int d;   /* depth */
uint16_t r; /* reference to a label */
} Outline;
@

@<shared put variables@>=
Outline *outlines;
@

@<initialize definitions@>=
if (max_outline>=0)@/
  ALLOCATE(outlines,max_outline+1,Outline);
@

Child items follow their parent item and have a bigger depth level.
In the short format, the first item must be a root item, with
a depth level of 0. Further, if any item has the depth $d$, then the
item following it must have either the same depth $d$ in which
case it is a sibling, or the depth $d+1$ in which case it is a child,
or a depth $d^\prime$ with $0\le d^\prime<d$ in which case it is a sibling
of the latest ancestor with depth $d^\prime$. Because the depth is
stored in a single byte, the maximum depth is |0xFF|.

In the long format, the depth assignments are more flexible.
We allow any signed integer, but insist that the depth
assignments can be compressed to depth levels for the
short format using the following algorithm:

@<compress long format depth levels@>=
n=0;@+
while (n<=max_outline)
  n=hcompress_depth(n,0);
@
Outline items must be listed in the order
in which they should be displayed.
The function |hcompress_depth(n,c)| will compress the subtree starting at  
|n| with root level |d| to a new tree with the same structure
and root level |c|. It returns the outline number of the
following subtree.

@<put functions@>=
int hcompress_depth(int n, int c)
{ int d=outlines[n].d;
  if (c>0xFF) 
    QUIT("Outline %d, depth level %d to %d out of range",n,d,c);
  while (n<=max_outline)
    if (outlines[n].d==d)
      outlines[n++].d=c;
    else if (outlines[n].d>d)
      n=hcompress_depth(n,c+1);
    else break;
  return n;
}
@

For an outline node, the |b001| bit indicates a two byte reference to a label.
There is no reference number for an outline item itself:
it is never referenced anywhere in an \HINT\ file.

\gdef\subcodetitle{Outlines}
\vbox{\getcode\vskip -\baselineskip\writecode}

@<get and write an outline node@>=
  { int r,d;
    List l;
    static int outline_no=-1;
    hwrite_start();@+hwritef("outline"); 
    ++outline_no;
    RNG("outline",outline_no, 0, max_outline);
    if (i&b001) HGET16(r);@+ else r=HGET8;
    REF_RNG(link_kind,r);
    if (labels[r].where==LABEL_UNDEF)@/
      MESSAGE("WARNING: Outline with undefined label %d at 0x%x\n",@|r, node_pos);
    hwritef(" *%d",r);@/
    d=HGET8;  hwritef(" %d",d);@/
    hget_list(&l);hwrite_list(&l);@/
    hwrite_end();
  }
@

When parsing an outline definition in the long format,
we parse the outline title as a |list| which will
write the representation of the list to the output stream.
Writing the outline definitions, however, must be postponed
until the label have found their way into the definition
section. So we save the list's representation in the
outline node for later use and remove it again from the
output stream.

\readcode
@s OUTLINE symbol

@<symbols@>=
%token OUTLINE "outline"
@

@<scanning rules@>=
::@=outline@>         :< return OUTLINE; >:
@

@<parsing rules@>=
def_node: START OUTLINE REFERENCE integer position list END {
        static int outline_no=-1;
        $$.k=outline_kind; $$.n=$3; 
        if ($6.s==0)  QUIT("Outline with empty title in line %d",yylineno);
        outline_no++;
        hset_outline(outline_no,$3,$4,$5);
       };
@

@<put functions@>=
void hset_outline(int m, int r, int d, uint32_t pos)
{ Outline *t;
  RNG("Outline",m,0,max_outline);
  t=outlines+m;
  REF_RNG(label_kind,r);
  t->r=r;
  t->d=d;
  t->s=hpos-(hstart+pos);
  hpos=(hstart+pos);
  ALLOCATE(t->t,t->s,uint8_t);
  memmove(t->t,hpos,t->s);
  labels[r].used=true;
}
@
To output the title, we need to move the list back to the output stream.
Before doing so, we allocate space (and make sure there is room left for the 
end tag of the outline node), and after doing so, we release
the memory used to save the title.

@<output the title of outline |*t|@>=
  memmove(hpos,t->t,t->s);
  hpos=hpos+t->s;
  free(t->t);
@

We output all outline definitions from 0 to |max_outline| and
check that every one of them has a title. Thereby we make sure
that in the short format |max_outline| matches the number of 
outline definitions.

\putcode
@<put functions@>=
uint8_t hput_outline(Outline *t)
{ Info i=b100;
  HPUTX(t->s+4); 
  if (t->r>0xFF) {i|=b001; @+HPUT16(t->r);@+} @+else HPUT8(t->r);
  labels[t->r].used=true;
  HPUT8(t->d);
  @<output the title of outline |*t|@>@;
  return TAG(outline_kind,i);
}
@

@<output the outline definitions@>=
@<compress long format depth levels@>@;
for (n=0;n<=max_outline;n++)
{ Outline *t=outlines+n;
  uint32_t pos;
  pos=hpos++-hstart;
  if (t->s==0 || t->t==NULL)
    QUIT("Definition of outline %d has an empty title",n);
  DBG(DBGDEF|DBGLABEL,"Outline *%d defined\n",n);@/
  hput_tags(pos,hput_outline(t));
}
@

\subsection{Colors}
Colors\index{color} are certainly one of the features you will find in the final \HINT\ file format.
Here some remarks must suffice.

A \HINT\ viewer must be capable of rendering a page given just any valid
position inside the content section. Therefore \HINT\ files are stateless;
there is no need to search for preceding commands that might change a state
variable.
As a consequence, we can not just define a ``color change node''.
Colors could be specified as an optional parameter of a glyph node, but the
amount of data necessary would be considerable. In texts, on the other hand,
a color change control code would be possible because we parse texts only in forward
direction. The current font  would then become a current color and font with the appropriate
changes for positions.  

A more attractive alternative would be to specify colored fonts. 
This would require an optional
color argument for a font. For example one could have a cmr10 font in black as
font number 3, and a cmr10 font in blue as font number 4. Having 256 different fonts,
this is definitely a possibility because rarely you would need that many fonts 
or that many colors. If necessary and desired, one could allow 16 bit font numbers
of overcome the problem.

Background colors could be associated with boxes as an optional parameter.

 
\section{Replacing \TeX's Page Building Process}

\TeX\ uses an output\index{output routine} routine to finalize the page. It uses the accumulated material
from the page builder, found in {\tt box255}, attaches headers, footers, and floating material
like figures, tables, and footnotes. The latter material is specified by insert nodes
while headers and footers are often constructed using mark nodes.
Running an output routine requires the full power of the \TeX\ engine and will not be
part of the \HINT\ viewer. Therefore, \HINT\ replaces output routines by page templates\index{template}.
As \TeX\ can use different output routines for different parts of a book---for example
the index might use a different output routine than the main body of text---\HINT\ 
will allow multiple page templates. To support different output media, the page
templates will be named and a suitable user interface may offer the user a selection
of possible page layouts. In this way, the page layout remains in the hands of the
book designer, and the user has still the opportunity to pick a layout that best fits
the display device.

\TeX\ uses insertions to describe floating content that is not necessarily displayed 
where it is specified. Three examples may illustrate this:
\itemize
\item Footnotes\footnote*{Like this one.}  are specified in the middle of the text but are displayed at the
bottom of the page.  Several
footnotes\index{footnote} on the same page are collected and displayed together. The
page layout may specify a short rule to separate footnotes from the
main text, and if there are many short footnotes, it may use two columns
to display them.  In extreme cases, the page layout may demand a long
footnote to be split and continued on the next page.

\item Illustrations\index{illustration} may be displayed exactly where specified if there is enough
room on the page, but may move to the top of the page, the bottom of the page,
the top of next page, or a separate page at the end of the chapter.

\item Margin notes\index{margin note} are displayed in the margin on the same page starting at the top
of the margin.
\enditemize

\HINT\ uses page templates and content streams to achieve similar effects.
But before I describe the page building\index{page building} mechanisms of \HINT, let me summarize \TeX's page builder.

\TeX's page builder ignores leading glue\index{glue}, kern\index{kern}, and penalty\index{penalty} nodes until the first
box\index{box} or rule\index{rule} is encountered; 
whatsit\index{whatsit node} nodes do not really contribute anything to a page; mark\index{mark node} nodes are recorded for later use.
Once the first box, rule, or insert\index{insert node} arrives, \TeX\ makes copies of all parameters
that influence the page building process and uses these copies. These parameters
are the |page_goal| and the |page_max_depth|. Further, the variables
|page_total|, |page_shrink|, |page_stretch|, |page_depth|,
and {\it insert\_pe\-nal\-ties\/} are initialized to zero.
The top skip\index{top skip} adjustment is made
when the first box or rule arrives---possibly after an insert.

Now the page builder accumulates material: normal material goes into {\tt box255}\index{box 255} and will change |page_total|, |page_shrink|, 
|page_stretch|, and |page_depth|. The latter is adjusted so that 
is does not exceed |page_max_depth|.

The handling of inserts\index{insert node} is more complex.
\TeX\ creates an insert class using \.{newinsert}. This reserves a number $n$
and four registers: {\tt box\hair$n$} for the inserted material, {\tt count\hair$n$} for the
magnification factor $f$, {\tt dimen\hair$n$} for the maximum size per page $d$, and {\tt skip\hair$n$} for the
extra space needed on a page if there are any insertions of class $n$.

For example plain \TeX\ allocates $n=254$ for footnotes\index{footnote} and sets
{\tt count254} to~$1000$, {\tt dimen254} to 8in, and {\tt skip254} to {\tt \BS bigskipamount}.

An insertion node will specify the insertion class $n$, some vertical material,
its natural height plus depth $x$, a {\it split\-\_top\-\_skip}, a {\it split\-\_max\_depth},
and a {\it floa\-ting\-\_pe\-nal\-ty}. 


Now assume that an insert node with subtype 254 arrives at the page builder.
If this is the first such insert, \TeX\ will decrease the |page_goal|
by the width of skip254 and adds its stretchability and shrinkability
to the total stretchability and shrinkability of the page. Later,
the output routine will add some space and the footnote rule to fill just that
much space and add just that much shrinkability and stretchability to the page.
Then \TeX\ will normally add the vertical material in the insert node to
box254 and decrease the |page_goal| by $x\times f/1000$.

Special processing is required if \TeX\ detects that there is not enough space on
the current page to accommodate the complete insertion.
If already a previous insert did not fit on the page, simply the |floating_penalty|
as given in the insert node is added to the total |insert_penalties|.
Otherwise \TeX\ will test that the total natural height plus depth of box254 
including $x$ does not exceed the maximum size $d$ and that the 
$|page_total| + |page_depth| + x\times f/1000 - |page_shrink| \le |page_goal|$.
If one of these tests fails, the current insertion
is split in such a way as to make the size of the remaining insertions just pass the tests
just stated.

Whenever a glue node, or penalty node, or a kern node that is followed by glue arrives
at the page builder, it rates the current position as a possible end of the page based on
the shrinkability of the page and the difference between |page_total| and |page_goal|.
As the page fills, the page breaks tend to become better and better until the
page starts to get overfull and the page breaks get worse and worse until
they reach the point where they become |awful_bad|. At that point,
the page builder returns to the best page break found so far and fires up the 
output routine.

Let's look next at the problems that show up when implementing a replacement mechanism for \HINT.

\enumerate
\item 
An insertion node can not always specify its height $x$ because insertions may contain paragraphs that need
to be broken in lines and the height of a paragraph depends in some non obvious way on
its width. 

\item 
Before the viewer can compute the height $x$, it needs to know the width of the insertion. Just imagine
displaying footnotes in two columns or setting notes in the margin. Knowing the width, it
can pack the vertical material and derive its height and depth.

\item
\TeX's plain format provides an insert macro that checks whether there is still space
on the current page, and if so, it creates a contribution to the main text body, otherwise it
creates a topinsert. Such a decision needs to be postponed to the \HINT\ viewer.

\item
\HINT\ has no output routines that would specify something like the space and the rule preceding the footnote.

\item 
\TeX's output routines have the ability to inspect the content of the boxes,
split them, and distribute the content over the page.
For example, the output routine for an index set in two column format might
expect a box containing index entries up to a height of $2\times\.{vsize}$.
It will split this box in the middle and display the top part in the left
column and the bottom part in the right column. With this approach, the
last page will show two partly filled columns of about equal size.

\item
\HINT\ has no mark nodes that could be used to create page headers or footers.
Marks, like output routines, contain token lists and need the full \TeX\ interpreter
for processing them. Hence, \HINT\ does not support mark nodes.
\endenumerate

Here now is the solution I have chosen for \HINT:

Instead of output routines, \HINT\ will use page templates.
Page templates are basically vertical boxes with placeholders marking the 
positions where the content of the box registers, filled by the page builder,
should appear. 
To output the page, the viewer traverses the page template,
replaces the placeholders by the appropriate box content, and 
sets the glue. Inside the page template, we can use insert nodes to act
as placeholders.

It is only natural to treat the page's main body, the
inserts, and the marks using the same mechanism. We call this
mechanism a content stream\index{stream}. 
Content streams are identified by a stream number in the range 0 to 254;
the number 255 is used to indicate an invalid stream number.
The stream number 0 is reserved for the main content stream; it is always defined.
Besides the main content stream, there are three types of streams:
\itemize
\item normal streams correspond to \TeX's inserts and accumulate content on the page,
\item first\index{first stream} streams correspond to \TeX's first marks and will contain only the first insertion of the page,
\item last\index{last stream} streams correspond to \TeX's bottom marks and will contain only the last insertion of the page, and
\item top\index{top stream} streams correspond to \TeX's top marks. Top streams are not yet implemented.
\enditemize

Nodes from the content section are considered contributions to stream 0 except
for insert nodes which will specify the stream number explicitly. 
If the stream is not defined or is not used in the current page template, its content is simply ignored.

The page builder needs a mechanism to redirect contributions from one content
stream to another content stream based on the availability of space.
Hence a \HINT\ content stream can optionally specify a preferred stream number,
where content should go if there is still space available, a next stream number,
where content should go if the present stream has no more space available, and
a split ratio if the content is to be split between these two streams before
filling in the template.

Various stream parameters govern the treatment of contributions to the stream
and the page building process.

\itemize
\item The magnification factor $f$: Inserting a box of height $h$ to this stream will contribute $h\times f/1000$
to the height of the page under construction. For example, a stream
that uses a two column format will have an $f$ value of 500; a stream
that specifies notes that will be displayed in the page margin will
have an $f$ value of zero.

\item The height $h$: The extended dimension $h$ gives the maximum height this 
stream is allowed to occupy on the current page.
To continue the previous example, a stream that will be split into two columns
will have $h=2\cdot\.{vsize}$ , and a stream that specifies
notes that will be displayed in the page margin will have
$h=1\cdot\.{vsize}$.  You can restrict the amount of space occupied by
footnotes to the bottom quarter by setting the corresponding $h$ value
to $h=0.25\cdot\.{vsize}$.

\item The depth $d$: The dimension $d$ gives the maximum depth this 
stream is allowed to have after formatting.

\item The width $w$: The extended dimension $w$ gives the width of this stream 
when formatting its content. For example margin notes
should have the width of the margin less some surrounding space.

\item The ``before'' list $b$: If there are any contributions to this
stream on the current page, the material in list $b$
is inserted {\it before\/} the material from the stream itself. For
example, the short line that separates the footnotes from the main
page will go, together with some surrounding space, into the list~$b$.

\item The top skip glue $g$: This glue is inserted between the material
from list $b$ and the first box of the stream, reduced
by the height of the first box. Hence it specifies the distance between
the material in $b$ and the first baseline of the stream content.

\item The ``after'' list $a$: The list $a$ is treated like list $b$ but
its material is placed {\it after\/} the  material from the stream itself.

\item The ``preferred'' stream number $p$:  If $p\ne 255$, it is the number of 
the {\it preferred\/} stream. If stream $p$ has still
enough room to accommodate the current contribution, move the
contribution to stream $p$, otherwise keep it.  For example, you can
move an illustration to the main content stream, provided there is
still enough space for it on the current page, by setting $p=0$.

\item The ``next'' stream number $n$: If $n\ne 255$, it is the number of the 
{\it next\/} stream. If a contribution can not be
accommodated in stream $p$ nor in the current stream, treat it as an
insertion to stream $n$.  For example, you can move contributions to
the next column after the first column is full, or move illustrations
to a separate page at the end of the chapter.

\item The split ratio\index{split ratio} $r$: If $r$ is positive, both $p$ and $n$ must 
be valid stream numbers and contents is not immediately moved to stream $p$ or $n$ as described before.
Instead the content is kept in the stream itself until the current page is complete.
Then, before inserting the streams into the page template, the content of
this stream is formatted as a vertical box, the vertical box is
split into a top fraction and a bottom fraction in the ratio $r/1000$
for the top and $(1000-r)/1000$ for the bottom, and finally the top
fraction is moved to stream $p$ and the bottom fraction to stream
$n$. You can use this feature for example to implement footnotes
arranged in two columns of about equal size. By collecting all the
footnotes in one stream and then splitting the footnotes with $r=500$
before placing them on the page into a right and left column.  Even
three or more columns can be implemented by cascades of streams using
this mechanism.
\enditemize

\subsection{Stream Definitions}
\index{stream}
There are four types of streams:  normal streams that work like \TeX's inserts;
and first, last, and top streams that work like \TeX's marks.
For the latter  types, the long format uses a matching keyword and the
short format the two least significant info bits. All stream definitions
start with the stream number.
In definitions of  normal streams after the number follows in this order
\itemize
\item the maximum insertion height,
\item the magnification factor, and
\item information about splitting the stream.
  It consists of: a preferred stream, a next stream, and a split ratio.
 An asterisk indicates a missing stream reference, in the
 short format the stream number 255 serves the same purpose.
\enditemize
All stream definitions finish with 
\itemize
\item the ``before'' list,
\item an extended dimension node specifying the width of the inserted material, 
\item the top skip glue,
\item  the ``after'' list,
\item and the total height, stretchability, and shrinkability of the material in
      the ``before'' and ``after'' list. 
\enditemize

A special case is the stream definition for stream 0, the main content stream.
None of the above information is necessary for it so it is omitted.
Stream definitions, including the definition of stream 0,
occur only inside page template definitions\index{template}
where they occur twice in two different roles:
In the stream definition list, they define properties of the stream 
and in the template they mark the insertion point (see section~\secref{page}).
In the latter case, stream nodes just contain the stream number.
Because a template looks like ordinary vertical material,
we like to use the same functions for parsing it.
But stream definitions are very different from stream content
nodes. To solve the problem for the long format,
the scanner will return two different tokens
when it sees the keyword ``{\tt stream}''. 
In the definition section, it will return
|STREAMDEF| and in the content section |STREAM|.
The same problem is solved in the short format 
by using the |b100| bit to mark a definition.

\goodbreak
\vbox{\readcode\vskip -\baselineskip\putcode}

@s STREAM symbol
@s STREAMDEF symbol
@s TOP symbol
@s FIRST symbol
@s LAST symbol
@s NOREFERENCE symbol
@s stream_type symbol
@s stream_info symbol
@s stream_split symbol
@s stream_link symbol
@s stream_def_node symbol
@s stream_ins_node symbol
@s stream_ref symbol


@<symbols@>=
%token STREAM "stream"
%token STREAMDEF "stream (definition)"
%token FIRST "first"
%token LAST "last"
%token TOP "top"
%token NOREFERENCE "*"
%type <info> stream_type
%type <u> stream_ref
%type <rf> stream_def_node
@

@<scanning rules@>=
::@=stream@>  :< if (section_no==1) return STREAMDEF; else return STREAM;@+ >:
::@=first@>  :< return FIRST; >:
::@=last@>  :< return LAST; >:
::@=top@>  :< return TOP; >:
::@=\*@>  :< return NOREFERENCE; >:
@

@<parsing rules@>=
stream_link: ref { REF_RNG(stream_kind,$1); } | NOREFERENCE {HPUT8(255);};
stream_split: stream_link stream_link UNSIGNED @/{RNG("split ratio",$3,0,1000); HPUT16($3);};
stream_info: xdimen_node UNSIGNED @/{RNG("magnification factor",$2,0,1000); HPUT16($2);} stream_split;

stream_type: stream_info {$$=0;} |FIRST {$$=1;} @+ | LAST {$$=2;} @+ |TOP {$$=3;} ;

stream_def_node: start STREAMDEF  ref  stream_type  @/ 
   list xdimen_node glue_node list glue_node END @/
   {@+ DEF($$,stream_kind,$3); @+ hput_tags($1,TAG(stream_kind,$4|b100));};

stream_ins_node: start STREAMDEF ref END@/
   { RNG("Stream insertion",$3,0,max_ref[stream_kind]); hput_tags($1,TAG(stream_kind,b100));};

content_node: stream_def_node @+ | stream_ins_node;
@


\goodbreak
\vbox{\getcode\vskip -\baselineskip\writecode}



@<get stream information for normal streams@>=
{ Xdimen x;
  uint16_t f,r;
  uint8_t n;
  DBG(DBGDEF,"Defining normal stream %d at " SIZE_F "\n",*(hpos-1),hpos-hstart-2);
  hget_xdimen_node(&x); @+hwrite_xdimen_node(&x); 
  HGET16(f); @+RNG("magnification factor",f,0,1000);@+ hwritef(" %d",f);
  n=HGET8; if (n==255) hwritef(" *"); else { REF_RNG(stream_kind,n);@+hwrite_ref(n);@+}
  n=HGET8; if (n==255) hwritef(" *"); else { REF_RNG(stream_kind,n);@+hwrite_ref(n);@+}
  HGET16(r); RNG("split ratio",r,0,1000); hwritef(" %d",r);
}
@

@<get functions@>=
static bool hget_stream_def(void)
{@+ if (KIND(*hpos)!=stream_kind || !(INFO(*hpos)&b100))
    return false;
  else
  { Ref df;
    @<read the start byte |a|@>@;
    DBG(DBGDEF,"Defining stream %d at " SIZE_F "\n",*hpos,hpos-hstart-1);
    DEF(df,stream_kind,HGET8);
    hwrite_start();@+hwritef("stream");@+@+hwrite_ref(df.n);
    if (df.n>0) 
    { Xdimen x; @+ List l;
      if (INFO(a)==b100) @<get stream information for normal streams@>@;
      else if (INFO(a)==b101) hwritef(" first");
      else if(INFO(a)==b110) hwritef(" last");
      else if (INFO(a)==b111) hwritef(" top");
      hget_list(&l);@+ hwrite_list(&l); 
      hget_xdimen_node(&x); @+hwrite_xdimen_node(&x); 
      hget_glue_node();@+
      hget_list(&l);@+ hwrite_list(&l);@+
      hget_glue_node();      
    }
    @<read and check the end byte |z|@>@;
    hwrite_end();
    return true;
  }
}

@

When stream definitions are part of the page template, we call them
stream insertion points. 
They contain only the stream reference and
are parsed by the usual content parsing functions.

@<cases to get content@>=
@t\1\kern1em@>
case TAG(stream_kind,b100): {uint8_t n=HGET8;@+ REF_RNG(stream_kind,n); @+hwrite_ref(n); @+ break; @+}
@


\subsection{Stream Content}
Stream\index{stream} nodes occur in the content section where they
must not be inside other nodes except toplevel
paragraph\index{paragraph} nodes.  A normal stream node contains in this
order: the stream reference number, the optional stream parameters,
and the stream content.  The content is either a vertical box or an
extended vertical box.  The stream parameters consists of the
|floating_penalty|, the |split_max_depth|, and the
|split_top_skip|. The parameterlist can be given
explicitly or as a reference.

In the short format, the info bits |b010| indicate
a normal stream content node with an explicit parameter list
and the info bits |b000| a normal stream with a parameter list reference.

If the info bit |b001| is set, we have a content node of type top, first,
or last. In this case, the short format has instead of the parameter list
a single byte indicating the type.
These types are currently not yet implemented.

\goodbreak
\vbox{\readcode\vskip -\baselineskip\putcode}

@s stream symbol

@<symbols@>=
%type <info> stream
@

@<parsing rules@>=
stream: empty_param_list list {$$=b010;} 
      | empty_param_list non_empty_param_list  list {$$=b010;} 
      | param_ref  list {$$=b000;};
content_node: start STREAM stream_ref stream END
              @/{@+hput_tags($1,TAG(stream_kind,$4)); @+}; 
@

\goodbreak
\vbox{\getcode\vskip -\baselineskip\writecode}

@<cases to get content@>=
@t\1\kern1em@>
case TAG(stream_kind,b000): HGET_STREAM(b000); @+ break;
case TAG(stream_kind,b010): HGET_STREAM(b010); @+ break;
@

When we read stream numbers, we relax the define before use policy.
We just check, that the stream number is in the correct range.
\goodbreak
@<get macros@>=
#define @[HGET_STREAM(I)@] @/\
 {uint8_t n=HGET8;@+ REF_RNG(stream_kind,n); @+hwrite_ref(n);@+}\
if ((I)&b010) { List l; @+hget_param_list(&l); @+hwrite_param_list(&l); @+} \
else HGET_REF(param_kind);\
{ List l; @+hget_list(&l);@+ hwrite_list(&l); @+}
@




\subsection{Page Template Definitions}\label{page}
A \HINT\ file can define multiple page templates\index{template}. Not only
might an index demand a different page layout than the main body of text,
also the front page or the chapter headings might use their own page templates.
Further, the author of a \HINT\ file might define a two column format as
an alternative to a single column format to be used if the display area
is wide enough.

To help in selecting the right page template, page template definitions start with
a name and an optional priority\index{priority}; the default priority is 1.
The names might appear in a menu from which the user
can select a page layout that best fits her taste.
Without user interaction, the
system can pick the template with the highest priority. Of course,
a user interface might provide means to alter priorities. Future
versions might include sophisticated feature-vectors that 
identify templates that are good for large or small displays,
landscape or portrait mode, etc \dots

After the priority follows a glue node to specify the topskip glue
and the dimension of the maximum page depth,
an extended dimension to specify the page height and 
an extended dimension to specify the page width.

Then follows the main part of a page template definition: the template.
The template consists of a list of vertical material.
To construct the page, this list will be placed
into a vertical box and the glue will be set.
But of course before doing so, the viewer will
scan the list and replace all stream insertion points
by the appropriate content streams.

Let's call the vertical box obtained this way ``the page''.
The page will fill the entire display area top to bottom and left to right. 
It defines not only the appearance of the main body of text 
but also the margins, the header, and the footer.
Because the \.{vsize} and  \.{hsize} variables of \TeX\ are used for 
the vertical and horizontal dimension of the main body of text---they 
do not include the margins---the page will usually be wider than \.{hsize}
and taller than \.{vsize}. The dimensions of the page are part
of the page template. The viewer, knowing the actual dimensions
of the display area, can derive from them the actual values of \.{hsize}
and \.{vsize}.

Stream definitions are listed after the template. 

The page template with number 0 is always defined and has priority 0.
It will display just the main content stream. It puts a small margin 
of $\.{hsize}/8 -4.5\hbox{pt}$ all around it.
Given a letter size page, 8.5 inch wide, this formula yields a margin of 1 inch,
matching \TeX's plain format. The margin will be positive as long as
the page is wider than $1/2$ inch. For narrower pages, there will be no
margin at all. In general, the \HINT\ viewer will never set {\tt hsize} larger
than the width of the page and {\tt vsize} larger than its height.

%8.5 in should give 1 inch margin 2/17
%612pt should give 72pt margin
%72pt = 612/8-4.5pt
%This would give a positive margin starting at 36pt or 1/2 inch

\goodbreak
\vbox{\readcode\vskip -\baselineskip\putcode}

@s PAGE symbol
@s page_priority symbol
@s page symbol
@s stream_def_list symbol

@<symbols@>=
%token PAGE "page"
@

@<scanning rules@>=
::@=page@>  :< return PAGE; >:
@

@<parsing rules@>=
page_priority: { HPUT8(1); } 
             | UNSIGNED { RNG("page priority",$1,0,255); HPUT8($1); };

stream_def_list: | stream_def_list stream_def_node;

page: string { hput_string($1);} page_priority glue_node dimension {@+HPUT32($5);@+}
 xdimen_node xdimen_node
 list stream_def_list ;
@

\goodbreak
\vbox{\getcode\vskip -\baselineskip\writecode}
@<get functions@>=
void hget_page(void)
{ char *n; uint8_t p; Xdimen x; List l;
  HGET_STRING(n);@+ hwrite_string(n);
  p=HGET8; @+ if (p!=1) hwritef(" %d",p);
  hget_glue_node();
  hget_dimen(TAG(dimen_kind,b001));
  hget_xdimen_node(&x); @+hwrite_xdimen_node(&x); /* page height */
  hget_xdimen_node(&x); @+hwrite_xdimen_node(&x); /* page width */
  hget_list(&l);@+ hwrite_list(&l);
  while (hget_stream_def()) continue;
} 
@

\subsection{Page Ranges}\label{range}\index{page range}
Not every template\index{template} is necessarily valid for the entire content
section.  A page range specifies a start position $a$ and an end
position $b$ in the content section and the page template is valid if
the start position $p$ of the page is within that range: $a\le p < b$.
If paging backward this definition might cause problems because the
start position of the page is known only after the page has been
build.  In this case, the viewer might choose a page template based on
the position at the bottom of the page. If it turns out that this ``bottom template''
is no longer valid when the page builder has found the start of the
page, the viewer might display the page anyway with the bottom
template, it might just display the page with the new ``top
template'', or rerun the whole page building process using this time
the ``top template''.  Neither of these alternatives is guaranteed to
produce a perfect result because changing the page template might
change the amount of material that fits on the page. A good page
template design should take this into account.

The representation of page ranges differs significantly for the short
format and the long format.  The short format will include a list of page
ranges in the definition section which consist of a page template number, 
a start position, and an end position. In the long format, the start 
and end position of a page
range is marked with a page range node switching the availability of a
page template on and off. Such a page range node must be a top level node.
It is an error, to switch a page template
off that was not switched on, or to switch a page template on that was
already switched on.  It is permissible to omit switching off a page
template at the very end of the content section.

While we parse a long format \HINT\ file, we store page ranges and generate
the short format after reaching the end of the content section.
While we parse a short format \HINT\ file, 
we check at the end of each top level node whether we should insert a
page range node into the output.
For the \.{shrink} program, it is best
to store the start and end positions of all page ranges
in an array sorted by the position\footnote*{For a \HINT\ viewer,
a data structure which allows fast retrieval of all
valid page templates for a given position is needed.}.
To check the restrictions on the switching of page templates, we
maintain for every page template an index into the range array
which identifies the position where the template was switched on.
A zero value instead of an index will identify templates that
are currently invalid. When switching a range off again, we 
link the two array entries using this index. These links
are useful when producing the range nodes in short format.

A range node in short format contains the template number, the
start position and the end position.
A zero start position
is not stored, the info bit |b100| indicates a nonzero start position.
An end position equal to |HINT_NO_POS| is not stored, 
the info bit |b010| indicates a smaller end position.
The info bit |b001| indicates that positions are stored using 2 byte
otherwise 4 byte are used for the positions.

@<hint types@>=
typedef
struct {@+uint8_t pg; @+uint32_t pos; @+ bool on; @+int link;@+} RangePos;
@

@<common variables@>=
RangePos *range_pos;
int next_range=1, max_range;
int *page_on; 
@

@<initialize definitions@>=
ALLOCATE(page_on,max_ref[page_kind]+1,int);
ALLOCATE(range_pos,2*(max_ref[range_kind]+1),RangePos);
@

@<hint macros@>=
#define @[ALLOCATE(R,S,T)@] @/((R)=@[(T *)calloc((S),sizeof(T)),\
        (((R)==NULL)?QUIT("Out of memory for " #R):0))
#define @[REALLOCATE(R,S,T)@] @/((R)=@[(T *)realloc((R),(S)*sizeof(T)),\
        (((R)==NULL)?QUIT("Out of memory for " #R):0))
@

\readcode
@s RANGE symbol
@<symbols@>=
%token RANGE "range"
@

@<scanning rules@>=
::@=range@>          :< return RANGE; >:
@
@<parsing rules@>=

content_node: START RANGE REFERENCE ON  END @/{  REF(page_kind,$3);hput_range($3,true);}
            | START RANGE REFERENCE OFF END @/{  REF(page_kind,$3);hput_range($3,false);}; 
@


\writecode
@<write functions@>=
void hwrite_range(void) /* called in |hwrite_end| */
{ uint32_t p=hpos-hstart;
  DBG(DBGRANGE,"Range check at pos 0x%x next at 0x%x\n",p,range_pos[next_range].pos);
  while (next_range<max_range && range_pos[next_range].pos <= p)
  { hwrite_start();
    hwritef("range *%d ",range_pos[next_range].pg);
    if (range_pos[next_range].on) hwritef("on"); else  hwritef("off");
    nesting--; @+hwritec('>'); /* avoid a recursive call to |hwrite_end| */
    next_range++; 
  }
}
@

\getcode
@<get functions@>=
void hget_range(Info info, uint8_t pg)
{ uint32_t from, to; 
  REF(page_kind,pg);
  REF(range_kind,(next_range-1)/2);
  if (info&b100) @+
  { @+ if (info&b001) HGET32(from); @+else HGET16(from); @+}
  else from=0;
  if (info&b010) @+
  { @+if (info&b001) HGET32(to); @+else HGET16(to); @+}
  else to=HINT_NO_POS;
  range_pos[next_range].pg=pg;
  range_pos[next_range].on=true;
  range_pos[next_range].pos=from;
  DBG(DBGRANGE,"Range *%d from 0x%x\n",pg,from);
  DBG(DBGRANGE,"Range *%d to 0x%x\n",pg,to);
  next_range++;
  if (to!=HINT_NO_POS) @/
  { range_pos[next_range].pg=pg;
    range_pos[next_range].on=false;
    range_pos[next_range].pos=to;
    next_range++;
  }
}
@

@<write functions@>=
void hsort_ranges(void) /* simple insert sort by position */
{ int i;
  DBG(DBGRANGE,"Range sorting %d positions\n",next_range-1);
  for(i=3; i<next_range; i++)@/
  { int j = i-1;
    if (range_pos[i].pos < range_pos[j].pos) @/
    { RangePos t;
      t= range_pos[i];
       do {
        range_pos[j+1] = range_pos[j];
        j--;
      } while (range_pos[i].pos < range_pos[j].pos);
      range_pos[j+1] = t;
    }
  }
  max_range=next_range; @+next_range=1; /* prepare for |hwrite_range| */
} 
@

\putcode
@<put functions@>=
void hput_range(uint8_t pg, bool on)
{ if (((next_range-1)/2)>max_ref[range_kind])
    QUIT("Page range %d > %d",(next_range-1)/2,max_ref[range_kind]);
  if (on && page_on[pg]!=0)
    QUIT(@["Template %d is switched on at 0x%x and " SIZE_F@],@|
           pg, range_pos[page_on[pg]].pos, hpos-hstart);
  else if (!on && page_on[pg]==0)
    QUIT(@["Template %d is switched off at " SIZE_F " but was not on"@],@|
           pg, hpos-hstart);
  DBG(DBGRANGE,@["Range *%d %s at " SIZE_F "\n"@],pg,on?"on":"off",hpos-hstart);
  range_pos[next_range].pg=pg;
  range_pos[next_range].pos=hpos-hstart;
  range_pos[next_range].on=on;
  if (on) page_on[pg]=next_range;
  else @/{ range_pos[next_range].link =page_on[pg]; 
         range_pos[page_on[pg]].link=next_range;
         page_on[pg]=0; }
  next_range++;
}

void hput_range_defs(void)
{ int i;
  section_no=1;
  hstart=dir[1].buffer;
  hend=hstart+ dir[1].bsize;
  hpos=hstart+dir[1].size;
  for (i=1; i< next_range;i++)
    if (range_pos[i].on)@/
    { Info info=b000;
      uint32_t p=hpos++-hstart;
      uint32_t from, to;
      HPUT8(range_pos[i].pg);
      from= range_pos[i].pos;
      if (range_pos[i].link!=0) to = range_pos[range_pos[i].link].pos;
      else to=HINT_NO_POS;
      if (from!=0) @/
      { info=info|b100;@+ if (from>0xFFFF) @+ info=info|b001;@+}
      if (to!=HINT_NO_POS) @/
      { info=info|b010;@+ if (to>0xFFFF) info=info|b001;@+ }
      if (info & b100) @/
      { @+if (info & b001) HPUT32(from); @+else HPUT16(from); @+}
      if (info & b010) @/
      { @+if (info & b001) HPUT32(to); @+else HPUT16(to); @+}
      DBG(DBGRANGE,"Range *%d from 0x%x to 0x%x\n",@|range_pos[i].pg,from, to);
      hput_tags(p,TAG(range_kind,info));
    }
  hput_definitions_end();
 }
@


\section{File Structure}\hascode
All \HINT\ files\index{file} start with a banner\index{banner} as
described below.  After that, they contain three mandatory
sections\index{section}: the directory\index{directory section}
section, the definition\index{definition section} section, and the
content\index{content section} section.  Usually, further
optional\index{optional section} sections follow.  In short format
files, these contain auxiliary\index{auxiliary file} files
(fonts\index{font}, images\index{image}, \dots) necessary for
rendering the content. In long format files, the directory section
will simply list the file names of the auxiliary files.



\subsection{Banner}
All \HINT\ files start with a banner\index{banner}. The banner contains only
printable ASCII characters and spaces; 
its end is marked with a newline character\index{newline character}.  
The first four byte are the ``magic'' number by which you recognize a \HINT\ 
file. It consists of the four ASCII codes `{\tt H}', `{\tt I}', `{\tt N}',
and `{\tt T}' in the long format and `{\tt h}', `{\tt i}', `{\tt n}',
and `{\tt t}' in the short format.  Then follows a space, then
the version number, a dot, the sub-version number, and another
space. Both numbers are encoded as decimal ASCII strings.  The
remainder of the banner is simply ignored but may be used to contain
other useful information about the file.  The maximum size of the
banner is 256 byte.
@<hint macros@>=
#define MAX_BANNER 256
@

\goodbreak
To check the banner, we have the function |hcheck_banner|; 
it returns |true| if successful.

@<common variables@>=
char hbanner[MAX_BANNER+1];
int hbanner_size=0;
@

@<function to check the banner@>=

bool hcheck_banner(char *magic)
{
  int v;
  char *t;
  t=hbanner;
  if (strncmp(magic,hbanner,4)!=0)
  {  MESSAGE("This is not a %s file\n",magic); return false; }
  else t+=4;
  if(hbanner[hbanner_size-1]!='\n')
  { MESSAGE("Banner exceeds maximum size=0x%x\n",MAX_BANNER); return false; }
  if (*t!=' ')
  { MESSAGE("Space expected in banner after %s\n",magic); return false; }
  else t++;
  v=strtol(t,&t,10);
  if (v!=HINT_VERSION)
  { MESSAGE("Wrong HINT version: got %d, expected %d\n",v,HINT_VERSION); return false; }
  if (*t!='.')
  { MESSAGE("Dot expected in banner after HINT version number\n"); return false; }
  else t++;
  v=strtol(t,&t,10);
  if (v!=HINT_SUB_VERSION)
  { MESSAGE("Wrong HINT subversion: got %d, expected %d\n",v,HINT_SUB_VERSION); return false; }
  if (*t!=' ' && *t!='\n')
  { MESSAGE("Space expected in banner after HINT subversion\n"); return false; }
  LOG("%s file version %d.%d:%s",magic,HINT_VERSION, HINT_SUB_VERSION, t);
  DBG(DBGDIR,"banner size=0x%x\n",hbanner_size);
  return true;
}
@

To read a short format file, we use the macro |HGET8|. It returns a single byte.
We read the banner knowing that it ends with a newline character
and is at most |MAX_BANNER| byte long. Because this is the first access to a yet unknown file,
we are very careful and make sure we do not read past the end of the file.
Checking the banner is a separate step.

\getcode
@<get file functions@>=
void hget_banner(void)
{ hbanner_size=0;
  while (hbanner_size<MAX_BANNER && hpos<hend)
  { uint8_t c=HGET8;
    hbanner[hbanner_size++]=c;
    if (c=='\n') break;
  }
  hbanner[hbanner_size]=0;
}
@

To read a long format file, we use the function |fgetc|.
\readcode
@<read the banner@>=
{ hbanner_size=0;
  while ( hbanner_size<MAX_BANNER)
  { int c=fgetc(hin);
    if (c==EOF) break;
    hbanner[hbanner_size++]=c;
    if (c=='\n') break;
  } 
  hbanner[hbanner_size]=0;
}
@

Writing the banner to a short format file is accomplished by calling
|hput_banner| with the ``magic'' string |"hint"| as a first argument
and a (short) comment as the second argument.
\putcode
@<function to write the banner@>=

static size_t hput_banner(char *magic, char *str)
{ size_t s=fprintf(hout,"%s %d.%d %s\n",magic,HINT_VERSION,HINT_SUB_VERSION,str);
  if (s>MAX_BANNER) QUIT("Banner too big"); 
  return s;
}
@


\writecode
Writing the banner of a long format file is essentially the same as for a short
format file calling |hput_banner| with |"HINT"| as a first argument.

\subsection{Long Format Files}\gdef\subcodetitle{Banner}%

After reading and checking the banner, reading a long format file is
simply done by calling |yyparse|. The following rule gives the big picture:
\readcode
@s hint symbol
@s content_section symbol

@<parsing rules@>=
hint: directory_section definition_section content_section ;
@


\subsection{Short Format Files}\gdef\subcodetitle{Primitives}%
A short format\index{short format} file starts with the banner and continues
with a list of sections. Each section has a maximum size
of $2^{32}$ byte or 4GByte. This restriction ensures that positions\index{position}
inside a section can be stored as 32 bit integers, a feature that
we will need only for the so called ``content'' section, but it
is also nice for implementers to know in advance what sizes to expect.
The big picture is captured by the |put_hint| function:

@<put functions@>=
static size_t hput_root(void);
static size_t hput_section(uint16_t n);
static void hput_optional_sections(void);

void hput_hint(char * str)
{ size_t s;
  DBG(DBGBASIC,"Writing hint output %s\n",str); 
  s=hput_banner("hint",str);
  DBG(DBGDIR,@["Root entry at " SIZE_F "\n"@],s);
  s+=hput_root();
  DBG(DBGDIR,@["Directory section at " SIZE_F "\n"@],s);
  s+=hput_section(0);
  DBG(DBGDIR,@["Definition section at " SIZE_F "\n"@],s);
  s+=hput_section(1);
  DBG(DBGDIR,@["Content section at " SIZE_F "\n"@],s);
  s+=hput_section(2);
  DBG(DBGDIR,@["Auxiliary sections at " SIZE_F "\n"@],s);
  hput_optional_sections();
}
@


When we work on a section, we will have the entire section in
memory and use three variables to access it:  |hstart|
points to the first byte of the section, |hend| points
to the byte after the last byte of the section, and |hpos| points to the 
current position inside the section.\label{hpos}
The auxiliary variable |hpos0| contains the |hpos| value of the
last content node on nesting level zero.

@<common variables@>=
uint8_t *hpos=NULL, *hstart=NULL, *hend=NULL, *hpos0=NULL;
@

There are two sets of macros that read or write binary data at the current position
and advance the stream position accordingly.\label{HPUT}\label{HGET}

\getcode
@<shared get macros@>=
#define HGET_ERROR @/ QUIT(@["HGET overrun in section %d at " SIZE_F "\n"@],@|section_no,hpos-hstart)
#define @[HEND@]   @[((hpos<=hend)?0:(HGET_ERROR,0))@]

#define @[HGET8@]      ((hpos<hend)?*(hpos++):(HGET_ERROR,0))
#define @[HGET16(X)@] ((X)=(hpos[0]<<8)+hpos[1],hpos+=2,HEND)
#define @[HGET24(X)@] ((X)=(hpos[0]<<16)+(hpos[1]<<8)+hpos[2],hpos+=3,HEND)
#define @[HGET32(X)@] ((X)=(hpos[0]<<24)+(hpos[1]<<16)+(hpos[2]<<8)+hpos[3],hpos+=4,HEND)
#define @[HGETTAG(A)@] @[A=HGET8,DBGTAG(A,hpos-1)@]
@

\putcode
@<put functions@>=
void hput_error(void)
{@+if (hpos<hend) return;
 QUIT(@["HPUT overrun section %d pos=" SIZE_F "\n"@],@|section_no,hpos-hstart);
}
@

@<put macros@>=
extern void hput_error(void);
#define @[HPUT8(X)@]       (hput_error(),*(hpos++)=(X))
#define @[HPUT16(X)@]      (HPUT8(((X)>>8)&0xFF),HPUT8((X)&0xFF))
#define @[HPUT24(X)@]      (HPUT8(((X)>>16)&0xFF),HPUT8(((X)>>8)&0xFF),HPUT8((X)&0xFF))
#define @[HPUT32(X)@]      (HPUT8(((X)>>24)&0xFF),HPUT8(((X)>>16)&0xFF),HPUT8(((X)>>8)&0xFF),HPUT8((X)&0xFF))
@

The above macros test for buffer overruns\index{buffer overrun};
allocating sufficient buffer space is done separately.

Before writing a node, we will insert a test and increase the buffer if necessary.
@<put macros@>=
void  hput_increase_buffer(uint32_t n);
#define @[HPUTX(N)@] @[(((hend-hpos) < (N))? hput_increase_buffer(N):(void)0)@]
#define HPUTNODE  @[HPUTX(MAX_TAG_DISTANCE)@]
#define @[HPUTTAG(K,I)@] @|@[(HPUTNODE,@+DBGTAG(TAG(K,I),hpos),@+HPUT8(TAG(K,I)))@]
@ 

Fortunately the only data types that have an unbounded size are
strings\index{string} and texts\index{text}.
For these we insert specific tests. For all other cases a relatively
small upper bound on the maximum distance between two tags can be determined.
Currently the maximum distance between tags is 26 byte as can be determined
from the |hnode_size| array described in appendix~\secref{fastforward}.
The definition below uses a slightly larger value leaving some room
for future changes in the design of the short file format.

@<hint macros@>=
#define MAX_TAG_DISTANCE 32
@

\subsection{Mapping a Short Format File to Memory}
In the following, we implement two alternatives to map a file into memory.
The first implementation, opens the file, gets its size, allocates memory,
and reads the file. The second implementation uses a call to |mmap|.

Since modern computers with 64bit hardware have a huge address space,
using |mmap| to map the entire file into virtual memory is the most efficient way
to access a large file.  ``Mapping'' is not the same as ``reading'' and it is
not the same as allocating precious memory, all that is done by the
operating system when needed. Mapping just reserves addresses.
There is one disadvantage of mapping: it typically locks the underlying file
and will not allow a separate process to modify it. This prevents using
this method for previewing a \HINT\ file while editing and recompiling it.
In this case, the first implementation, which has a copy of the file in memory,
is the better choice. To select the second implementation, define the macro |USE_MMAP|.

The following functions map and unmap a short format input 
file setting |hin_addr| to its address and |hin_size| to its size.
The value |hin_addr==NULL| indicates, that no file is open.
The variable |hin_time| is set to the time when the file was last  modified.
It can be used to detect modifications of the file and reload it.\label{map}

@<common variables@>=
char *hin_name=NULL;
uint64_t hin_size=0;
uint8_t *hin_addr=NULL;
uint64_t hin_time=0;
@

@<map functions@>=
#ifndef USE_MMAP
void hget_unmap(void)
{@+ if (hin_addr!=NULL) free(hin_addr);
  hin_addr=NULL;
  hin_size=0;
}
bool hget_map(void)
{ FILE *f;
  struct stat st;
  size_t s,t;
  uint64_t u;
  f= fopen(hin_name,"rb");
  if (f==NULL)@/
  {	MESSAGE("Unable to open file: %s\n", hin_name);@+	return false;@+  }
  if (stat(hin_name,&st)<0)
  {	MESSAGE("Unable to obtain file size: %s\n", hin_name);
    fclose(f);
	return false;
  }
  if (st.st_size==0)
  { MESSAGE("File %s is empty\n", hin_name);
    fclose(f);
    return false;
  }
  u=st.st_size;
  if (hin_addr!=NULL) hget_unmap();
  hin_addr=malloc(u);	
  if (hin_addr==NULL)
  { MESSAGE("Unable to allocate 0x%"PRIx64" byte for File %s\n", u,hin_name);
    fclose(f);
    return 0;
  }
  t=0;
  do{
    s=fread(hin_addr+t,1,u,f);
    if (s<=0)
    { MESSAGE("Unable to read file %s\n",hin_name);
      fclose(f);
	  free(hin_addr);
	  hin_addr=NULL;
      return false;
    }
    t=t+s;@+
    u=u-s;
  } while (u>0);
  hin_size=st.st_size;
  hin_time=st.st_mtime;
  return true;
}

#else

#include <sys/mman.h>

void hget_unmap(void)
{@+ munmap(hin_addr,hin_size);
  hin_addr=NULL;
  hin_size=0;
}

bool hget_map(void)
{ struct stat st;
  int fd;
  fd = open(hin_name, O_RDONLY, 0);
  if (fd<0)@/
  { MESSAGE("Unable to open file %s\n", hin_name);@+ return false;@+ }
  if (fstat(fd, &st)<0)
  { MESSAGE("Unable to get file size\n");
    close(fd);
    return false;
  }
  if (st.st_size==0)
  { MESSAGE("File %s is empty\n",hin_name);
    close(fd);
    return false;
  }
  if (hin_addr!=NULL) hget_unmap();
  hin_size=st.st_size;
  hin_time=st.st_mtime;
  hin_addr= mmap(NULL,hin_size,PROT_READ,MAP_PRIVATE,fd, 0);
  if (hin_addr==MAP_FAILED) 
  { close(fd);
    hin_addr=NULL;hin_size=0;
    MESSAGE("Unable to map file into memory\n");
    return 0;
  }
  close(fd);
  return hin_size;
}
#endif

@
\subsection{Compression}
The short file format offers the possibility to store sections in
compressed\index{compression} form. We use the {\tt zlib}\index{zlib+{\tt zlib}} compression library\cite{zlib}\cite{RFC1950}
to deflate\index{deflate} and inflate\index{inflate} individual sections.  When one of the following
functions is called, we can get the section buffer, the buffer size
and the size actually used from the directory entry.  If a section
needs to be inflated, its size after decompression is found in the
|xsize| field; if a section needs to be deflated, its size after
compression will be known after deflating it.

@s z_stream int

@<get file functions@>=

static void hdecompress(uint16_t n)
{ z_stream z; /* decompression stream */
  uint8_t *buffer;
  int i;

  DBG(DBGCOMPRESS,"Decompressing section %d from 0x%x to 0x%x byte\n",@|n, dir[n].size, dir[n].xsize);
  z.zalloc = (alloc_func)0;@+
  z.zfree = (free_func)0;@+
  z.opaque = (voidpf)0;
  z.next_in  = hstart;
  z.avail_in = hend-hstart;
  if (inflateInit(&z)!=Z_OK)
    QUIT("Unable to initialize decompression: %s",z.msg);
  ALLOCATE(buffer,dir[n].xsize+MAX_TAG_DISTANCE,uint8_t);
  DBG(DBGBUFFER,"Allocating output buffer size=0x%x, margin=0x%x\n",dir[n].xsize,MAX_TAG_DISTANCE);
  z.next_out = buffer;           
  z.avail_out =dir[n].xsize+MAX_TAG_DISTANCE;
  i= inflate(&z, Z_FINISH);
  DBG(DBGCOMPRESS,"in: avail/total=0x%x/0x%lx "@|"out: avail/total=0x%x/0x%lx, return %d;\n",@|
    z.avail_in,z.total_in, z.avail_out, z.total_out,i);
  if (i!=Z_STREAM_END)
    QUIT("Unable to complete decompression: %s",z.msg);
  if (z.avail_in != 0) 
    QUIT("Decompression missed input data");
  if (z.total_out != dir[n].xsize)
    QUIT("Decompression output size mismatch 0x%lx != 0x%x",z.total_out, dir[n].xsize );
  if (inflateEnd(&z)!=Z_OK)
    QUIT("Unable to finalize decompression: %s",z.msg);
  dir[n].buffer=buffer;
  dir[n].bsize=dir[n].xsize;
  hpos0=hpos=hstart=buffer;
  hend=hstart+dir[n].xsize;
}
@


@<put functions@>=
static void hcompress(uint16_t n)
{ z_stream z; /* compression stream */
  uint8_t *buffer;
  int i;
  if (dir[n].size==0)   { dir[n].xsize=0;@+ return; @+}
  DBG(DBGCOMPRESS,"Compressing section %d of size 0x%x\n",n, dir[n].size);
  z.zalloc = (alloc_func)0;@+
  z.zfree = (free_func)0;@+
  z.opaque = (voidpf)0;
  if (deflateInit(&z,Z_DEFAULT_COMPRESSION)!=Z_OK)
    QUIT("Unable to initialize compression: %s",z.msg);
  ALLOCATE(buffer,dir[n].size+MAX_TAG_DISTANCE,uint8_t);
  z.next_out = buffer;
  z.avail_out = dir[n].size+MAX_TAG_DISTANCE;
  z.next_in = dir[n].buffer;
  z.avail_in = dir[n].size;
  i=deflate(&z, Z_FINISH);
  DBG(DBGCOMPRESS,"deflate in: avail/total=0x%x/0x%lx out: avail/total=0x%x/0x%lx, return %d;\n",@|
    z.avail_in,z.total_in, z.avail_out, z.total_out,i);
  if (z.avail_in != 0) 
    QUIT("Compression missed input data");
  if (i!=Z_STREAM_END)
    QUIT("Compression incomplete: %s",z.msg);
  if (deflateEnd(&z)!=Z_OK)
    QUIT("Unable to finalize compression: %s",z.msg);
  DBG(DBGCOMPRESS,"Compressed 0x%lx byte to 0x%lx byte\n",@|z.total_in,z.total_out);
  free(dir[n].buffer);
  dir[n].buffer=buffer;
  dir[n].bsize=dir[n].size+MAX_TAG_DISTANCE;
  dir[n].xsize=dir[n].size;
  dir[n].size=z.total_out;
}
@



\subsection{Reading Short Format Sections}
\gdef\subcodetitle{Sections}%

After mapping the file at address |hin_addr| access to sections of the
file is provided by decompressing them if necessary and
setting the three pointers |hpos|, |hstart|, and
|hend|. 

To read sections of a short format input file, we use the function |hget_section|. 

\getcode
%\codesection{\getsymbol}\getindex{1}{3}{Files}

@<get file functions@>=
void hget_section(uint16_t n)
{ DBG(DBGDIR,"Reading section %d\n",n);
  RNG("Section number",n,0,max_section_no);
  if (dir[n].buffer!=NULL && dir[n].xsize>0)
  { hpos0=hpos=hstart=dir[n].buffer;
    hend=hstart+dir[n].xsize;
  }
  else
  { hpos0=hpos=hstart=hin_addr+dir[n].pos; 
    hend=hstart+dir[n].size;
    if (dir[n].xsize>0) hdecompress(n);
  }
}
@
\subsection{Writing Short Format Sections}
\gdef\subcodetitle{Sections}%

To write a short format file, we allocate for each of the first three sections a 
suitable buffer\index{buffer}, then fill these buffers, and finally write them
out in sequential order.

@<put functions@>=
#define BUFFER_SIZE 0x400
void new_output_buffers(void)
{ dir[0].bsize=dir[1].bsize=dir[2].bsize=BUFFER_SIZE;
  DBG(DBGBUFFER,"Allocating output buffer size=0x%x, margin=0x%x\n",BUFFER_SIZE,MAX_TAG_DISTANCE);
  ALLOCATE(dir[0].buffer,dir[0].bsize+MAX_TAG_DISTANCE,uint8_t);
  ALLOCATE(dir[1].buffer,dir[1].bsize+MAX_TAG_DISTANCE,uint8_t);
  ALLOCATE(dir[2].buffer,dir[2].bsize+MAX_TAG_DISTANCE,uint8_t);
}

void  hput_increase_buffer(uint32_t n)
{  size_t bsize;
   uint32_t pos, pos0;
   const double buffer_factor=1.4142136; /* $\sqrt 2$ */
   pos=hpos-hstart; pos0=hpos0-hstart;
   bsize=dir[section_no].bsize*buffer_factor+0.5;
   if (bsize<pos+n) bsize=pos+n;
   if (bsize>=HINT_NO_POS) bsize=HINT_NO_POS;
   if (bsize<pos+n)  QUIT(@["Unable to increase buffer size " SIZE_F " by 0x%x byte"@],@|hpos-hstart,n);
   DBG(DBGBUFFER,@["Reallocating output buffer "@|" for section %d from 0x%x to " SIZE_F " byte\n"@],
       section_no,dir[section_no].bsize,bsize);
   REALLOCATE(dir[section_no].buffer,bsize,uint8_t);
   dir[section_no].bsize=(uint32_t)bsize;
   hstart=dir[section_no].buffer;
   hend=hstart+bsize;
   hpos0=hstart+pos0; hpos=hstart+pos;
}

static size_t hput_data(uint16_t n, uint8_t *buffer, uint32_t size)
{ size_t s;
  s=fwrite(buffer,1,size,hout);
  if (s!=size)
    QUIT(@["short write " SIZE_F " < %d in section %d"@],s,size,n);
  return s;
}

static size_t hput_section(uint16_t n)
{ return hput_data(n, dir[n].buffer,dir[n].size);
}
@




\section{Directory Section}
A \HINT\ file is subdivided in sections and 
each section can be identified by its section number.
The first three sections, numbered 0, 1, and 2, are mandatory: 
directory\index{directory section} section, definition section,  and content section. 
The directory section, which we explain now, lists all sections
that make up a \HINT\ file. 

A document will often contain not only plain text but also other media
for example illustrations. Illustrations are produced with specialized
tools and stored in specialized files. Because a \HINT\ file in short format
should be self contained, these special files are embedded in the \HINT\ file
as optional sections.
Because a \HINT\ file in long format should be readable, these special files 
are written to disk and only the file names are retained in the directory.
Writing special files to disk has also the advantage that you can modify
them individually before embedding them in a short format file.


\subsection{Directories in Long Format}\gdef\subcodetitle{Directory Section}%
The directory\index{directory section} section of a long format \HINT\ file starts
with the  ``\.{directory}'' keyword; then follows the maximum section number used and 
a list of directory entries, one for each optional section numbered 3 and above.
Each entry consists of the keyword ``\.{section}'' followed by the
section number, followed by the file name.
The section numbers must be unique and fit into 16 bit.
The directory entries must be ordered with strictly increasing section numbers.
Keeping section numbers consecutive is recommended because it reduces the
memory footprint if directories are stored as arrays indexed by the section
number as we will do below.

\readcode
@s directory_section symbol
@s entry_list symbol 
@s entry symbol
@s DIRECTORY symbol
@s SECTION symbol

@<symbols@>=
%token DIRECTORY "directory"
%token SECTION "entry"
@

@<scanning rules@>=
::@=directory@>     :< return DIRECTORY; >:
::@=section@>     :< return SECTION; >:
@

@<parsing rules@>=
directory_section: START DIRECTORY UNSIGNED @|{new_directory($3+1); new_output_buffers();} entry_list END ;
entry_list: @,@+ | entry_list entry;
entry: START SECTION UNSIGNED string END @/
    {  RNG("Section number",$3,3,max_section_no); hset_entry(&(dir[$3]), $3,0,0,$4);};
@



We use a dynamically allocated array
of directory entries to store the directory.

@<directory entry type@>=
typedef struct {
uint64_t pos;
uint32_t size, xsize;
uint16_t section_no;
char *file_name;
uint8_t *buffer;
uint32_t bsize;
} Entry;
@


The function |new_directory| allocates the directory.

@<directory functions@>=
Entry *dir=NULL;
uint16_t section_no,  max_section_no;
void new_directory(uint32_t entries)
{ DBG(DBGDIR,"Creating directory with %d entries\n", entries);
  RNG("Directory entries",entries,3,0x10000);
  max_section_no=entries-1;@+
  ALLOCATE(dir,entries,Entry);
  dir[0].section_no=0; @+ dir[1].section_no=1; @+ dir[2].section_no=2;
} 
@

The function |hset_entry| fills in the appropriate entry.
@<directory functions@>=
void hset_entry(Entry *e, uint16_t i, uint32_t size, uint32_t xsize, @|char *file_name)
{ e->section_no=i;
  e->size=size; @+e->xsize=xsize;
  if (file_name==NULL || *file_name==0)
    e->file_name=NULL;
  else
    e->file_name=strdup(file_name);
  DBG(DBGDIR,"Creating entry %d: \"%s\" size=0x%x xsize=0x%x\n",@|i,file_name,size,xsize);
}
@


Writing the auxiliary files depends on the {\tt -a}, {\tt -g} and {\tt -f}
options.

@<without {\tt -f} skip writing an existing file@>=
    if ( !option_force && access(aux_name,F_OK)==0)
    { MESSAGE("File '%s' exists.\n"@| "To rewrite the file use the -f option.\n",
              aux_name);
      continue;
    }
@

The above code uses the |access| function, and we need to make sure it is defined:
@<make sure |access| is defined@>=
#ifdef WIN32
#include <io.h>
#define @[access(N,M)@] @[_access(N, M )@] 
#define F_OK 0
#else
#include <unistd.h>
#endif
@

With the {\tt -g} option, filenames are considered global, and files
are written to the filesystem possibly overwriting the existing files.
For example a font embedded in a \HINT\ file might replace a font of
the same name in some operating systems font folder.
If the \HINT\ file is {\tt shrink}ed on one system and
{\tt stretch}ed on another system, this is usually not the desired behavior.
Without the {\tt -g} option,\label{absrel} the files will be written in two local directories.
The names of these directories are derived from the output file name,
replacing the extension ``{\tt .hint}'' with ``{\tt .abs}'' if the original
filename contained an absolute path, and  replacing it with ``{\tt .rel}''
if the original filename contained a relative path. Inside these directories,
the path as given in the filename is retained.
When {\tt shrink}ing a \HINT\ file without the {\tt -g} option,
the original filenames can be reconstructed.

@<compute a local |aux_name|@>=
{ char *path=dir[i].file_name;
  int path_length=(int)strlen(path);
  int aux_length;
  @<determine whether |path| is absolute or relative@>@;
  aux_length=stem_length+ext_length+path_length;
  ALLOCATE(aux_name,aux_length+1,char);
  strcpy(aux_name,stem_name);
  strcpy(aux_name+stem_length,aux_ext[name_type]);
  strcpy(aux_name+stem_length+ext_length,path);
  @<replace links to the parent directory@>@; 
  DBG(DBGDIR,"Replacing auxiliary file name:\n\t%s\n->\t%s\n",path,aux_name);
}
@

@<determine whether |path| is absolute or relative@>=
  enum {absolute=0, relative=1} name_type;
  char *aux_ext[2]={".abs/",".rel/"};
  int ext_length=5;
  if (path[0]=='/')
  { name_type=absolute;
    path++; path_length--;
  }
  else if (path_length>3 && isalpha(path[0]) &&
           path[1]==':' && path[2]=='/')
  { name_type=absolute;
    path[1]='_';
  }      
  else
    name_type=relative;
@

When the {\tt -g}  is not given, auxiliar files are written into
special subdirectories. To prevent them from escaping into the global
file system, we replace links to the parent direcory ``{\tt ../}'' by 
``{\tt \_\,\_/}''.

@<replace links to the parent directory@>=
{ int k;
  for (k=0; k<aux_length-3;k++) 
    if (aux_name[k]=='.'&& aux_name[k+1]=='.'&& aux_name[k+2]=='/')
    { aux_name[k]=aux_name[k+1]='_';k=k+2;}
}
@

It remains to create the directories along the path we might have constructed.
@<make sure the path in |aux_name| exists@>=
{ char *path_end;
  path_end=aux_name+1;
  while (*path_end!=0)
  { if(*path_end=='/')
    { struct stat s;
     *path_end=0;   
      if (stat(aux_name,&s)==-1)
      {
#ifdef WIN32
      if (mkdir(aux_name)!=0)
#else
      @t\2\kern-1em@>if (mkdir(aux_name,0777)!=0)
#endif
           QUIT("Unable to create directory %s",aux_name);
         DBG(DBGDIR,"Creating directory %s\n",aux_name);
      } else if (!(S_IFDIR&(s.st_mode)))
        QUIT("Unable to create directory %s, file exists",aux_name);
      *path_end='/';
    }
    path_end++;
  }
}
  
  
@

\writecode
@<write functions@>=
@<make sure |access| is defined@>@;
extern char *stem_name;
extern int stem_length;

void hget_section(uint16_t n);
void hwrite_aux_files(void)
{ int i;
  if (!option_aux) return;
  DBG(DBGBASIC|DBGDIR,"Writing %d aux files\n",max_section_no-2);
  for (i=3;i<=max_section_no;i++)
  { FILE *f;
    char *aux_name=NULL;
    if (option_global)
      aux_name=strdup(dir[i].file_name);
    else
      @<compute a local |aux_name|@>@; 
    @<without {\tt -f} skip writing an existing file@>@;
    @<make sure the path in |aux_name| exists@>@;

    f=fopen(aux_name,"wb");
    if (f==NULL) 
      QUIT("Unable to open file '%s' for writing",aux_name);
    else
    { size_t s;
      hget_section(i);
      DBG(DBGDIR,"Writing file %s\n",aux_name);
      s=fwrite(hstart,1,dir[i].size,f);
      if (s!=dir[i].size) QUIT("writing file %s",aux_name);
      fclose(f);
    }
    free(aux_name);
  }
}
@

We write the directory, and the directory entries
in long format using the following functions.
@<write functions@>=
static void hwrite_entry(int i)
{ hwrite_start();
  hwritef("section %u",dir[i].section_no);@+  hwrite_string(dir[i].file_name);
  hwrite_end();
}

void hwrite_directory(void)
{ int i;
  if (dir==NULL) QUIT("Directory not allocated");
  section_no=0;
  hwritef("<directory %u", max_section_no);@/
  for (i=3;i<=max_section_no;i++)
      hwrite_entry(i); 
  hwritef("\n>\n");
}
@

\subsection{Directories in Short Format}
The directory\index{directory section} section of a short format file contains entries 
for all sections including the directory section itself. After reading the
directory section, enough information---position and size---is available to
access any section directly. As usual, a directory entry starts and ends with
a tag byte. The kind part of an entry's tag is not used; it is always zero. 
The value $s$ of the two least significant bits of the info part indicate 
that sizes are stored using $s+1$ byte.  The most significant bit of the info
part is 1 if the section is stored in compressed\index{compression} form. In this case the size
of the section is followed by the size of the section after decompressing it.
After the tag byte follows the section number. In the short format file,
section numbers must be strictly increasing and consecutive. This is redundant but helps
with checking. Then follows the size---or the sizes---of the section. After the size
follows the file name terminated by a zero byte. The file name might be an empty
string in which case there is just the zero byte. After the zero byte follows
a copy of the tag byte.

Here is the macro and function to read a directory\index{directory entry} entry:
\gdef\subcodetitle{Directory Entries}%
\getcode

@<shared get macros@>=
#define @[HGET_SIZE(I)@] \
  if ((I)&b100) { \
    if (((I)&b011)==0) s=HGET8,xs=HGET8; \
    else if (((I)&b011)==1) HGET16(s),HGET16(xs); \
    else if (((I)&b011)==2) HGET24(s),HGET24(xs); \
    else if (((I)&b011)==3) HGET32(s),HGET32(xs); \
   } \
  else { \
    if (((I)&b011)==0) s=HGET8; \
    else if (((I)&b011)==1) HGET16(s); \
    else if (((I)&b011)==2) HGET24(s); \
    else if (((I)&b011)==3) HGET32(s); \
   } 

#define @[HGET_ENTRY(I,E)@] \
{ uint16_t i; \
  uint32_t s=0,xs=0; \
  char *file_name; \
  HGET16(i); @+HGET_SIZE(I); @+HGET_STRING(file_name); @/\
  hset_entry(&(E),i,s,xs,file_name); \
}
@

@<get file functions@>=
void hget_entry(Entry *e)
{ @<read the start byte |a|@>@;
  DBG(DBGDIR,"Reading directory entry\n");
  switch(a)
  { case TAG(0,b000+0): HGET_ENTRY(b000+0,*e);@+ break;
    case TAG(0,b000+1): HGET_ENTRY(b000+1,*e);@+ break;
    case TAG(0,b000+2): HGET_ENTRY(b000+2,*e);@+ break;
    case TAG(0,b000+3): HGET_ENTRY(b000+3,*e);@+ break;
    case TAG(0,b100+0): HGET_ENTRY(b100+0,*e);@+ break;
    case TAG(0,b100+1): HGET_ENTRY(b100+1,*e);@+ break;
    case TAG(0,b100+2): HGET_ENTRY(b100+2,*e);@+ break;
    case TAG(0,b100+3): HGET_ENTRY(b100+3,*e);@+ break;
    default:  TAGERR(a); @+ break; 
  }
  @<read and check the end byte |z|@>@;
}
@

Because the first entry in the directory section describes the
directory section itself, we can not check its info bits in advance to determine
whether it is compressed or not. Therefore the directory section 
starts with a root entry, which is always uncompressed. It describes
the remainder of the directory which follows.
There are two differences between the root entry and a normal entry:
it starts with the maximum section number instead of the section number zero,
and we set its position to the position of the
entry for section 1 (which might already be compressed).
The name of the directory section must be the empty string.

\gdef\subcodetitle{Directory Section}%
\getcode
@<get file functions@>=
static void hget_root(Entry *root)
{ DBG(DBGDIR,"Root entry at " SIZE_F "\n",hpos-hstart);
  hget_entry(root); 
  root->pos=hpos-hstart;
  max_section_no=root->section_no;
  root->section_no=0;
  if (max_section_no<2) QUIT("Sections 0, 1, and 2 are mandatory");
}

void hget_directory(void)
{ int i;
  Entry root={0};
  hget_root(&root);
  DBG(DBGDIR,"Directory\n");
  new_directory(max_section_no+1);
  dir[0]=root;
  DBG(DBGDIR,"Directory entry 1 at 0x%"PRIx64"\n",dir[0].pos);
  hget_section(0);
  for (i=1;i<=max_section_no;i++)@/
  { hget_entry(&(dir[i]));@+
    dir[i].pos=dir[i-1].pos +dir[i-1].size;@+
    DBG(DBGDIR,"Section %d at 0x%"PRIx64"\n",i,dir[i].pos);
  }
}

void hclear_dir(void)
{ int i;
  if (dir==NULL) return;
  for (i=0;i<3;i++) /* currently the only compressed sections */
  if (dir[i].xsize>0 && dir[i].buffer!=NULL) free(dir[i].buffer);
  free(dir); dir=NULL;
}

@

Armed with these preparations, we can put the directory into the \HINT\ file.

\gdef\subcodetitle{Directory Section}%
\putcode
@<put functions@>=
static void hput_entry(Entry *e)
{ uint8_t b;
  if (e->size<0x100 && e->xsize<0x100) b=0;
  else if (e->size<0x10000 &&e->xsize<0x10000) b=1;
  else if (e->size<0x1000000 &&e->xsize<0x1000000) b=2;
  else b=3;
  if (e->xsize!=0) b =b|b100;
  DBG(DBGTAGS,"Directory entry no=%d size=0x%x xsize=0x%x\n",e->section_no, e->size, e->xsize);
  HPUTTAG(0,b);@/
  HPUT16(e->section_no);
  switch (b) {
  case 0: HPUT8(e->size);@+break;
  case 1: HPUT16(e->size);@+break;
  case 2: HPUT24(e->size);@+break;
  case 3: HPUT32(e->size);@+break;
  case b100|0: HPUT8(e->size);@+HPUT8(e->xsize);@+break;
  case b100|1: HPUT16(e->size);@+HPUT16(e->xsize);@+break;
  case b100|2: HPUT24(e->size);@+HPUT24(e->xsize);@+break;
  case b100|3: HPUT32(e->size);@+HPUT32(e->xsize);@+break;
  default: QUIT("Can't happen");@+ break;
  }
  hput_string(e->file_name);@/
  DBGTAG(TAG(0,b),hpos);@+HPUT8(TAG(0,b));
}

static void hput_directory_start(void)
{ DBG(DBGDIR,"Directory Section\n");
  section_no=0;
  hpos=hstart=dir[0].buffer;
  hend=hstart+dir[0].bsize;
}
static void hput_directory_end(void)
{ dir[0].size=hpos-hstart;
  DBG(DBGDIR,"End Directory Section size=0x%x\n",dir[0].size);
}

static size_t hput_root(void)
{ uint8_t buffer[MAX_TAG_DISTANCE];
  size_t s;
  hpos=hstart=buffer;
  hend=hstart+MAX_TAG_DISTANCE;
  dir[0].section_no=max_section_no;
  hput_entry(&dir[0]);
  s=hput_data(0, hstart,hpos-hstart);
  DBG(DBGDIR,@["Writing root size=" SIZE_F "\n"@],s);
  return s;
}

extern int option_compress;
static char **aux_names;
void hput_directory(void)
{ int i;
  @<update the file sizes of optional sections@>@;

  if (option_compress) { hcompress(1); @+hcompress(2); @+}
  hput_directory_start();
  for (i=1; i<=max_section_no; i++)
  { dir[i].pos=dir[i-1].pos+dir[i-1].size;
    DBG(DBGDIR,"writing entry %u at 0x%" PRIx64 "\n",i,  dir[i].pos);
    hput_entry(&dir[i]);
  }
  hput_directory_end();
  if (option_compress) hcompress(0); 
}

@

Now let us look at the optional sections described in the directory entries 3 and above
Where these files are found depends on the {\tt -g} and {\tt -a} options.

With the {\tt -g} option given, only the file names as given in the directory entries are used.
With the {\tt -a} option given, the file names are translated to filenames in the {|hin_name|\tt .abs} and  {|hin_name|\tt .rel} directories, as described in section~\secref{absrel}.
If neither the {\tt -a} nor the {\tt -g} option is given, {\tt shrink} first trys the translated
filename and then the global filename before it gives up.

When the \.{shrink} program writes the directory section in the short format,
it needs to know the sizes of all the  sections---including the optional sections.
These sizes are not provided in the long format because it is safer and more 
convenient to let the machine figure out the file sizes\index{file size}.
But before we can determine the size, we need to determine the file.

@<update the file sizes of optional sections@>=
{ int i;
  ALLOCATE(aux_names,max_section_no+1,char *); 
  for (i=3;i<=max_section_no;i++)
  { struct stat s; 

    if (!option_global)
    { char * aux_name=NULL;
      @<compute a local |aux_name|@>@;
      if (stat(aux_name,&s)==0)
        aux_names[i]=aux_name;
      else 
      { if (option_aux) QUIT("Unable to find file '%s'",aux_name); 
        free(aux_name);
      } 
    }
    if ((aux_names[i]==NULL && !option_aux) || option_global)
    { if (stat(dir[i].file_name,&s)!=0)
        QUIT("Unable to find file '%s'",dir[i].file_name); 
    }
    dir[i].size=s.st_size;
    dir[i].xsize=0;
    DBG(DBGDIR,"section %i: found file %s size %u\n",i,aux_names[i]?aux_names[i]:dir[i].file_name, dir[i].size);
  }
}
@

@<rewrite the file names of optional sections@>=
{ int i;
  for (i=3;i<=max_section_no;i++)
    if (aux_names[i]!=NULL)
    { free(dir[i].file_name);
      dir[i].file_name=aux_names[i];
      aux_names[i]=NULL;
    }
} 
@


The computation of the sizes of the mandatory sections will be 
explained later.


\gdef\subcodetitle{Optional Sections}%
To conclude this section, here is the function that  adds the files that
are described in the directory entries 3 and above to a \HINT\ file in short format.

\putcode
@<put functions@>=
static void hput_optional_sections(void)
{ int i;
  DBG(DBGDIR,"Optional Sections\n");
  for (i=3; i<=max_section_no; i++)@/
   { FILE *f;
     size_t fsize;
     char *file_name=dir[i].file_name;
     DBG(DBGDIR,"adding file %d: %s\n",dir[i].section_no,file_name);
     if (dir[i].xsize!=0) @/
       DBG(DBGDIR,"Compressing of auxiliary files currently not supported");
     f=fopen(file_name,"rb");
     if (f==NULL) QUIT("Unable to read section %d, file %s",
       dir[i].section_no,file_name);
     fsize=0;
     while (!feof(f))@/
     { size_t s,t;
       char buffer[1<<13]; /* 8kByte */       
       s=fread(buffer,1,1<<13,f);@/
       t=fwrite(buffer,1,s,hout);
       if (s!=t) QUIT("writing file %s",file_name);
       fsize=fsize+t;
     }
     fclose(f);
     if (fsize!=dir[i].size) 
       QUIT(@["File size " SIZE_F " does not match section[0] size %u"@],@|fsize,dir[i].size);
   }
}
@



\section{Definition Section}\index{definition section}
\label{defsection}
In a typical \HINT\ file, there are many things that are used over and over again.
For example the interword glue of a specific font or the indentation of
the first line of a paragraph. The definition section contains this information so that 
it can be referenced in the content section by a simple reference number.
In addition there are a few parameters that guide the routines of \TeX.
An example is the ``above display skip'', which controls the amount of white space
inserted above a displayed equation, or the ``hyphen penalty'' that tells \TeX\
the ``\ae sthetic cost'' of ending a line with a hyphenated word. These parameters
also get their values in the definition section as explained in section~\secref{defaults}.


The most simple way to store these definitions is to store them in an array indexed by the
reference numbers.
To simplify the dynamic allocation of these arrays, the list of definitions
will always start with the list of maximum\index{maximum values} values: a list that contains
for each node type the maximum reference number used.

In the long format, the definition section starts with the keyword \.{definitions}, 
followed by the list of maximum values,
followed by the definitions proper. 

When writing the short format, we start by positioning the output stream at the beginning of
the definition buffer and we end with recording the size of the definition section
in the directory.

\readcode
@s definition_section symbol
@s definition_list symbol
@s definition symbol
@s DEFINITIONS symbol
@<symbols@>=
%token DEFINITIONS "definitions"
@

@<scanning rules@>=
::@=definitions@>   :< return DEFINITIONS; >:
@

@<parsing rules@>=
definition_section: START DEFINITIONS { hput_definitions_start();}@/
  max_definitions definition_list @/
  END {hput_definitions_end();};
definition_list: @+ | definition_list def_node; 
@

\writecode
@<write functions@>=
void hwrite_definitions_start(void)
{  section_no=1; @+hwritef("<definitions");
}

void hwrite_definitions_end(void)
{  hwritef("\n>\n");
}
@



@<get functions@>=
void hget_definition_section(void)
{ DBG(DBGBASIC|DBGDEF,"Definitions\n");
  hget_section(1);
  hwrite_definitions_start();
  DBG(DBGDEF,"List of maximum values\n");
  hget_max_definitions();
  @<initialize definitions@>@;
  hwrite_max_definitions();
  DBG(DBGDEF,"List of definitions\n");
  while (hpos<hend)  
    hget_def_node();
  hwrite_definitions_end();
}
@

\putcode
@<put functions@>=
void hput_definitions_start(void)
{ DBG(DBGDEF,"Definition Section\n");
  section_no=1;
  hpos=hstart=dir[1].buffer;
  hend=hstart+dir[1].bsize;
}
void hput_definitions_end(void)
{ dir[1].size=hpos-hstart;
  DBG(DBGDEF,"End Definition Section size=0x%x\n",dir[1].size);
}
@
\gdef\codetitle{Definitions}
\hascode
\subsection{Maximum Values}\index{maximum values}
To help implementations allocating the right amount of memory for the
definitions, the definition section starts with a list of maximum
values.  For each kind of node, we store the maximum valid reference
number in the array |max_ref| which is indexed by the kind-values.
For a reference number |n| and kind-value $k$ we have 
$0\le n\le |max_ref[k]|$.  
To make sure that a hint file without any definitions
will work, some definitions have default values. 
The initialization of default and maximum values is described 
in section~\secref{defaults}. The maximum
reference number that has a default value is stored in the array
|max_default|.  
We have $-1 \le |max_default[k]| \le |max_ref[k]| < 2^{16}$,
and for most $k$ even $|max_ref[k]| < 2^{8}$.
Specifying maximum values that are lower than the
default\index{default value} values is not allowed in the short
format; in the long format, lower values are silently ignored.  Some
default values are permanently fixed; for example the zero glue with
reference number |zero_skip_no| must never change. The array
|max_fixed| stores the maximum reference number that has a fixed value for a
given kind.  Definitions with reference numbers less or equal than the
corresponding |max_fixed[k]| number are disallowed. Usually we have
$-1 \le |max_fixed[k]| \le |max_default[k]| $, but if for a kind-value
$k$ no definitions, and hence no maximum values are allowed, we set
$|max_fixed[k]|=|0x10000|>|max_default[k]| $.


We use the |max_ref| array whenever we find a
reference number in the input to check if it is within the proper range.

@<debug macros@>=
#define @[REF_RNG(K,N)@] if ((int)(N)>max_ref[K]) QUIT("Reference %d to %s out of range [0 - %d]",\
  (N),definition_name[K],max_ref[K])
@

In the long format file, the list of maximum values starts with
 ``\.{<max }'', then follow pairs of keywords and numbers like
 ``\.{<glue 57>}'', and it ends with ``\.{>}''.  In the short format,
we start the list of maximums with a |list_kind| tag and end it with
a |list_kind| tag.  Each maximum value is preceded and followed by a
tag byte with the appropriate kind-value. The info value has its |b001| bit
cleared if the maximum value is in the range 0 to |0xFF| and fits into a
single byte; the info value hast its |b001| bit set if it fits into two byte.
Currently only the |label_kind| may need to use two byte.
@<debug macros@>=
#define MAX_REF(K) ((K)==label_kind?0xFFFF:0xFF)
@

Other info values are reserved for future extensions.
After reading the maximum values, we initialize the data structures for
the definitions.


\readcode 
@s max_list symbol
@s max_value symbol
@s max_definitions symbol
@s MAX symbol
@<symbols@>=
%token MAX "max"
@

@<scanning rules@>=
::@=max@>          :< return MAX; >:
@
@<parsing rules@>=
max_definitions: START MAX max_list END @|
 { @<initialize definitions@>@;@+ hput_max_definitions(); };

max_list:@+ | max_list START max_value END;

max_value: FONT UNSIGNED      { hset_max(font_kind,$2); }
         | INTEGER UNSIGNED   { hset_max(int_kind,$2); }
         | DIMEN UNSIGNED     { hset_max(dimen_kind,$2); }
         | LIGATURE UNSIGNED  { hset_max(ligature_kind,$2); }
         | DISC UNSIGNED    { hset_max(disc_kind,$2); }
         | GLUE UNSIGNED      { hset_max(glue_kind,$2); }
         | LANGUAGE UNSIGNED  { hset_max(language_kind,$2); }
         | RULE UNSIGNED      { hset_max(rule_kind,$2); }
         | IMAGE UNSIGNED     { hset_max(image_kind,$2); }
         | LEADERS UNSIGNED   { hset_max(leaders_kind,$2); }
         | BASELINE UNSIGNED  { hset_max(baseline_kind,$2); }
         | XDIMEN UNSIGNED    { hset_max(xdimen_kind,$2); }
         | PARAM UNSIGNED     { hset_max(param_kind,$2); }
         | STREAMDEF UNSIGNED { hset_max(stream_kind,$2); }
         | PAGE UNSIGNED      { hset_max(page_kind,$2); }
         | RANGE UNSIGNED     { hset_max(range_kind,$2); }
         | LABEL UNSIGNED     { hset_max(label_kind,$2); };

@

@<parsing functions@>=
void hset_max(Kind k, int n)
{ DBG(DBGDEF,"Setting max %s to %d\n",definition_name[k],n);
  RNG("Maximum",n,max_fixed[k]+1,MAX_REF(k)); 
  if (n>max_ref[k]) 
   max_ref[k]=n; 
}
@

\writecode
@<write functions@>=
void hwrite_max_definitions(void)
{ Kind k;
  hwrite_start();@+
  hwritef("max");
  for (k=0; k<32;k++)
    if (max_ref[k]>max_default[k])@/
    {@+ switch (k)
      { @<cases of writing special maximum values@>@;
        default:
          hwrite_start();
          hwritef("%s %d",definition_name[k], max_ref[k]);
          hwrite_end();
          break;
      }
    }
  hwrite_end();
}          
@

\getcode
@<get file functions@>=
void hget_max_definitions(void)
{ Kind k;
  @<read the start byte |a|@>@;
  if (a!=TAG(list_kind,0)) QUIT("Start of maximum list expected");
  for(k= 0;k<32;k++)max_ref[k]= max_default[k]; max_outline=-1;
  while (true) @/
  { int n;
    if (hpos>=hend) QUIT("Unexpected end of maximum list");
    node_pos=hpos-hstart;
    HGETTAG(a);@+
    k=KIND(a);@+
    if  (k==list_kind) break;
    if (INFO(a)&b001)  HGET16(n); @+else n=HGET8;
    switch (a)
    { @<cases of getting special maximum values@>@;
      default:
        if (max_fixed[k]>max_default[k]) 
          QUIT("Maximum value for kind %s not supported",definition_name[k]);   
        RNG("Maximum number",n,max_default[k],MAX_REF(k));
        max_ref[k]=n;
        DBG(DBGDEF,"max(%s) = %d\n",definition_name[k],max_ref[k]);
        break;
    }
    @<read and check the end byte |z|@>@;
  }
  if (INFO(a)!=0) QUIT("End of maximum list with info %d", INFO(a));
}
@

\putcode

@<put functions@>=
void hput_max_definitions(void)
{ Kind k;
  DBG(DBGDEF,"Writing Max Definitions\n");
  HPUTTAG(list_kind,0);
  for (k=0; k<32; k++)
    if (max_ref[k]>max_default[k])
    { uint32_t pos=hpos++-hstart;
      DBG(DBGDEF,"max(%s) = %d\n",definition_name[k],max_ref[k]);
      hput_tags(pos,TAG(k,hput_n(max_ref[k])-1));
    }
  @<cases of putting special maximum values@>@;
  HPUTTAG(list_kind,0);
  DBG(DBGDEF,"Writing Max Definitions End\n");
}
@


\subsection{Definitions}\label{definitions}
A definition\index{definition section} associates a reference number
with a content node.  Here is an example: A glue definition associates
a glue number, for example 71, with a glue specification. In the long
format this might look like ``{\tt \.{<}glue *71 4pt plus 5pt minus
0.5pt\.{>}}'' which makes glue number 71 refer to a 4pt glue with a
stretchability of 5pt and a shrinkability of 0.5pt. 
Such a glue definition differs from a normal glue node just by an extra 
byte value immediately following the keyword respectively start byte.

Whenever we need this glue in the content section, we can say 
``{\tt \.{<}glue *71\.{>}}''.  Because we restrict the number of glue definitions
to at most 256, a single byte is sufficient to
store the reference number.  The \.{shrink} and \.{stretch} programs
will, however, not bother to store glue definitions. Instead they will
write them in the new format immediately to the output.

The parser will handle definitions in any order, but the order is relevant
if a definition references another definition, and of course, 
it never does any harm to present definitions in a systematic way.

As a rule, the definition of a reference must always precede the
use of that reference. While this is always the case for
references in the content section, it restricts the use of
references inside the definition section.

The definitions for integers, dimensions, extended dimensions,
 languages, rules, ligatures, and images are ``simple''.
They never contain references and so it is always possible to list them first.
The definition of glues may contain extended dimensions,
the definitions of baselines may reference glue nodes, and 
the definitions of parameter lists contain definitions of integers, dimensions,
and glues. So these definitions should follow in this order.

The definitions of leaders and discretionary breaks allow boxes.
While these boxes are usually
quite simple, they may contain arbitrary references---including again
references to leaders and discretionary breaks.  So, at least in principle,
they might impose complex (or even unsatisfiable) restrictions 
on the order of those definitions.

The definitions of fonts contain not only ``simple'' definitions 
but also the definitions of interword glues and hyphens 
introducing additional ordering restrictions.
The definition of hyphens regularly contain glyphs which in turn reference
a font---typically the font that just gets defined.
Therefore we relax the define before use policy for glyphs:
Glyphs may reference a font before the font is defined.

The definitions of page templates contain lists of arbitrary content 
nodes, and while the boxes inside leaders or discretionary breaks tend to be simple,
the content of page templates is often quite complex. 
Page templates are probably the source of most ordering restrictions. 
Placing page templates towards the end of the list of definitions 
might be a good idea.
%
A special case are stream definitions. These occur only as part of
the corresponding page template definition and are listed at its end.
So references to them will occur in the page template always before their
definition.
%
Finally, the definitions of page ranges always reference a page template
and they should come after the page template definitions.
For technical reasons explained in section~\secref{labels},
definitions of labels and outlines come last.

To avoid complex dependencies, an application can always choose not to
use references in the definition section. There are only three types of
nodes where references can not be avoided: fonts are referenced in glyph nodes,
labels are referenced in outlines,
and languages are referenced in boxes or page templates.
Possible ordering restrictions can be satisfied if languages are defined early.
To check the define before use policy, we use an array of bitvectors,
but we limit checking to the first 256 references.
We have for every reference number $|N|<256$ and every kind |K| a single
bit which is set if and only if the corresponding reference is defined.

@<definition checks@>=
uint32_t definition_bits[0x100/32][32]={{0}};

#define @[SET_DBIT(N,K)@] ((N)>0xFF?1:(definition_bits[N/32][K]|=(1<<((N)&(32-1)))))
#define @[GET_DBIT(N,K)@] ((N)>0xFF?1:((definition_bits[N/32][K]>>((N)&(32-1)))&1))
#define @[DEF(D,K,N)@] (D).k=K;@+ (D).n=(N);@+SET_DBIT((D).n,(D).k);\
	DBG(DBGDEF,"Defining %s %d\n",definition_name[(D).k],(D).n);\
	RNG("Definition",(D).n,max_fixed[(D).k]+1,max_ref[(D).k]);
#define @[REF(K,N)@] REF_RNG(K,N);if(!GET_DBIT(N,K)) \
	QUIT("Reference %d to %s before definition",(N),definition_name[K])
@

@<initialize definitions@>=
definition_bits[0][int_kind]=(1<<(MAX_INT_DEFAULT+1))-1;
definition_bits[0][dimen_kind]=(1<<(MAX_DIMEN_DEFAULT+1))-1;
definition_bits[0][xdimen_kind]=(1<<(MAX_XDIMEN_DEFAULT+1))-1;
definition_bits[0][glue_kind]=(1<<(MAX_GLUE_DEFAULT+1))-1;
definition_bits[0][baseline_kind]=(1<<(MAX_BASELINE_DEFAULT+1))-1;
definition_bits[0][page_kind]=(1<<(MAX_PAGE_DEFAULT+1))-1;
definition_bits[0][stream_kind]=(1<<(MAX_STREAM_DEFAULT+1))-1;
definition_bits[0][range_kind]=(1<<(MAX_RANGE_DEFAULT+1))-1;
@

\goodbreak
\vbox{\readcode\vskip -\baselineskip\putcode}


@s font symbol
@<symbols@>=

%type <rf> def_node
@

@<parsing rules@>=
def_node: 
  start FONT    ref font END       @| { DEF($$,font_kind,$3);@+   hput_tags($1,$4);@+} 
| start INTEGER ref integer END    @| { DEF($$,int_kind,$3);@+   hput_tags($1,hput_int($4));@+} 
| start DIMEN   ref dimension END  @| { DEF($$,dimen_kind,$3);@+   hput_tags($1,hput_dimen($4));} 
| start LANGUAGE ref string END    @| { DEF($$,language_kind,$3);@+hput_string($4); hput_tags($1,TAG(language_kind,0));}
| start GLUE    ref glue END       @| { DEF($$,glue_kind,$3);@+    hput_tags($1,hput_glue(&($4)));} 
| start XDIMEN  ref xdimen END     @| { DEF($$,xdimen_kind,$3);@+  hput_tags($1,hput_xdimen(&($4)));} 
| start RULE    ref rule END       @| { DEF($$,rule_kind,$3);@+    hput_tags($1,hput_rule(&($4)));} 
| start LEADERS ref leaders END    @| { DEF($$,leaders_kind,$3);@+ hput_tags($1,TAG(leaders_kind, $4));} 
| start BASELINE ref baseline END  @| { DEF($$,baseline_kind,$3);@+hput_tags($1,TAG(baseline_kind, $4));@+} 
| start LIGATURE ref ligature END  @| { DEF($$,ligature_kind,$3);@+hput_tags($1,hput_ligature(&($4)));} 
| start DISC ref disc END      @| { DEF($$,disc_kind,$3);@+  hput_tags($1,hput_disc(&($4)));} 
| start IMAGE  ref image END       @| { DEF($$,image_kind,$3);@+   hput_tags($1,TAG(image_kind,$4));}
| start PARAM  ref parameters END  @| { DEF($$,param_kind,$3);@+   hput_tags($1,hput_list($1+2,&($4)));} 
| start PAGE   ref page END        @| { DEF($$,page_kind,$3);@+    hput_tags($1,TAG(page_kind,0));}; 
@

There are a few cases where one wants to define a reference by a reference.
For example, a \HINT\ file may want to set the {\tt parfillskip} glue to zero.
While there are multiple ways to define the zero glue, the canonical way is a reference
using the |zero_glue_no|. All these cases have in common that the reference to be defined
is one of the default references and the defining reference is one of the fixed references.
We add a few parsing rules and a testing macro for those cases where the number
of default definitions is greater than the number of fixed definitions.

@<definition checks@>=
#define @[DEF_REF(D,K,M,N)@]  DEF(D,K,M);\
if ((int)(M)>max_default[K]) QUIT("Defining non default reference %d for %s",M,definition_name[K]); \
if ((int)(N)>max_fixed[K]) QUIT("Defining reference %d for %s by non fixed reference %d",M,definition_name[K],N); 
@

@<parsing rules@>=
def_node:
  start INTEGER ref ref  END @/{DEF_REF($$,int_kind,$3,$4); hput_tags($1,TAG(int_kind,0)); }
| start DIMEN   ref ref  END @/{DEF_REF($$,dimen_kind,$3,$4); hput_tags($1,TAG(dimen_kind,0)); }
| start GLUE    ref ref  END @/{DEF_REF($$,glue_kind,$3,$4); hput_tags($1,TAG(glue_kind,0)); };
@




\goodbreak
\vbox{\getcode\vskip -\baselineskip\writecode}

@<get functions@>=
void hget_definition(int n, uint8_t a, uint32_t node_pos)
{@+ switch(KIND(a))
    { case font_kind: hget_font_def(n);@+ break;
      case param_kind:
        {@+ List l; @+HGET_LIST(INFO(a),l); @+hwrite_parameters(&l); @+ break;@+} 
      case page_kind: hget_page(); @+break;
      case dimen_kind:  hget_dimen(a); @+break;
      case xdimen_kind:
        {@+ Xdimen x;  @+hget_xdimen(a,&x); @+hwrite_xdimen(&x); @+break;@+ }
      case language_kind:
        if (INFO(a)!=b000)
          QUIT("Info value of language definition must be zero");
        else
        { char *n; HGET_STRING(n);@+ hwrite_string(n); }
        break;
      default:
        hget_content(a); @+break;
    }
}


void hget_def_node()
{ Kind k;

  @<read the start byte |a|@>@;
  k=KIND(a);
  if (k==label_kind)
    hget_outline_or_label_def(INFO(a),node_pos);
  else
  { int n;
    n=HGET8; 
    if (k!=range_kind) REF_RNG(k,n);
    SET_DBIT(n,k);
    if (k==range_kind)
      hget_range(INFO(a),n);
    else
    { hwrite_start(); @+hwritef("%s *%d",definition_name[k],n);
      hget_definition(n,a,node_pos);
      hwrite_end();
    }
    if(n>max_ref[k] || n <= max_fixed[k]) 
      QUIT("Definition %d for %s out of range [%d - %d]",@|
        n, definition_name[k],max_fixed[k]+1,max_ref[k]);
  }
  if (max_fixed[k]>max_default[k]) 
    QUIT("Definitions for kind %s not supported", definition_name[k]);
  @<read and check the end byte |z|@>@;
}
@



\subsection{Parameter Lists}\label{paramlist}\index{parameter list}
Because the content section is a ``stateless'' list of nodes, the
definitions we see in the definition section can never change. It is
however necessary to make occasionally local modifications of some of
these definitions, because some definitions are parameters of the
algorithms borrowed from \TeX. Nodes that need such modifications, for
example the paragraph nodes that are passed to \TeX's line breaking
algorithm, contain a list of local definitions called parameters.
Typically sets of related parameters are needed.  To facilitate a
simple reference to such a set of parameters, we allow predefined
parameter lists that can be referenced by a single number.  The
parameters of \TeX's routines are quite basic---integers\index{integer}, 
dimensions\index{dimension}, and glues\index{glue}---and all
of them have default values.  
Therefore we restrict the definitions in parameter lists to such 
basic definitions.

@<parsing functions@>=
void check_param_def(Ref *df)
{ if(df->k!=int_kind && df->k!=dimen_kind &&  @| df->k!=glue_kind)
    QUIT("Kind %s not allowed in parameter list", definition_name[df->k]);
  if(df->n<=max_fixed[df->k] || max_default[df->k]<df->n)
    QUIT("Parameter %d for %s not allowed in parameter list", df->n, definition_name[df->k]);
}
@

The definitions below repeat the definitions we have seen for lists in section~\secref{plainlists} 
with small modifications. For example we use the kind-value |param_kind|. An empty parameter list
is omitted in the long format as well as in the short format.

\goodbreak
\vbox{\readcode\vskip -\baselineskip\putcode}

@s PARAM symbol
@s def_list symbol
@s parameters_node symbol
@s def_node symbol
@s parameters symbol
@s empty_param_list symbol
@s non_empty_param_list symbol

@<symbols@>=
%token PARAM "param"
%type <u> def_list
%type <l> parameters
@

@<scanning rules@>=
::@=param@>  :< return PARAM; >:
@
@<parsing rules@>=
def_list:  position @+
          | def_list def_node {check_param_def(&($2));};
parameters: estimate def_list { $$.p=$2; $$.k=param_kind; $$.s=(hpos-hstart)-$2;};
@

Using a parsing rule like
``\nts{param\_list}: \nts{start} \ts{PARAM} \nts{parameters} \ts{END}'',
an empty parameter list will be written as ``\.{<param>}''.
This looks ugly and seems like unnecessary syntax. It would be nicer
if an empty parameter list could simply be omitted.
Generating an empty parameter list for an omitted parameter list
is however a bit tricky.
Consider the sequence ``\.{<param\dots>} \.{<hbox\dots>}'' versus 
the sequence ``\.{<hbox\dots>}''. In the latter case, 
the parser will notice the missing parameter list
when it encounters the \.{hbox} token.
Of course it is not a good idea to augment the rules for the \.{hbox} with
a special test for the missing empty parameter list.
It is better to insert an empty parameter list before parsing the first ``\.{<}'' token
and remove it again if a non-empty parameter list has been detected.
This can be accomplished by the following two rules.

@<parsing rules@>=
empty_param_list: position { HPUTX(2); hpos++; hput_tags($1,TAG(param_kind,1));};
non_empty_param_list: start PARAM {hpos=hpos-2;} parameters END @/
                     { @+ hput_tags($1-2,hput_list($1-1,&($4)));@+};
@

\writecode
@<write functions@>=
void hwrite_parameters(List *l)
{ uint32_t h=hpos-hstart, e=hend-hstart; /* save |hpos| and |hend| */
  hpos=l->p+hstart;@+ hend=hpos+l->s;
  if (l->s>0xFF) hwritef(" %d",l->s); 
  while(hpos<hend) hget_def_node();
  hpos=hstart+h;@+  hend=hstart+e; /* restore  |hpos| and |hend| */ 
}
void hwrite_param_list(List *l)
{ @+if (l->s!=0) @/
  { hwrite_start();@+
    hwritef("param"); 
    hwrite_parameters(l);
    hwrite_end();
  }
}
@

\getcode
@<get functions@>=
void hget_param_list(List *l)
{ @+if (KIND(*hpos)!=param_kind) @/
    QUIT("Parameter list expected at 0x%x", (uint32_t)(hpos-hstart)); 
  else  hget_list(l);
}
@



\subsection{Fonts}\label{fonts}
Another definition that has no corresponding content node is the
font\index{font} definition.  Fonts by themselves do not constitute
content, instead they are used in glyph\index{glyph} nodes.
Further, fonts are never directly embedded in a content node; in a content node, a
font is always specified by its font number. This limits the number of
fonts that can be used in a \HINT\ file to at most 256.

A long format font definition starts with the keyword ``\.{font}'' and
is followed by the font number, as usual prefixed by an asterisk. Then
comes the font specification with the font size, the font
name, the section number of the \TeX\ font metric file, and the
section number of the file containing the glyphs for the font.
The \HINT\ format supports \.{.pk} files, the traditional font format
for \TeX, and the more modern PostScript Type 1 fonts,
TrueType fonts, and OpenType fonts.

The format of font definitions will probably change in future
versions of the \HINT\ file format. 
For example,  \.{.pk} files might be replaced entirely by PostScript Type 1 fonts.
Also \HINT\ needs the \TeX\ font metric files only to obtain the sizes
of characters when running \TeX's line breaking algorithm.
But for many TrueType fonts there are no \TeX\ font metric files,
while the necessary information about character sizes should be easy
to obtain.
Another information, that is currently missing from font definitions,
is the fonts character encoding.

In a \HINT\ file, text is represented as a sequence of numbers called
character codes. \HINT\ files use the UTF-8 character encoding
scheme (CES) to map these numbers to their representation as byte
sequences.  For example the number ``|0xE4|'' is encoded as the byte
sequence ``|0xC3| |0xA4|''.  The same number |0xE4| now can represent
different characters depending on the coded character set (CCS). For
example in the common ISO-8859-1 (Latin 1) encoding the number |0xE4|
is the umlaut ``\"a'' where as in the ISO-8859-7 (Latin/Greek) it is
the Greek letter ``$\delta$'' and in the EBCDIC encoding, used on IBM
mainframes, it is the upper case letter ``U''.

The character encoding is
irrelevant for rendering a \HINT\ file as long as the character codes
in the glyph nodes are consistent with the character codes used in the font
file, but the character encoding is necessary for all programs that
need to ``understand'' the content of the \HINT\ file. For example
programs that want to translate a \HINT\ document to a different language,
or for text-to-speech conversion.

The Internet Engineering Task Force IETF has established a character set
registry\cite{ietf:charset-mib} that defines an enumeration of all
registered coded character sets\cite{iana:charset-mib}.  The coded
character set numbers are in the range 1--2999.
This encoding number, as given in~\cite{iana:charset},
might be one possibility for specifying the font encoding as
part of a font definition.

Currently, it is only required that a font specifies
an interword glue and a default discretionary break. After that comes
a list of up to 12 font specific parameters.

The font size specifies the desired ``at size''\index{font at size}
which might be different from the ``design size''\index{font design size}
of the font as stored in the \.{.tfm} file.

In the short format, the font specification is given in the same order
as in the long format.

Our internal representation of a font just stores the font name
because in the long format we add the font name as a comment to glyph
nodes.


@<common variables@>=
char **hfont_name; /* dynamically allocated array of font names */
@

@<hint basic types@>=
#define MAX_FONT_PARAMS 11
@

@<initialize definitions@>=
ALLOCATE(hfont_name,max_ref[font_kind]+1,char *);
@



\readcode
@s FONT symbol
@s fref symbol
@s font_param_list symbol
@s font_param symbol
@s font_head symbol

@<symbols@>=
%token FONT     "font"
%type <info> font font_head
@

@<scanning rules@>=
::@=font@>  :< return FONT; >:
@

Note that we set the definition bit early because the definition of font |f|
might involve glyphs that reference font |f| (or other fonts).

@<parsing rules@>=@/

font: font_head font_param_list;

font_head: string dimension UNSIGNED UNSIGNED @/
  	 	 {uint8_t f=$<u>@&0;  SET_DBIT(f,font_kind); @+hfont_name[f]=strdup($1); $$=hput_font_head(f,hfont_name[f],$2,$3,$4);};

font_param_list: glue_node disc_node @+ | font_param_list font_param ;

font_param: @/
  start PENALTY fref penalty  END   { hput_tags($1,hput_int($4));} 
| start KERN    fref kern END  { hput_tags($1,hput_kern(&($4)));} 
| start LIGATURE fref ligature END  { hput_tags($1,hput_ligature(&($4)));} 
| start DISC fref disc END      { hput_tags($1,hput_disc(&($4)));} 
| start GLUE    fref glue END       { hput_tags($1,hput_glue(&($4)));} 
| start LANGUAGE fref string END    { hput_string($4);hput_tags($1,TAG(language_kind,0));}
| start RULE    fref rule END       { hput_tags($1,hput_rule(&($4)));}
| start IMAGE   fref image END      { hput_tags($1,TAG(image_kind,$4));};

fref: ref @/{ RNG("Font parameter",$1,0,MAX_FONT_PARAMS); };
@

\goodbreak
\vbox{\getcode\vskip -\baselineskip\writecode}

@<get functions@>=
static void hget_font_params(void)
{ Disc h;
  hget_glue_node(); 
  hget_disc_node(&(h));@+ hwrite_disc_node(&h); 
  DBG(DBGDEF,"Start font parameters\n");
  while (KIND(*hpos)!=font_kind)@/  
  { Ref df;
    @<read the start byte |a|@>@;
    df.k=KIND(a);
    df.n=HGET8;
    DBG(DBGDEF,"Reading font parameter %d: %s\n",df.n, definition_name[df.k]);
    if (df.k!=penalty_kind && df.k!=kern_kind && df.k!=ligature_kind && @|
        df.k!=disc_kind && df.k!=glue_kind && df.k!=language_kind && @| df.k!=rule_kind && df.k!=image_kind)
      QUIT("Font parameter %d has invalid type %s",df.n, content_name[df.n]);
    RNG("Font parameter",df.n,0,MAX_FONT_PARAMS);
    hwrite_start(); @+ hwritef("%s *%d",content_name[KIND(a)],df.n);
    hget_definition(df.n,a,node_pos);
    hwrite_end();
    @<read and check the end byte |z|@>@;
  }
  DBG(DBGDEF,"End font parameters\n");
}


void hget_font_def(uint8_t f)
{ char *n; @+Dimen s=0;@+uint16_t m,y; 
  HGET_STRING(n);@+ hwrite_string(n);@+  hfont_name[f]=strdup(n);
  HGET32(s); @+ hwrite_dimension(s);
  DBG(DBGDEF,"Font %s size 0x%x\n", n, s); 
  HGET16(m); @+RNG("Font metrics",m,3,max_section_no);
  HGET16(y); @+RNG("Font glyphs",y,3,max_section_no);
  hwritef(" %d %d",m,y);
  hget_font_params();
  DBG(DBGDEF,"End font definition\n");
}
@

\putcode
@<put functions@>=
uint8_t hput_font_head(uint8_t f,  char *n, Dimen s, @| uint16_t m, uint16_t y)
{ Info i=b000;
  DBG(DBGDEF,"Defining font %d (%s) size 0x%x\n", f, n, s); 
  hput_string(n);
  HPUT32(s);@+ 
  HPUT16(m); @+HPUT16(y); 
  return TAG(font_kind,i);
}
@



\subsection{References}\label{reference}
We have seen how to make definitions, now let's see how to
reference\index{reference} them.  In the long form, we can simply
write the reference number, after the keyword like this: 
``{\tt \.{<}glue *17\.{>}}''.  
The asterisk\index{asterisk} is necessary to keep apart, 
for example, a penalty with value 50, 
written ``{\tt \.{<}penalty 50\.{>}}'', 
from a penalty referencing the integer
definition number 50, written ``{\tt \.{<}penalty *50\.{>}}''.

\goodbreak
\vbox{\readcode\vskip -\baselineskip\putcode}

@<parsing rules@>=
xdimen_ref: ref { REF(xdimen_kind,$1);};
param_ref: ref { REF(param_kind,$1); };
stream_ref: ref { REF_RNG(stream_kind,$1); };


content_node: 
 start PENALTY ref END @/{ REF(penalty_kind,$3); @+ hput_tags($1,TAG(penalty_kind,0)); }
|start KERN  explicit ref END @/
      { REF(dimen_kind,$4); @+ hput_tags($1,TAG(kern_kind,($3)?b100:b000)); }
|start KERN  explicit XDIMEN   ref END @/
      { REF(xdimen_kind,$5); @+hput_tags($1,TAG(kern_kind,($3)?b101:b001)); }
|start GLUE     ref END @/{ REF(glue_kind,$3); @+ hput_tags($1,TAG(glue_kind,0)); }
|start LIGATURE ref END @/{ REF(ligature_kind,$3); @+ hput_tags($1,TAG(ligature_kind,0)); }
|start DISC   ref END @/{ REF(disc_kind,$3); @+ hput_tags($1,TAG(disc_kind,0)); }
|start RULE     ref END @/{ REF(rule_kind,$3); @+ hput_tags($1,TAG(rule_kind,0)); }
|start IMAGE    ref END @/{ REF(image_kind,$3);@+ hput_tags($1,TAG(image_kind,0)); }
|start LEADERS  ref END @/{ REF(leaders_kind,$3); @+ hput_tags($1,TAG(leaders_kind,0)); }
|start BASELINE ref END @/{ REF(baseline_kind,$3);@+ hput_tags($1,TAG(baseline_kind,0)); }
|start LANGUAGE REFERENCE END @/{ REF(language_kind,$3);@+ hput_tags($1,hput_language($3)); };

glue_node: start GLUE ref END @/{ REF(glue_kind,$3); 
if ($3==zero_skip_no) { hpos=hpos-2; $$=false;@+ }
else {hput_tags($1,TAG(glue_kind,0)); $$=true;@t\2@>@+}};

@

\getcode
@<cases to get content@>=
@t\1\kern1em@>
case TAG(penalty_kind,0): HGET_REF(penalty_kind); @+break;
case TAG(kern_kind,b000):  HGET_REF(dimen_kind); @+break;
case TAG(kern_kind,b100):  hwritef(" !"); @+HGET_REF(dimen_kind); @+break;
case TAG(kern_kind,b001): @| hwritef(" xdimen");@+ HGET_REF(xdimen_kind); @+break;
case TAG(kern_kind,b101): @| hwritef(" ! xdimen");@+ HGET_REF(xdimen_kind); @+break;
case TAG(ligature_kind,0):  HGET_REF(ligature_kind); @+break;
case TAG(disc_kind,0):  HGET_REF(disc_kind); @+break;
case TAG(glue_kind,0):  HGET_REF(glue_kind); @+break;
case TAG(language_kind,b000):  HGET_REF(language_kind); @+break;
case TAG(rule_kind,0): HGET_REF(rule_kind); @+break;
case TAG(image_kind,0):   HGET_REF(image_kind); @+break;
case TAG(leaders_kind,0):  HGET_REF(leaders_kind); @+break;
case TAG(baseline_kind,0):  HGET_REF(baseline_kind); @+break;
@

@<get macros@>=
#define @[HGET_REF(K)@] {uint8_t n=HGET8;@+ REF(K,n); @+hwrite_ref(n);@+} 
@
\writecode
@<write functions@>=
void hwrite_ref(int n)
{hwritef(" *%d",n);@+}

void hwrite_ref_node(Kind k, uint8_t n)
{ hwrite_start(); @+hwritef("%s",content_name[k]);@+ hwrite_ref(n); @+hwrite_end();}
@



\section{Defaults}\label{defaults}\index{default value}
Several of the predefined values found in the definition section are used 
as parameters for the routines borrowed from \TeX\ to display the content
of a \HINT\ file. These values must be defined, but it is inconvenient if
the same standard definitions need to be placed in each and every \HINT\ file.
Therefore we specify in this chapter reasonable default values. 
As a consequence, even a \HINT\ file without any definitions should
produce sensible results when displayed.

The definitions that have default values are integers, dimensions, 
extended dimensions, glues, baselines, labels, page templates, 
streams, and page ranges. 
Each of these defaults has its own subsection below.
Actually the defaults for extended dimensions, baselines, and labels
 are not needed by \TeX's routines, but it is nice to have default 
values for the extended dimensions that represent
\.{hsize}, \.{vsize}, a zero baseline skip, and a label for the table
of content. 

The array |max_default| contains for each kind-value the maximum number of
the default values. The function |hset_max| is used to initialize them.

The programs \.{shrink} and \.{stretch} actually do not use the defaults,
but it would be possible to suppress definitions if the defined value
is the same as the default value.
%
We start by setting |max_default[k]==-1|, meaning no defaults, 
and |max_fixed[k]==0x10000|, meaning no definitions.
The following subsections will then overwrite these values for 
all kinds of definitions that have defaults.
It remains to reset |max_fixed| to $-1$ for all those kinds 
that have no defaults but allow definitions.

@<take care of variables without defaults@>=
  for (k=0; k<32; k++) max_default[k]=-1,max_fixed[k]=0x10000;
  @/@t}$\hangindent=1em${@>max_fixed[font_kind]= max_fixed[ligature_kind]= max_fixed[disc_kind]
  @|=max_fixed[language_kind]=max_fixed[rule_kind]= max_fixed[image_kind]
  @|= max_fixed[leaders_kind]= max_fixed[param_kind]=max_fixed[label_kind]@|= -1;
@


\subsection{Integers}
Integers\index{integer} are very simple objects, and it might be tempting not to
use predefined integers at all. But the \TeX\ typesetting engine,
which is used by \HINT, uses many integer parameters to fine tune
its operations. As we will see, all these integer parameters have a predefined
integer number that refers to an integer definition.

Integers and penalties\index{penalty} share the same kind-value. So a penalty node that references
one of the predefined penalties, simply contains the integer number as a reference
number.

The following integer numbers are predefined.
The zero integer is fixed with integer number zero. %It is never redefined.
The default values are taken from {\tt plain.tex}.

@<default names@>=
typedef enum {@t}$\hangindent=2em${@>
        zero_int_no=0,
        pretolerance_no=1,
        tolerance_no=2,
        line_penalty_no=3,
        hyphen_penalty_no=4,
        ex_hyphen_penalty_no=5,
        club_penalty_no=6,
        widow_penalty_no=7,
        display_widow_penalty_no=8,
        broken_penalty_no=9,
        pre_display_penalty_no=10,
        post_display_penalty_no=11,
        inter_line_penalty_no=12,
        double_hyphen_demerits_no=13,
        final_hyphen_demerits_no=14,
        adj_demerits_no=15,
        looseness_no=16,
        time_no=17,
        day_no=18,
        month_no=19,
        year_no=20,
        hang_after_no=21,
        floating_penalty_no=22
} Int_no;
#define MAX_INT_DEFAULT floating_penalty_no
@

@<define |int_defaults|@>=
max_default[int_kind]=MAX_INT_DEFAULT;
max_fixed[int_kind]=zero_int_no;
int_defaults[zero_int_no]=0;
int_defaults[pretolerance_no]=100;
int_defaults[tolerance_no]=200;
int_defaults[line_penalty_no]=10;
int_defaults[hyphen_penalty_no]=50;
int_defaults[ex_hyphen_penalty_no]=50;
int_defaults[club_penalty_no]=150;
int_defaults[widow_penalty_no]=150;
int_defaults[display_widow_penalty_no]=50;
int_defaults[broken_penalty_no]=100;
int_defaults[pre_display_penalty_no]=10000;
int_defaults[post_display_penalty_no]=0;
int_defaults[inter_line_penalty_no]=0;
int_defaults[double_hyphen_demerits_no]=10000;
int_defaults[final_hyphen_demerits_no]=5000;
int_defaults[adj_demerits_no]=10000;
int_defaults[looseness_no]=0;
int_defaults[time_no]=720;
int_defaults[day_no]=4;
int_defaults[month_no]=7;
int_defaults[year_no]=1776;
int_defaults[hang_after_no]=1;
int_defaults[floating_penalty_no]=20000;
@#

printf("int32_t int_defaults[MAX_INT_DEFAULT+1]={");
for (i=0; i<= max_default[int_kind];i++)@/
{ printf("%d",int_defaults[i]);@+
  if (i<max_default[int_kind]) printf(", ");@+
}
printf("};\n\n");
@

\subsection{Dimensions}

Notice that there are default values for the two dimensions \.{hsize} and \.{vsize}.
These are the ``design sizes'' for the hint file. While it might not be possible
to display the \HINT\ file using these values of \.{hsize} and \.{vsize},
these are the author's recommendation for the best ``viewing experience''.

\noindent
@<default names@>=
typedef enum {@t}$\hangindent=2em${@>
zero_dimen_no=0,
hsize_dimen_no=1,
vsize_dimen_no=2,
line_skip_limit_no=3,
max_depth_no=4,
split_max_depth_no=5,
hang_indent_no=6,
emergency_stretch_no=7,
quad_no=8,
math_quad_no=9
} Dimen_no;
#define MAX_DIMEN_DEFAULT math_quad_no
@

@<define |dimen_defaults|@>=
max_default[dimen_kind]=MAX_DIMEN_DEFAULT;
max_fixed[dimen_kind]=zero_dimen_no;@#
dimen_defaults[zero_dimen_no]=0;
dimen_defaults[hsize_dimen_no]=(Dimen)(6.5*72.27*ONE);
dimen_defaults[vsize_dimen_no]=(Dimen)(8.9*72.27*ONE);
dimen_defaults[line_skip_limit_no]=0;
dimen_defaults[split_max_depth_no]=(Dimen)(3.5*ONE);
dimen_defaults[hang_indent_no]=0;
dimen_defaults[emergency_stretch_no]=0;
dimen_defaults[quad_no]=10*ONE;
dimen_defaults[math_quad_no]=10*ONE;@#

printf("Dimen dimen_defaults[MAX_DIMEN_DEFAULT+1]={");
for (i=0; i<= max_default[dimen_kind];i++)
{ printf("0x%x",dimen_defaults[i]);
  if (i<max_default[dimen_kind]) printf(", ");
}
printf("};\n\n");
@

\subsection{Extended Dimensions}
Extended dimensions\index{extended dimension} can be used in a variety of nodes for example
kern\index{kern} and box\index{box} nodes.
We define three fixed extended dimensions: zero, hsize, and vsize.
In contrast to the \.{hsize} and \.{vsize} dimensions defined in the previous
section, the extended dimensions defined here are linear functions that always evaluate
to the current horizontal and vertical size in the viewer.

@<default names@>=
typedef enum {
zero_xdimen_no=0,
hsize_xdimen_no=1,
vsize_xdimen_no=2
} Xdimen_no;
#define MAX_XDIMEN_DEFAULT vsize_xdimen_no
@

@<define |xdimen_defaults|@>=
max_default[xdimen_kind]=MAX_XDIMEN_DEFAULT;
max_fixed[xdimen_kind]=vsize_xdimen_no;@#

printf("Xdimen xdimen_defaults[MAX_XDIMEN_DEFAULT+1]={"@/
"{0x0, 0.0, 0.0}, {0x0, 1.0, 0.0}, {0x0, 0.0, 1.0}"@/
"};\n\n");
@

 
\subsection{Glue}

There are predefined glue\index{glue} numbers that correspond to the skip parameters of \TeX.
The default values are taken from {\tt plain.tex}.

@<default names@>=
typedef enum {@t}$\hangindent=2em${@>
zero_skip_no=0,
fil_skip_no=1,
fill_skip_no=2,
line_skip_no=3,
baseline_skip_no=4,
above_display_skip_no=5,
below_display_skip_no=6,
above_display_short_skip_no=7,
below_display_short_skip_no=8,
left_skip_no=9,
right_skip_no=10,
top_skip_no=11,
split_top_skip_no=12,
tab_skip_no=13,
par_fill_skip_no=14
} Glue_no;
#define MAX_GLUE_DEFAULT par_fill_skip_no
@

@<define |glue_defaults|@>=
max_default[glue_kind]=MAX_GLUE_DEFAULT;
max_fixed[glue_kind]=fill_skip_no;

glue_defaults[fil_skip_no].p.f=1.0;
glue_defaults[fil_skip_no].p.o=fil_o;

glue_defaults[fill_skip_no].p.f=1.0;
glue_defaults[fill_skip_no].p.o=fill_o;@#

glue_defaults[line_skip_no].w.w=1*ONE;
glue_defaults[baseline_skip_no].w.w=12*ONE;

glue_defaults[above_display_skip_no].w.w=12*ONE;
glue_defaults[above_display_skip_no].p.f=3.0;
glue_defaults[above_display_skip_no].p.o=normal_o;
glue_defaults[above_display_skip_no].m.f=9.0;
glue_defaults[above_display_skip_no].m.o=normal_o;

glue_defaults[below_display_skip_no].w.w=12*ONE;
glue_defaults[below_display_skip_no].p.f=3.0;
glue_defaults[below_display_skip_no].p.o=normal_o;
glue_defaults[below_display_skip_no].m.f=9.0;
glue_defaults[below_display_skip_no].m.o=normal_o;

glue_defaults[above_display_short_skip_no].p.f=3.0;
glue_defaults[above_display_short_skip_no].p.o=normal_o;

glue_defaults[below_display_short_skip_no].w.w=7*ONE;
glue_defaults[below_display_short_skip_no].p.f=3.0;
glue_defaults[below_display_short_skip_no].p.o=normal_o;
glue_defaults[below_display_short_skip_no].m.f=4.0;
glue_defaults[below_display_short_skip_no].m.o=normal_o;

glue_defaults[top_skip_no].w.w=10*ONE;
glue_defaults[split_top_skip_no].w.w=(Dimen)8.5*ONE;

glue_defaults[par_fill_skip_no].p.f=1.0;
glue_defaults[par_fill_skip_no].p.o=fil_o;

#define @[PRINT_GLUE(G)@] \
        @[printf("{{0x%x, %f, %f},{%f, %d},{%f, %d}}",\
        G.w.w, G.w.h, G.w.v, G.p.f, G.p.o, G.m.f,G.m.o)@]@#

printf("Glue glue_defaults[MAX_GLUE_DEFAULT+1]={\n");
for (i=0; i<= max_default[glue_kind];i++)@/
{ PRINT_GLUE(glue_defaults[i]); @+
  if (i<max_default[int_kind]) printf(",\n");
}
printf("};\n\n");
@

We fix the glue definition with number zero to be the ``zero glue'': a
glue with width zero and zero stretchability and shrinkability. Here
is the reason: In the short format, the info bits of a glue node
indicate which components of a glue are nonzero.  Therefore the zero
glue should have an info value of zero---which on the other hand is
reserved for a reference to a glue definition. Hence, the best way to
represent a zero glue is as a predefined glue.


\subsection{Baseline Skips}

The zero baseline\index{baseline skip} which inserts no baseline skip is predefined.

@<default names@>=
typedef enum {@+
zero_baseline_no=0@+
} Baseline_no;
#define MAX_BASELINE_DEFAULT zero_baseline_no
@
@<define |baseline_defaults|@>=
max_default[baseline_kind]=MAX_BASELINE_DEFAULT;
max_fixed[baseline_kind]=zero_baseline_no;@#
{ Baseline z={{{0}}};
  printf("Baseline baseline_defaults[MAX_BASELINE_DEFAULT+1]={{");
  PRINT_GLUE(z.bs); @+printf(", "); @+PRINT_GLUE(z.ls); printf(", 0x%x}};\n\n",z.lsl);
}
@

\subsection{Labels}
The zero label\index{label} is predefined. It should point to the
``home'' position of the document which should be the position
where a user can start reading or navigating the document.
For a short document this is usually the start of the document,
and hence, the default is the first position of the content section.
For a larger document, the home position could point to the
table of content where a reader will find links to other parts
of the document.  

@<default names@>=
typedef enum {@+
zero_label_no=0@+
} Label_no;
#define MAX_LABEL_DEFAULT zero_label_no
@
@<define |label_defaults|@>=
max_default[label_kind]=MAX_LABEL_DEFAULT;
printf("Label label_defaults[MAX_LABEL_DEFAULT+1]="@|"{{0,LABEL_TOP,true,0,0,0}};\n\n");
@


\subsection{Streams}
The zero stream\index{stream} is predefined for the main content.
@<default names@>=
typedef enum {@+
zero_stream_no=0@+
} Stream_no;
#define MAX_STREAM_DEFAULT zero_stream_no
@

@<define stream defaults@>=
max_default[stream_kind]=MAX_STREAM_DEFAULT;
max_fixed[stream_kind]=zero_stream_no;
@


\subsection{Page Templates}

The zero page template\index{template} is a predefined, built-in page template.
@<default names@>=
typedef enum {@+
zero_page_no=0@+
} Page_no;
#define MAX_PAGE_DEFAULT zero_page_no
@

@<define page defaults@>=
max_default[page_kind]=MAX_PAGE_DEFAULT;
max_fixed[page_kind]=zero_page_no;
@

\subsection{Page Ranges}

The page\index{page range} range for the zero page template is
the entire content section.

@<default names@>=
typedef enum {@+
zero_range_no=0@+
} Range_no;
#define MAX_RANGE_DEFAULT zero_range_no
@

@<define range defaults@>=
max_default[range_kind]=MAX_RANGE_DEFAULT;
max_fixed[range_kind]=zero_range_no;
@


\section{Content Section}
The content section\index{content section} is just a list of nodes. 
Within the \.{shrink} program,
reading a node in long format will trigger writing the node in short format.
Similarly within the \.{stretch} program, reading a node
in short form will cause writing it in long format. As a consequence,
the main task of writing the content section in long format is accomplished
by calling |get_content| and writing it in the short format
is accomplished by parsing the |content_list|.

%\readcode
\codesection{\redsymbol}{Reading the Long Format}\redindex{1}{6}{Content Section}
\label{content}%
@s CONTENT symbol
@<symbols@>=
%token CONTENT "content"
@

@<scanning rules@>=
::@=content@>       :< return CONTENT; >:
@


@<parsing rules@>=
content_section: START CONTENT { hput_content_start(); } @| content_list END @|
                 { hput_content_end();  hput_range_defs(); hput_label_defs(); };
@

%\writecode
\codesection{\wrtsymbol}{Writing the Long Format}\wrtindex{1}{6}{Content Section}

@<write functions@>=
void hwrite_content_section(void)
{ section_no=2;
  hwritef("<content");
  hsort_ranges();
  hsort_labels();
  hget_content_section();
  hwritef("\n>\n");
}
@

%\getcode
\codesection{\getsymbol}{Reading the Short Format}\getindex{1}{6}{Content Section}
@<get functions@>=
void hget_content_section()
{ DBG(DBGBASIC|DBGDIR,"Content\n");
  hget_section(2);
  hwrite_range();
  hwrite_label();
  while(hpos<hend)
    hget_content_node();
}
@

%\putcode
\codesection{\putsymbol}{Writing the Short Format}\putindex{1}{6}{Content Section}
@<put functions@>=
void hput_content_start(void)
{ DBG(DBGDIR,"Content Section\n");
  section_no=2;
  hpos0=hpos=hstart=dir[2].buffer;
  hend=hstart+dir[2].bsize;

}
void hput_content_end(void)
{
  dir[2].size=hpos-hstart; /* Updating the directory entry */
  DBG(DBGDIR,"End Content Section, size=0x%x\n", dir[2].size);
}
@


\section{Processing the Command Line}
The following code explains the command line\index{command line} 
parameters and options\index{option}\index{debugging}.
It tells us what to expect in the rest of this section.
{\def\SP{\hskip .5em}
@<explain usage@>=
  fprintf(stdout,
  "Usage: %s [OPTION]... FILENAME%s\n",prog_name, in_ext);@/
  fprintf(stdout,DESCRIPTION);
  fprintf(stdout,
  "\nOptions:\n"@/
  "\t --help \t display this message\n"@/
  "\t --version\t display the HINT version\n"@/
  "\t -l     \t redirect stderr to a log file\n"@/
#if defined (STRETCH) || defined (SHRINK)
  "\t -o FILE\t specify an output file name\n"@/
#endif
#if defined (STRETCH)
  "\t -a     \t write auxiliary files\n"@/
  "\t -g     \t do not use localized names (implies -a)\n"@/
  "\t -f     \t force overwriting existing auxiliary files\n"@/
  "\t -u     \t enable writing utf8 character codes\n"@/
  "\t -x     \t enable writing hexadecimal character codes\n"@/
#elif defined (SHRINK)
  "\t -a     \t use only localized names\n"@/
  "\t -g     \t do not use localized names\n"@/
  "\t -c     \t enable compression\n"@/
#endif
);
#ifdef DEBUG
fprintf(stdout,"\t -d XXXX \t set debug flag to hexadecimal value XXXX.\n"
               "\t\t\t OR together these values:\n");@/
fprintf(stdout,"\t\t\t XX=%03X   basic debugging\n", DBGBASIC);@/
fprintf(stdout,"\t\t\t XX=%03X   tag debugging\n", DBGTAGS);@/
fprintf(stdout,"\t\t\t XX=%03X   node debugging\n",DBGNODE);@/
fprintf(stdout,"\t\t\t XX=%03X   definition debugging\n", DBGDEF);@/
fprintf(stdout,"\t\t\t XX=%03X   directory debugging\n", DBGDIR);@/
fprintf(stdout,"\t\t\t XX=%03X   range debugging\n",DBGRANGE);@/
fprintf(stdout,"\t\t\t XX=%03X   float debugging\n", DBGFLOAT);@/
fprintf(stdout,"\t\t\t XX=%03X   compression debugging\n", DBGCOMPRESS);@/
fprintf(stdout,"\t\t\t XX=%03X   buffer debugging\n", DBGBUFFER);@/
fprintf(stdout,"\t\t\t XX=%03X   flex debugging\n", DBGFLEX);@/
fprintf(stdout,"\t\t\t XX=%03X   bison debugging\n", DBGBISON);@/
fprintf(stdout,"\t\t\t XX=%03X   TeX debugging\n", DBGTEX);@/
fprintf(stdout,"\t\t\t XX=%03X   Page debugging\n", DBGPAGE);@/
fprintf(stdout,"\t\t\t XX=%03X   Font debugging\n", DBGFONT);@/
fprintf(stdout,"\t\t\t XX=%03X   Render debugging\n", DBGRENDER);@/
fprintf(stdout,"\t\t\t XX=%03X   Label debugging\n", DBGLABEL);@/
#endif
@
}
We define constants for different debug flags.
@<debug constants@>=
#define DBGNONE     0x0 
#define DBGBASIC    0x1 
#define DBGTAGS     0x2
#define DBGNODE     0x4
#define DBGDEF      0x8
#define DBGDIR      0x10
#define DBGRANGE    0x20
#define DBGFLOAT    0x40
#define DBGCOMPRESS 0x80
#define DBGBUFFER   0X100
#define DBGFLEX     0x200
#define DBGBISON    0x400
#define DBGTEX      0x800
#define DBGPAGE     0x1000
#define DBGFONT     0x2000
#define DBGRENDER   0x4000
#define DBGLABEL    0x8000
@

Next we define common variables that are
needed in all three programs defined here.

@<common variables@>=
unsigned int debugflags=DBGNONE;
int option_utf8=false;
int option_hex=false;
int option_force=false;
int option_global=false;
int option_aux=false;
int option_compress=false;
char *stem_name=NULL;
int stem_length=0;
@
The variable |stem_name| contains the name of the input file
not including the extension. The space allocated for it
is large enough to append an extension with up to five characters.
It can be used with the extension {\tt .log} for the log file,
with {\tt .hint} or {\tt .hnt} for the output file,
and with {\tt .abs} or {\tt .rel} when writing or reading the auxiliary sections.
The {\tt stretch} program will overwrite the |stem_name|
using the name of the output file if it is set with the {\tt -o}
option.


Next are the variables that are local in the |main| program.
@<local variables in |main|@>=
char *prog_name;
char *in_ext;
char *out_ext;
int option_log=false;
#ifndef SKIP
char *file_name=NULL;
int file_name_length=0;
#endif
@ 

Processing the command line looks for options and then sets the
input file name\index{file name}. For compatibility with 
GNU standards, the long options {\tt --help} and {\tt --version}
are supported in addition to the short options.

@<process the command line@>=
  debugflags=DBGBASIC;
  prog_name=argv[0];
  if (argc < 2) 
  { fprintf(stderr,
    "%s: no input file given\n"
    "Try '%s --help' for more information\n",prog_name, prog_name);
    exit(1);
  }
  argv++; /* skip the program name */
  while (*argv!=NULL)
  { if ((*argv)[0]=='-')
    { char option=(*argv)[1];
      switch(option)
      { case '-': 
          if (strcmp(*argv,"--version")==0)
          { fprintf(stderr,"%s version %d.%d\n",prog_name, HINT_VERSION, HINT_SUB_VERSION);
            exit(0);
          }
          else if (strcmp(*argv,"--help")==0) 
          { @<explain usage@>@;
  fprintf(stdout,"\nFor further information and reporting bugs see https://hint.userweb.mwn.de/\n");
            exit(0);
          } 
        case 'l': option_log=true; @+break;
#if defined (STRETCH) || defined (SHRINK)
        case 'o': argv++;
          file_name_length=(int)strlen(*argv);
          ALLOCATE(file_name,file_name_length+6,char); /*plus extension*/
          strcpy(file_name,*argv);@+  break; 
        case 'g': option_global=option_aux=true; @+break;
        case 'a': option_aux=true; @+break;
#endif
#if defined (STRETCH)
        case 'u': option_utf8=true;@+break;
        case 'x': option_hex=true;@+break;
        case 'f': option_force=true; @+break;
#elif defined (SHRINK)
        case 'c': option_compress=true; @+break;
#endif
        case 'd': @/
          argv++; if (*argv==NULL)
          { fprintf(stderr,
             "%s: option -d expects an argument\n"
             "Try '%s --help' for more information\n",prog_name, prog_name);
             exit(1);
           }
          debugflags=strtol(*argv,NULL,16);
          break;
        default:
        { fprintf(stderr,
            "%s: unrecognized option '%s'\n"
            "Try '%s --help' for more information\n",prog_name,*argv,prog_name);
            exit(1);
        }  
      }
    }
    else /* the input file name */
    { int path_length=(int)strlen(*argv);
      int ext_length=(int)strlen(in_ext);
      ALLOCATE(hin_name,path_length+ext_length+1,char);
      strcpy(hin_name,*argv);
      if (path_length<ext_length 
          || strncmp(hin_name+path_length-ext_length,in_ext,ext_length)!=0)
      { strcat(hin_name,in_ext);
        path_length+=ext_length;
      }
      stem_length=path_length-ext_length;
      ALLOCATE(stem_name,stem_length+6,char);
      strncpy(stem_name,hin_name,stem_length);
      stem_name[stem_length]=0;
      if (*(argv+1)!=NULL) 
      { fprintf(stderr,
        "%s: extra argument after input file name:  '%s'\n"
        "Try '%s --help' for more information\n",prog_name,*(argv+1),prog_name);
        exit(1);
      }
    }
    argv++;
  }
  if (hin_name==NULL) 
  { fprintf(stderr,
      "%s: missing input file name\n"
      "Try '%s --help' for more information\n",prog_name,prog_name);
      exit(1);
  }
@

After the command line has been processed, three file streams need to be opened:
The input file |hin|\index{input file} and the output file |hout|\index{output file}.
Further we need a log file |hlog|\index{log file} if debugging is enabled.
For technical reasons, the scanner\index{scanning} generated by \.{flex} needs
an input file |yyin|\index{input file} which is set to |hin|
and an output file |yyout| (which is not used).

@<common variables@>=
FILE *hin=NULL, *hout=NULL, *hlog=NULL;
@


The log file is opened first because
this is the place where error messages\index{error message} 
should go while the other files are opened.
It inherits its name from the input file name.

@<open the log file@> =
if (option_log)
  { 
    strcat(stem_name,".log");
    hlog=freopen(stem_name,"w",stderr);
    if (hlog==NULL)
    { fprintf(stderr,"Unable to open logfile %s",stem_name);
      hlog=stderr;
    }
    stem_name[stem_length]=0;
  }
else
  hlog=stderr;
@

Once we have established logging, we can try to open the other files.
@<open the input file@>=
  hin=fopen(hin_name,"rb");
  if (hin==NULL) QUIT("Unable to open input file %s",hin_name);
@

@<open the output file@>=
  if (file_name!=NULL)
  { int ext_length=(int)strlen(out_ext);
    if (file_name_length<=ext_length 
          || strncmp(file_name+file_name_length-ext_length,out_ext,ext_length)!=0)
    { strcat(file_name,out_ext); file_name_length+=ext_length; }
  }
  else
  { file_name_length=stem_length+(int)strlen(out_ext);
    ALLOCATE(file_name,file_name_length+1,char);
    strcpy(file_name,stem_name);@+
    strcpy(file_name+stem_length,out_ext);
  }
  { char *aux_name=file_name;
    @<make sure the path in |aux_name| exists@>@;
    aux_name=NULL;
  }
  hout=fopen(file_name,"wb");
  if (hout==NULL) QUIT("Unable to open output file %s",file_name);
@

The {\tt stretch} program will replace the |stem_name| using the stem of the
output file.
@<determine the |stem_name| from the output |file_name|@>=
stem_length=file_name_length-(int)strlen(out_ext);
ALLOCATE(stem_name,stem_length+6,char);
strncpy(stem_name,file_name,stem_length);
stem_name[stem_length]=0;
@

At the very end, we will close the files again.
@<close the input file@>=
if (hin_name!=NULL) free(hin_name);
if (hin!=NULL) fclose(hin);
@
@<close the output file@>=
if (file_name!=NULL) free(file_name);
if (hout!=NULL) fclose(hout);
@
@<close the log file@>=
if (hlog!=NULL) fclose(hlog);
if (stem_name!=NULL) free(stem_name);
@



\section{Error Handling and Debugging}\label{error_section}
There is no good program without good error handling\index{error message}\index{debugging}. 
To print messages\index{message} or indicate errors, I define the following macros:
\index{MESSAGE+\.{MESSAGE}}\index{QUIT+\.{QUIT}}

@(hierror.h@>=
#ifndef _ERROR_H
#define _ERROR_H
#include <stdlib.h>
#include <stdio.h>
extern FILE *hlog;
extern uint8_t *hpos, *hstart;
#define @[LOG(...)@] @[(fprintf(hlog,__VA_ARGS__),fflush(hlog))@]
#define @[MESSAGE(...)@] @[(fprintf(hlog,__VA_ARGS__),fflush(hlog))@]
#define @[QUIT(...)@]   (MESSAGE("ERROR: " __VA_ARGS__),fprintf(hlog,"\n"),exit(1))

#endif
@


The amount of debugging\index{debugging} depends on the debugging flags.
For portability, we first define the output specifier for expressions of type |size_t|.
\index{DBG+\.{DBG}}\index{SIZE F+\.{SIZE\_F}}\index{DBGTAG+\.{DBGTAG}}
\index{RNG+\.{RNG}}\index{TAGERR+\.{TAGERR}}
@<debug macros@>=
#ifdef WIN32
#define SIZE_F "0x%x"
#else
#define SIZE_F "0x%zx"
#endif
#ifdef DEBUG
#define @[DBG(FLAGS,...)@] ((debugflags & (FLAGS))?LOG(__VA_ARGS__):0)
#else
#define @[DBG(FLAGS,...)@] (void)0
#endif
#define @[DBGTAG(A,P)@] @[DBG(DBGTAGS,@["tag [%s,%d] at " SIZE_F "\n"@],@|NAME(A),INFO(A),(P)-hstart)@]

#define @[RNG(S,N,A,Z)@] @/\
  if ((int)(N)<(int)(A)||(int)(N)>(int)(Z)) QUIT(S@, " %d out of range [%d - %d]",N,A,Z)

#define @[TAGERR(A)@] @[QUIT(@["Unknown tag [%s,%d] at " SIZE_F "\n"@],NAME(A),INFO(A),hpos-hstart)@]
@

The \.{bison} generated parser will need a function |yyerror| for
error reporting. We can define it now:

@<parsing functions@>=
extern int yylineno;
int yyerror(const char *msg)
{ QUIT(" in line %d %s",yylineno,msg);
  return 0;
}
@

To enable the generation of debugging code \.{bison} needs also the following:
@<enable bison debugging@>=
#ifdef DEBUG
#define  YYDEBUG 1
extern int yydebug;
#else
#define YYDEBUG 0
#endif
@


\appendix

\section{Traversing Short Format Files}\label{fastforward}
For applications like searching or repositioning a file after reloading
a possibly changed version of a file, it is useful to have a fast way
of getting from one content node to the next.
For quite some nodes, it is possible to know the size of the
node from the tag. So the fastest way to get to the next node
is looking up the node size in a table.

Other important nodes, for example hbox, vbox, or par nodes, end with a
list node and it is possible to know the size of the node up to the final
list. With that knowledge it is possible to skip the initial
part of the node, then skip the list, and finally skip the tag byte.
The size of the initial part can be stored in the same node size table
using negated values. What works for lists,
of course, will work for other kinds of nodes as well.
So we use the lowest two bits of the values in the size table
to store the number of embedded nodes that follow after the initial part.

For list nodes neither of these methods works and these nodes can be marked
with a zero entry in the node size table.

This leads to the following code for a ``fast forward'' function
for |hpos|:

@<shared skip functions@>=
uint32_t hff_list_pos=0, hff_list_size=0;
uint8_t hff_tag;
void hff_hpos(void)
{ signed char i,k;
  hff_tag=*hpos;@+
  DBGTAG(hff_tag,hpos);
  i= hnode_size[hff_tag];
  if (i>0) {hpos=hpos+i; @+return;@+ }
  else if (i<0) 
  { k=1+(i&0x3);@+ i=i>>2;
    hpos=hpos-i;    /* skip initial part */
    while (k>0)
    { hff_hpos(); @+k--; @+} /* skip trailing nodes */
    hpos++;/* skip end byte */
    return;
  }
  else if (hff_tag <=TAG(param_kind,5))
    @<advance |hpos| over a list@>@;
 TAGERR(hff_tag);
}
@


We will put the |hnode_size| variable into the {\tt tables.c} file
using the following function. We add some comments and
split negative values into their components, to make the result more
readable.

@<print the |hnode_size| variable@>=
 printf("signed char hnode_size[0x100]= {\n");
  for (i=0; i<=0xff; i++)@/
  { signed char s = hnode_size[i];
    if (s>=0) printf("%d",s); else printf("-4*%d+%d",-(s>>2),s&3);
    if (i<0xff) printf(","); else  printf("};");
    if ((i&0x7)==0x7) printf(" /* %s */\n", content_name[KIND(i)]);
  }
  printf("\n\n");
@  

\subsection{Lists}\index{list}\index{text}\index{parameters}
List don't follow the usual schema of nodes. They have a variable size
that is stored in the node. We keep position and size in global variables
so that the list that ends a node can be conveniently located.

@<advance |hpos| over a list@>=
switch (INFO(hff_tag)){
case 1: hff_list_pos=hpos-hstart+1;hff_list_size=0; hpos=hpos+2;@+  return;
case 2: hpos++;@+ hff_list_size=HGET8;@+ hff_list_pos=hpos-hstart+1;  hpos=hpos+1+hff_list_size+1+1+1;@+ return;
case 3: hpos++;@+ HGET16(hff_list_size);@+hff_list_pos=hpos-hstart+1; hpos=hpos+1+hff_list_size+1+2+1;@+ return;
case 4: hpos++;@+ HGET24(hff_list_size);@+hff_list_pos=hpos-hstart+1; hpos=hpos+1+hff_list_size+1+3+1;@+ return;
case 5: hpos++;@+ HGET32(hff_list_size);@+hff_list_pos=hpos-hstart+1; hpos=hpos+1+hff_list_size+1+4+1;@+ return;
}
@

Now let's consider the different kinds of nodes.

\subsection{Glyphs}\index{glyph}
We start with the glyph nodes. All glyph nodes
have a start and an end tag, one byte for the font,
and depending on the info from 1 to 4 bytes for the character code.

@<initialize the  |hnode_size| array@>=
hnode_size[TAG(glyph_kind,1)] = 1+1+1+1;
hnode_size[TAG(glyph_kind,2)] = 1+1+2+1;
hnode_size[TAG(glyph_kind,3)] = 1+1+3+1;
hnode_size[TAG(glyph_kind,4)] = 1+1+4+1;
@

\subsection{Penalties}\index{penalty}
Penalty nodes either contain a one byte reference, a one byte number, or a two byte number.

@<initialize the  |hnode_size| array@>=
hnode_size[TAG(penalty_kind,0)] = 1+1+1;
hnode_size[TAG(penalty_kind,1)] = 1+1+1;
hnode_size[TAG(penalty_kind,2)] = 1+2+1;
@

\subsection{Kerns}\index{kern}
Kern nodes can contain a reference (either to a dimension or an extended dimension)
a dimension, or an extended dimension node.

@<initialize the  |hnode_size| array@>=
hnode_size[TAG(kern_kind,b000)] = 1+1+1;
hnode_size[TAG(kern_kind,b001)] = 1+1+1;
hnode_size[TAG(kern_kind,b010)] = 1+4+1;
hnode_size[TAG(kern_kind,b011)] = I_T(1,1);
hnode_size[TAG(kern_kind,b100)] = 1+1+1;
hnode_size[TAG(kern_kind,b101)] = 1+1+1;
hnode_size[TAG(kern_kind,b110)] = 1+4+1;
hnode_size[TAG(kern_kind,b111)] = I_T(1,1);
@

For the two cases where a kern node contains an extended dimension,
we use the following macro to combine the size of the initial part 
with the number of trailing nodes:
@<skip macros@>=
#define @[I_T(I,T)@] (((-(I))<<2)|((T)-1))
@

\subsection{Extended Dimensions}\index{extended dimension}
Extended dimensions contain either one two or three 4 byte values depending
on the info bits.
@<initialize the  |hnode_size| array@>=
hnode_size[TAG(xdimen_kind,b100)] = 1+4+1;
hnode_size[TAG(xdimen_kind,b010)] = 1+4+1;
hnode_size[TAG(xdimen_kind,b001)] = 1+4+1;
hnode_size[TAG(xdimen_kind,b110)] = 1+4+4+1;
hnode_size[TAG(xdimen_kind,b101)] = 1+4+4+1;
hnode_size[TAG(xdimen_kind,b011)] = 1+4+4+1;
hnode_size[TAG(xdimen_kind,b111)] = 1+4+4+4+1;
@

\subsection{Language}\index{language}
Language nodes either code the language in the info value or they contain
a reference byte.
@<initialize the  |hnode_size| array@>=
hnode_size[TAG(language_kind,b000)] = 1+1+1;
hnode_size[TAG(language_kind,1)] = 1+1;
hnode_size[TAG(language_kind,2)] = 1+1;
hnode_size[TAG(language_kind,3)] = 1+1;
hnode_size[TAG(language_kind,4)] = 1+1;
hnode_size[TAG(language_kind,5)] = 1+1;
hnode_size[TAG(language_kind,6)] = 1+1;
hnode_size[TAG(language_kind,7)] = 1+1;
@

\subsection{Rules}\index{rule}
Rules usually contain a reference, otherwise 
they contain either one, two, or three 4 byte values depending
on the info bits.
@<initialize the  |hnode_size| array@>=
hnode_size[TAG(rule_kind,b000)] = 1+1+1;
hnode_size[TAG(rule_kind,b100)] = 1+4+1;
hnode_size[TAG(rule_kind,b010)] = 1+4+1;
hnode_size[TAG(rule_kind,b001)] = 1+4+1;
hnode_size[TAG(rule_kind,b110)] = 1+4+4+1;
hnode_size[TAG(rule_kind,b101)] = 1+4+4+1;
hnode_size[TAG(rule_kind,b011)] = 1+4+4+1;
hnode_size[TAG(rule_kind,b111)] = 1+4+4+4+1;
@

\subsection{Glue}\index{glue}
Glues usually contain a reference or
they contain either one two or three 4 byte values depending
on the info bits, and possibly even an extended dimension node followed 
by two 4 byte values.
@<initialize the  |hnode_size| array@>=
hnode_size[TAG(glue_kind,b000)] = 1+1+1;
hnode_size[TAG(glue_kind,b100)] = 1+4+1;
hnode_size[TAG(glue_kind,b010)] = 1+4+1;
hnode_size[TAG(glue_kind,b001)] = 1+4+1;
hnode_size[TAG(glue_kind,b110)] = 1+4+4+1;
hnode_size[TAG(glue_kind,b101)] = 1+4+4+1;
hnode_size[TAG(glue_kind,b011)] = 1+4+4+1;
hnode_size[TAG(glue_kind,b111)] = I_T(1+4+4,1);
@


\subsection{Boxes}\index{box}
The layout of boxes is quite complex and explained in section~\secref{boxnodes}.
All boxes contain height and width, some contain a depth, some a shift amount,
and some a glue setting together with glue sign and glue order.
The last item in a box is a node list.

@<initialize the  |hnode_size| array@>=
hnode_size[TAG(hbox_kind,b000)] = I_T(1+4+4,1); /* tag, height, width*/
hnode_size[TAG(hbox_kind,b001)] = I_T(1+4+4+4,1); /* and depth */
hnode_size[TAG(hbox_kind,b010)] = I_T(1+4+4+4,1); /* or shift */
hnode_size[TAG(hbox_kind,b011)] = I_T(1+4+4+4+4,1); /* or both */
hnode_size[TAG(hbox_kind,b100)] = I_T(1+4+4+5,1); /* and glue setting*/
hnode_size[TAG(hbox_kind,b101)] = I_T(1+4+4+4+5,1); /* and depth */
hnode_size[TAG(hbox_kind,b110)] = I_T(1+4+4+4+5,1); /* or shift */
hnode_size[TAG(hbox_kind,b111)] = I_T(1+4+4+4+4+5,1); /*or both */
hnode_size[TAG(vbox_kind,b000)] = I_T(1+4+4,1); /* same for vbox*/
hnode_size[TAG(vbox_kind,b001)] = I_T(1+4+4+4,1);
hnode_size[TAG(vbox_kind,b010)] = I_T(1+4+4+4,1);
hnode_size[TAG(vbox_kind,b011)] = I_T(1+4+4+4+4,1);
hnode_size[TAG(vbox_kind,b100)] = I_T(1+4+4+5,1);
hnode_size[TAG(vbox_kind,b101)] = I_T(1+4+4+4+5,1);
hnode_size[TAG(vbox_kind,b110)] = I_T(1+4+4+4+5,1);
hnode_size[TAG(vbox_kind,b111)] = I_T(1+4+4+4+4+5,1);
@

\subsection{Extended Boxes}\index{extended box}
Extended boxes start with height, width, depth, stretch, or shrink components.
Then follows an extended dimension either as a reference or a node.
The node ends with a list.
@<initialize the  |hnode_size| array@>=
hnode_size[TAG(hset_kind,b000)] = I_T(1+4+4+4+4+1,1);
hnode_size[TAG(hset_kind,b001)] = I_T(1+4+4+4+4+4+1,1);
hnode_size[TAG(hset_kind,b010)] = I_T(1+4+4+4+4+4+1,1);
hnode_size[TAG(hset_kind,b011)] = I_T(1+4+4+4+4+4+4+1,1);
hnode_size[TAG(vset_kind,b000)] = I_T(1+4+4+4+4+1,1); 
hnode_size[TAG(vset_kind,b001)] = I_T(1+4+4+4+4+4+1,1);
hnode_size[TAG(vset_kind,b010)] = I_T(1+4+4+4+4+4+1,1);
hnode_size[TAG(vset_kind,b011)] = I_T(1+4+4+4+4+4+4+1,1);

hnode_size[TAG(hset_kind,b100)] = I_T(1+4+4+4+4,2);
hnode_size[TAG(hset_kind,b101)] = I_T(1+4+4+4+4+4,2);
hnode_size[TAG(hset_kind,b110)] = I_T(1+4+4+4+4+4,2);
hnode_size[TAG(hset_kind,b111)] = I_T(1+4+4+4+4+4+4,2);
hnode_size[TAG(vset_kind,b100)] = I_T(1+4+4+4+4,2); 
hnode_size[TAG(vset_kind,b101)] = I_T(1+4+4+4+4+4,2);
hnode_size[TAG(vset_kind,b110)] = I_T(1+4+4+4+4+4,2);
hnode_size[TAG(vset_kind,b111)] = I_T(1+4+4+4+4+4+4,2);
@

The hpack and vpack nodes start with a shift amount and in case of vpack a depth.
Then again an extended dimension and a list.
@<initialize the  |hnode_size| array@>=
hnode_size[TAG(hpack_kind,b000)] = I_T(1+1,1); 
hnode_size[TAG(hpack_kind,b001)] = I_T(1+1,1); 
hnode_size[TAG(hpack_kind,b010)] = I_T(1+4+1,1);
hnode_size[TAG(hpack_kind,b011)] = I_T(1+4+1,1);
hnode_size[TAG(vpack_kind,b000)] = I_T(1+4+1,1);
hnode_size[TAG(vpack_kind,b001)] = I_T(1+4+1,1);
hnode_size[TAG(vpack_kind,b010)] = I_T(1+4+4+1,1);
hnode_size[TAG(vpack_kind,b011)] = I_T(1+4+4+1,1);

hnode_size[TAG(hpack_kind,b100)] = I_T(1,2); 
hnode_size[TAG(hpack_kind,b101)] = I_T(1,2); 
hnode_size[TAG(hpack_kind,b110)] = I_T(1+4,2);
hnode_size[TAG(hpack_kind,b111)] = I_T(1+4,2);
hnode_size[TAG(vpack_kind,b100)] = I_T(1+4,2);
hnode_size[TAG(vpack_kind,b101)] = I_T(1+4,2);
hnode_size[TAG(vpack_kind,b110)] = I_T(1+4+4,2);
hnode_size[TAG(vpack_kind,b111)] = I_T(1+4+4,2);
@

\subsection{Leaders}\index{leaders}
Most leader nodes will use a reference.
Otherwise they contain a glue node followed by a box or rule node.
@<initialize the  |hnode_size| array@>=
hnode_size[TAG(leaders_kind,b000)] = 1+1+1; 
hnode_size[TAG(leaders_kind,1)] = I_T(1,1); 
hnode_size[TAG(leaders_kind,2)] = I_T(1,1); 
hnode_size[TAG(leaders_kind,3)] = I_T(1,1); 
hnode_size[TAG(leaders_kind,b100|1)] = I_T(1,2); 
hnode_size[TAG(leaders_kind,b100|2)] = I_T(1,2); 
hnode_size[TAG(leaders_kind,b100|3)] = I_T(1,2); 
@

\subsection{Baseline Skips}\index{baseline skip}
Here we expect either a reference or two optional glue nodes followed by an optional dimension.
@<initialize the  |hnode_size| array@>=
hnode_size[TAG(baseline_kind,b000)] = 1+1+1; 
hnode_size[TAG(baseline_kind,b001)] = 1+4+1; 
hnode_size[TAG(baseline_kind,b010)] = I_T(1,1); 
hnode_size[TAG(baseline_kind,b100)] = I_T(1,1); 
hnode_size[TAG(baseline_kind,b110)] = I_T(1,2);

hnode_size[TAG(baseline_kind,b011)] = I_T(1+4,1);
hnode_size[TAG(baseline_kind,b101)] = I_T(1+4,1);
hnode_size[TAG(baseline_kind,b111)] = I_T(1+4,2);
@


\subsection{Ligatures}\index{ligature}
As usual a reference is possible, otherwise the font is followed by character bytes
as given by the info. Only if the info value is 7, the number of character bytes
is stored separately.
@<initialize the  |hnode_size| array@>=
hnode_size[TAG(ligature_kind,b000)] = 1+1+1;  
hnode_size[TAG(ligature_kind,1)] = 1+1+1+1; 
hnode_size[TAG(ligature_kind,2)] = 1+1+2+1; 
hnode_size[TAG(ligature_kind,3)] = 1+1+3+1; 
hnode_size[TAG(ligature_kind,4)] = 1+1+4+1; 
hnode_size[TAG(ligature_kind,5)] = 1+1+5+1; 
hnode_size[TAG(ligature_kind,6)] = 1+1+6+1; 
hnode_size[TAG(ligature_kind,7)] = I_T(1+1,1); 
@

\subsection{Discretionary breaks}\index{discretionary break}
The simple cases here are references, discretionary breaks 
with empty pre- and post-list, or with a zero line skip limit
Otherwise one or two lists are followed by an optional replace count.

@<initialize the  |hnode_size| array@>=
hnode_size[TAG(disc_kind,b000)] = 1+1+1;  
hnode_size[TAG(disc_kind,b010)] = I_T(1,1);  
hnode_size[TAG(disc_kind,b011)] = I_T(1,2);  
hnode_size[TAG(disc_kind,b100)] = 1+1+1;  
hnode_size[TAG(disc_kind,b110)] = I_T(1+1,1);  
hnode_size[TAG(disc_kind,b111)] = I_T(1+1,2);  
@

\subsection{Paragraphs}\index{paragraph}
Paragraph nodes contain an extended dimension, an parameter list and a list.
The first two can be given as a reference.
@<initialize the  |hnode_size| array@>=
hnode_size[TAG(par_kind,b000)] = I_T(1+1+1,1);  
hnode_size[TAG(par_kind,b010)] = I_T(1+1,2);  
hnode_size[TAG(par_kind,b110)] = I_T(1,3);  
hnode_size[TAG(par_kind,b100)] = I_T(1+1,2);  
@

\subsection{Mathematics}\index{mathematics}\index{displayed formula}
Displayed math needs a parameter list, either as list or as reference
followed by an optional left or right equation number and a list.
Text math is simpler: the only information is in the info value.
@<initialize the  |hnode_size| array@>=
hnode_size[TAG(math_kind,b000)] = I_T(1+1,1);  
hnode_size[TAG(math_kind,b001)] = I_T(1+1,2);  
hnode_size[TAG(math_kind,b010)] = I_T(1+1,2);  
hnode_size[TAG(math_kind,b100)] = I_T(1,2);  
hnode_size[TAG(math_kind,b101)] = I_T(1,3);  
hnode_size[TAG(math_kind,b110)] = I_T(1,3);  
hnode_size[TAG(math_kind,b111)] = 1+1;
hnode_size[TAG(math_kind,b011)] = 1+1;
@

\subsection{Adjustments}\index{adjustment}
@<initialize the  |hnode_size| array@>=
hnode_size[TAG(adjust_kind,1)] = I_T(1,1);  
@

\subsection{Tables}\index{alignment}
Tables have an extended dimension either as a node or as a reference followed 
by two lists.
@<initialize the  |hnode_size| array@>=
hnode_size[TAG(table_kind,b000)] = I_T(1+1,2);  
hnode_size[TAG(table_kind,b001)] = I_T(1+1,2);  
hnode_size[TAG(table_kind,b010)] = I_T(1+1,2);  
hnode_size[TAG(table_kind,b011)] = I_T(1+1,2);  
hnode_size[TAG(table_kind,b100)] = I_T(1,3);  
hnode_size[TAG(table_kind,b101)] = I_T(1,3);  
hnode_size[TAG(table_kind,b110)] = I_T(1,3);  
hnode_size[TAG(table_kind,b111)] = I_T(1,3);  
@
Outer item nodes are lists of inner item nodes, inner item nodes are box nodes
followed by an optional span count.
@<initialize the  |hnode_size| array@>=
hnode_size[TAG(item_kind,b000)] = I_T(1,1);  /* outer */
hnode_size[TAG(item_kind,1)] = I_T(1,1);    /* inner */
hnode_size[TAG(item_kind,2)] = I_T(1,1);   
hnode_size[TAG(item_kind,3)] = I_T(1,1);   
hnode_size[TAG(item_kind,4)] = I_T(1,1);   
hnode_size[TAG(item_kind,5)] = I_T(1,1);   
hnode_size[TAG(item_kind,6)] = I_T(1,1);   
hnode_size[TAG(item_kind,6)] = I_T(2,1);   
@

\subsection{Images}\index{image}
If not given by a reference, images contain a section reference and optional dimensions and a descriptive list.
@<initialize the  |hnode_size| array@>=
hnode_size[TAG(image_kind,b000)] = 1+1+1;
hnode_size[TAG(image_kind,b001)] = I_T(1+2+4+4,1);
hnode_size[TAG(image_kind,b010)] = I_T(1+2+4+4,1);
hnode_size[TAG(image_kind,b011)] = I_T(1+2+4+4,1);
hnode_size[TAG(image_kind,b100)] = I_T(1+2+4+1+1,1);
hnode_size[TAG(image_kind,b101)] = I_T(1+2+4+1,2);
hnode_size[TAG(image_kind,b110)] = I_T(1+2+4+1,2);
hnode_size[TAG(image_kind,b111)] = I_T(1+2+4,3);
@

\subsection{Links}\index{link}
Links contain either a 2 byte or a 1 byte reference.
@<initialize the  |hnode_size| array@>=
hnode_size[TAG(link_kind,b000)] = 1+1+1;
hnode_size[TAG(link_kind,b001)] = 1+2+1;
hnode_size[TAG(link_kind,b010)] = 1+1+1;
hnode_size[TAG(link_kind,b011)] = 1+2+1;
@

\subsection{Stream Nodes}\index{stream}
After the stream reference follows a parameter list, either as reference
or as a list, and then a content list.
@<initialize the  |hnode_size| array@>=
hnode_size[TAG(stream_kind,b000)] = I_T(1+1+1,1);
hnode_size[TAG(stream_kind,b010)] = I_T(1+1,2);
@


\section{Reading Short Format Files Backwards}
This section is not really part of the file format definition, but it
illustrates an important property of the content section in short
format files: it can be read in both directions. This is important
because we want to be able to start at an arbitrary point in the
content and from there move pagewise backward.

The program {\tt skip}\index{skip+{\tt skip}} described in this
section does just that.  As wee see in appendix~\secref{skip}, its
|main| program is almost the same as the |main| program of the program
{\tt stretch} in appendix~\secref{stretchmain}.
The major difference is the removal of an output file
and the replacement of the call to |hwrite_content_section| by
a call to |hteg_content_section|.

@<skip functions@>=
static void hteg_content_section(void)
{ hget_section(2);
  hpos=hend;
  while(hpos>hstart)
    hteg_content_node();
}
@

The functions |hteg_content_section| and |hteg_content_node| above are
reverse versions of the functions |hget_content_section| and
|hget_content_node|.  Many such ``reverse functions'' will follow now
and we will consistently use the same naming scheme: replacing
``{\it get\/}`` by ``{\it teg\/}'' or ``{\tt GET}'' by ``{\tt TEG}''.
The {\tt skip} program does not do much input
checking; it will just extract enough information from a content node
to skip a node and ``advance'' or better ``retreat'' to the previous
node.

@<skip functions@>=
static void hteg_content_node(void)
{ @<skip the end byte |z|@>@;
  hteg_content(z);
  @<skip and check the start byte |a|@>@;
}

static void hteg_content(uint8_t z)
{@+ switch (z)@/
  { 
    @<cases to skip content@>@;@t\1@>@/
    default:
      TAGERR(z);
      break;@t\2@>@/
  }
}
@

The code to skip the end\index{end byte} byte |z| and to check the start\index{start byte} byte |a| is used repeatedly.

@<skip the end byte |z|@>=
  uint8_t a,z; /* the start and the end byte*/
  uint32_t node_pos=hpos-hstart;
  if (hpos<=hstart) return;
  HTEGTAG(z);
@

@<skip and check the start byte |a|@>=
  HTEGTAG(a);
  if (a!=z) QUIT(@["Tag mismatch [%s,%d]!=[%s,%d] at " SIZE_F " to 0x%x\n"@],@|NAME(a),INFO(a),NAME(z),INFO(z),@|
    hpos-hstart,node_pos-1);
@

We replace the ``{\tt GET}'' macros by the following ``{\tt TEG}'' macros:

@<shared get macros@>=
#define @[HBACK(X)@] @[((hpos-(X)<hstart)?(QUIT("HTEG underflow\n"),NULL):(hpos-=(X)))@]

#define @[HTEG8@]     (HBACK(1),hpos[0])
#define @[HTEG16(X)@] (HBACK(2),(X)=(hpos[0]<<8)+hpos[1])
#define @[HTEG24(X)@] (HBACK(3),(X)=(hpos[0]<<16)+(hpos[1]<<8)+hpos[2])
#define @[HTEG32(X)@] (HBACK(4),(X)=(hpos[0]<<24)+(hpos[1]<<16)+(hpos[2]<<8)+hpos[3])
#define @[HTEGTAG(X)@] @[X=HTEG8,DBGTAG(X,hpos)@]
@

Now we review step by step the different kinds of nodes.
\subsection{Floating Point Numbers}\index{floating point number}
\noindent
@<shared skip functions@>=
float32_t hteg_float32(void)
{  union {@+float32_t d; @+ uint32_t bits; @+} u;
   HTEG32(u.bits);
   return u.d;
}
@


\subsection{Extended Dimensions}\index{extended dimension}
\noindent
@<skip macros@>=
#define @[HTEG_XDIMEN(I,X)@] \
  if((I)&b001) HTEG32((X).v); \
  if((I)&b010) HTEG32((X).h);\
  if((I)&b100) HTEG32((X).w);
@

@<skip functions@>=
static void hteg_xdimen_node(Xdimen *x)
{ @<skip the end byte |z|@>@;
  switch(z)
  { 
#if 0
/*  currently the info value 0 is not supported */
case TAG(xdimen_kind,b000): /* see section~\secref{reference} */
    {uint8_t n;@+ n=HTEG8;} @+ break;
#endif
    case TAG(xdimen_kind,b001): HTEG_XDIMEN(b001,*x);@+break;
    case TAG(xdimen_kind,b010): HTEG_XDIMEN(b010,*x);@+break;
    case TAG(xdimen_kind,b011): HTEG_XDIMEN(b011,*x);@+break;
    case TAG(xdimen_kind,b100): HTEG_XDIMEN(b100,*x);@+break;
    case TAG(xdimen_kind,b101): HTEG_XDIMEN(b101,*x);@+break;
    case TAG(xdimen_kind,b110): HTEG_XDIMEN(b110,*x);@+break;
    case TAG(xdimen_kind,b111): HTEG_XDIMEN(b111,*x);@+break;
    default:
    QUIT("Extent expected at 0x%x got %s",node_pos,NAME(z)); @+ break;
  }
@<skip and check the start byte |a|@>@;
}
@


\subsection{Stretch and Shrink}\index{stretchability}\index{shrinkability}
\noindent
@<skip macros@>=
#define @[HTEG_STRETCH(S)@] { Stch st; @+ HTEG32(st.u);@+ S.o=st.u&3;@+  st.u&=~3;@+ S.f=st.f; @+}
@

\subsection{Glyphs}\index{glyph}
\noindent
@<skip macros@>=
#define HTEG_GLYPH(I,G) \
  (G).f=HTEG8; \
  if (I==1) (G).c=HTEG8;\
  else if (I==2) HTEG16((G).c);\
  else if (I==3) HTEG24((G).c);\
  else if (I==4) HTEG32((G).c);
@

@<cases to skip content@>=
@t\1\kern1em@>case TAG(glyph_kind,1): @+{@+Glyph g;@+ HTEG_GLYPH(1,g);@+}@+break;
case TAG(glyph_kind,2): @+{@+Glyph g;@+ HTEG_GLYPH(2,g);@+}@+break;
case TAG(glyph_kind,3): @+{@+Glyph g;@+ HTEG_GLYPH(3,g);@+}@+break;
case TAG(glyph_kind,4): @+{@+Glyph g;@+ HTEG_GLYPH(4,g);@+}@+break;
@


\subsection{Penalties}\index{penalty}
\noindent
@<skip macros@>=
#define @[HTEG_PENALTY(I,P)@] \
if (I==1) {int8_t n; @+n=HTEG8;  @+P=n;@+ } \
else {int16_t n;@+ HTEG16(n); @+ P=n; @+}\
@

@<cases to skip content@>=
@t\1\kern1em@>case TAG(penalty_kind,1):  @+{int32_t p;@+ HTEG_PENALTY(1,p);@+} @+break;
case TAG(penalty_kind,2):  @+{int32_t p;@+ HTEG_PENALTY(2,p);@+} @+break;
@


\subsection{Kerns}\index{kern}
\noindent
@<skip macros@>=
#define @[HTEG_KERN(I,X)@] @[if (((I)&b011)==2) HTEG32(X.w); else if (((I)&b011)==3)  hteg_xdimen_node(&(X))@]
@

@<cases to skip content@>=
@t\1\kern1em@>case TAG(kern_kind,b010): @+  {@+Xdimen x; @+HTEG_KERN(b010,x);@+ } @+break;
case TAG(kern_kind,b011): @+  {@+Xdimen x; @+HTEG_KERN(b011,x);@+ } @+break;
case TAG(kern_kind,b110): @+  {@+Xdimen x; @+HTEG_KERN(b110,x);@+ } @+break;
case TAG(kern_kind,b111): @+  {@+Xdimen x; @+HTEG_KERN(b111,x);@+ } @+break;
@

\subsection{Language}\index{language}
\noindent
@<cases to skip content@>=
@t\kern1em@>case TAG(language_kind,1):
case TAG(language_kind,2):
case TAG(language_kind,3):
case TAG(language_kind,4):
case TAG(language_kind,5):
case TAG(language_kind,6):
case TAG(language_kind,7):@+break;
@

\subsection{Rules}\index{rule}
\noindent
@<skip macros@>=
#define @[HTEG_RULE(I,R)@]@/\
if ((I)&b001) HTEG32((R).w); @+else (R).w=RUNNING_DIMEN;\
if ((I)&b010) HTEG32((R).d); @+else (R).d=RUNNING_DIMEN;\
if ((I)&b100) HTEG32((R).h); @+else (R).h=RUNNING_DIMEN;
@

@<cases to skip content@>=
@t\1\kern1em@>case TAG(rule_kind,b011): @+ {Rule r;@+ HTEG_RULE(b011,r);@+ }@+ break;
case TAG(rule_kind,b101): @+ {Rule r;@+ HTEG_RULE(b101,r);@+ }@+ break;
case TAG(rule_kind,b001): @+ {Rule r;@+ HTEG_RULE(b001,r);@+ }@+ break;
case TAG(rule_kind,b110): @+ {Rule r;@+ HTEG_RULE(b110,r);@+ }@+ break;
case TAG(rule_kind,b111): @+ {Rule r;@+ HTEG_RULE(b111,r);@+ }@+ break;
@

@<skip functions@>=
static void hteg_rule_node(void)
{ @<skip the end byte |z|@>@;
  if (KIND(z)==rule_kind)   { @+Rule r; @+HTEG_RULE(INFO(z),r); @+}
  else
    QUIT("Rule expected at 0x%x got %s",node_pos,NAME(z));
 @<skip and check the start byte |a|@>@;
}
@
\subsection{Glue}\index{glue}
\noindent
@<skip macros@>=
#define @[HTEG_GLUE(I,G)@] @/\
  if(I==b111) hteg_xdimen_node(&((G).w)); else (G).w.h=(G).w.v=0.0;\
  if((I)&b001) HTEG_STRETCH((G).m) @+else  (G).m.f=0.0, (G).m.o=0; \
  if((I)&b010) HTEG_STRETCH((G).p) @+else (G).p.f=0.0, (G).p.o=0;\
  if((I)!=b111) { @+if ((I)&b100) HTEG32((G).w.w);@+ else (G).w.w=0;@+ }
@

@<cases to skip content@>=
@t\1\kern1em@>case TAG(glue_kind,b001): @+{ Glue g;@+ HTEG_GLUE(b001,g);@+}@+break;
case TAG(glue_kind,b010): @+{ Glue g;@+ HTEG_GLUE(b010,g);@+}@+break;
case TAG(glue_kind,b011): @+{ Glue g;@+ HTEG_GLUE(b011,g);@+}@+break;
case TAG(glue_kind,b100): @+{ Glue g;@+ HTEG_GLUE(b100,g);@+}@+break;
case TAG(glue_kind,b101): @+{ Glue g;@+ HTEG_GLUE(b101,g);@+}@+break;
case TAG(glue_kind,b110): @+{ Glue g;@+ HTEG_GLUE(b110,g);@+}@+break;
case TAG(glue_kind,b111): @+{ Glue g;@+ HTEG_GLUE(b111,g);@+}@+break;
@

@<skip functions@>=
static void hteg_glue_node(void)
{ @<skip the end byte |z|@>@;
  if (INFO(z)==b000) HTEG_REF(glue_kind);
  else
  { @+Glue g; @+HTEG_GLUE(INFO(z),g);@+}
   @<skip and check the start byte |a|@>@;
}
@

\subsection{Boxes}\index{box}
\noindent
@<skip macros@>=
#define @[HTEG_BOX(I,B)@] \
hteg_list(&(B.l));\
if ((I)&b100) @/{ B.s=HTEG8; @+ B.r=hteg_float32();@+  B.o=B.s&0xF; @+B.s=B.s>>4;@+ }\
else {  B.r=0.0;@+ B.o=B.s=0;@+ }\
if ((I)&b010) HTEG32(B.a); @+else B.a=0;\ 
HTEG32(B.w);\
if ((I)&b001) HTEG32(B.d); @+ else B.d=0;\ 
HTEG32(B.h);\
@

@<cases to skip content@>=
@t\1\kern1em@> case TAG(hbox_kind,b000): @+{Box b; @+HTEG_BOX(b000,b);@+} @+ break;
case TAG(hbox_kind,b001): @+{Box b; @+HTEG_BOX(b001,b);@+} @+ break;
case TAG(hbox_kind,b010): @+{Box b; @+HTEG_BOX(b010,b);@+} @+ break;
case TAG(hbox_kind,b011): @+{Box b; @+HTEG_BOX(b011,b);@+} @+ break;
case TAG(hbox_kind,b100): @+{Box b; @+HTEG_BOX(b100,b);@+} @+ break;
case TAG(hbox_kind,b101): @+{Box b; @+HTEG_BOX(b101,b);@+} @+ break;
case TAG(hbox_kind,b110): @+{Box b; @+HTEG_BOX(b110,b);@+} @+ break;
case TAG(hbox_kind,b111): @+{Box b; @+HTEG_BOX(b111,b);@+} @+ break;
case TAG(vbox_kind,b000): @+{Box b; @+HTEG_BOX(b000,b);@+} @+ break;
case TAG(vbox_kind,b001): @+{Box b; @+HTEG_BOX(b001,b);@+} @+ break;
case TAG(vbox_kind,b010): @+{Box b; @+HTEG_BOX(b010,b);@+} @+ break;
case TAG(vbox_kind,b011): @+{Box b; @+HTEG_BOX(b011,b);@+} @+ break;
case TAG(vbox_kind,b100): @+{Box b; @+HTEG_BOX(b100,b);@+} @+ break;
case TAG(vbox_kind,b101): @+{Box b; @+HTEG_BOX(b101,b);@+} @+ break;
case TAG(vbox_kind,b110): @+{Box b; @+HTEG_BOX(b110,b);@+} @+ break;
case TAG(vbox_kind,b111): @+{Box b; @+HTEG_BOX(b111,b);@+} @+ break;
@

@<skip functions@>=
static void hteg_hbox_node(void)
{ Box b;
  @<skip the end byte |z|@>@;
  if (KIND(z)!=hbox_kind) QUIT("Hbox expected at 0x%x got %s",node_pos,NAME(z));
   HTEG_BOX(INFO(z),b);@/
 @<skip and check the start byte |a|@>@;
}

static void hteg_vbox_node(void)
{ Box b;
  @<skip the end byte |z|@>@;
  if (KIND(z)!=vbox_kind) QUIT("Vbox expected at 0x%x got %s",node_pos,NAME(z));
   HTEG_BOX(INFO(z),b);@/
 @<skip and check the start byte |a|@>@;
}
@


\subsection{Extended Boxes}\index{extended box}
\noindent
@<skip macros@>=
#define @[HTEG_SET(I)@] @/\
{ List l; @+hteg_list(&l); @+} \
 if ((I)&b100) {Xdimen x;@+ hteg_xdimen_node(&x); @+} \
 else HTEG_REF(xdimen_kind);\
{ Stretch m; @+HTEG_STRETCH(m);@+}\
{ Stretch p; @+HTEG_STRETCH(p);@+}\
if ((I)&b010)  { Dimen a; @+HTEG32(a);@+} \
 { Dimen w; @+HTEG32(w);@+} \
 { Dimen d; @+if ((I)&b001) HTEG32(d); @+ else d=0;@+}\ 
 { Dimen h; @+HTEG32(h);@+} 
@#

#define @[HTEG_PACK(K,I)@] @/\
 { List l; @+hteg_list(&l); @+} \
 if ((I)&b100) {Xdimen x; hteg_xdimen_node(&x);@+} @+ else HTEG_REF(xdimen_kind);\
 if (K==vpack_kind) { Dimen d; @+HTEG32(d); @+ }\
 if ((I)&b010)  { Dimen d; @+HTEG32(d); @+ }
@

@<cases to skip content@>=
@t\1\kern1em@>case TAG(hset_kind,b000): HTEG_SET(b000); @+ break;
case TAG(hset_kind,b001): HTEG_SET(b001); @+ break;
case TAG(hset_kind,b010): HTEG_SET(b010); @+ break;
case TAG(hset_kind,b011): HTEG_SET(b011); @+ break;
case TAG(hset_kind,b100): HTEG_SET(b100); @+ break;
case TAG(hset_kind,b101): HTEG_SET(b101); @+ break;
case TAG(hset_kind,b110): HTEG_SET(b110); @+ break;
case TAG(hset_kind,b111): HTEG_SET(b111); @+ break;@#

case TAG(vset_kind,b000): HTEG_SET(b000); @+ break;
case TAG(vset_kind,b001): HTEG_SET(b001); @+ break;
case TAG(vset_kind,b010): HTEG_SET(b010); @+ break;
case TAG(vset_kind,b011): HTEG_SET(b011); @+ break;
case TAG(vset_kind,b100): HTEG_SET(b100); @+ break;
case TAG(vset_kind,b101): HTEG_SET(b101); @+ break;
case TAG(vset_kind,b110): HTEG_SET(b110); @+ break;
case TAG(vset_kind,b111): HTEG_SET(b111); @+ break;@#

case TAG(hpack_kind,b000): HTEG_PACK(hpack_kind,b000); @+ break;
case TAG(hpack_kind,b001): HTEG_PACK(hpack_kind,b001); @+ break;
case TAG(hpack_kind,b010): HTEG_PACK(hpack_kind,b010); @+ break;
case TAG(hpack_kind,b011): HTEG_PACK(hpack_kind,b011); @+ break;
case TAG(hpack_kind,b100): HTEG_PACK(hpack_kind,b100); @+ break;
case TAG(hpack_kind,b101): HTEG_PACK(hpack_kind,b101); @+ break;
case TAG(hpack_kind,b110): HTEG_PACK(hpack_kind,b110); @+ break;
case TAG(hpack_kind,b111): HTEG_PACK(hpack_kind,b111); @+ break;@#

case TAG(vpack_kind,b000): HTEG_PACK(vpack_kind,b000); @+ break;
case TAG(vpack_kind,b001): HTEG_PACK(vpack_kind,b001); @+ break;
case TAG(vpack_kind,b010): HTEG_PACK(vpack_kind,b010); @+ break;
case TAG(vpack_kind,b011): HTEG_PACK(vpack_kind,b011); @+ break;
case TAG(vpack_kind,b100): HTEG_PACK(vpack_kind,b100); @+ break;
case TAG(vpack_kind,b101): HTEG_PACK(vpack_kind,b101); @+ break;
case TAG(vpack_kind,b110): HTEG_PACK(vpack_kind,b110); @+ break;
case TAG(vpack_kind,b111): HTEG_PACK(vpack_kind,b111); @+ break;
@


\subsection{Leaders}\index{leaders}
\noindent
@<skip macros@>=
#define @[HTEG_LEADERS(I)@]@/ \
if (KIND(hpos[-1])==rule_kind) hteg_rule_node(); \
else if (KIND(hpos[-1])==hbox_kind)  hteg_hbox_node();\
else  hteg_vbox_node();\
if ((I)&b100) hteg_glue_node();
@

@<cases to skip content@>=
@t\1\kern1em@>case TAG(leaders_kind,1):        @+ HTEG_LEADERS(1); @+break;
case TAG(leaders_kind,2):        @+ HTEG_LEADERS(2); @+break;
case TAG(leaders_kind,3):        @+ HTEG_LEADERS(3); @+break;
case TAG(leaders_kind,b100|1):       @+ HTEG_LEADERS(b100|1); @+break;
case TAG(leaders_kind,b100|2):        @+ HTEG_LEADERS(b100|2); @+break;
case TAG(leaders_kind,b100|3):        @+ HTEG_LEADERS(b100|3); @+break;
@

\subsection{Baseline Skips}\index{baseline skip}
\noindent
@<skip macros@>=
#define @[HTEG_BASELINE(I,B)@] \
  if((I)&b010) hteg_glue_node(); \
  else {B.ls.p.o=B.ls.m.o=B.ls.w.w=0; @+B.ls.w.h=B.ls.w.v=B.ls.p.f=B.ls.m.f=0.0;@+}\
  if((I)&b100) hteg_glue_node(); \
  else {B.bs.p.o=B.bs.m.o=B.bs.w.w=0; @+B.bs.w.h=B.bs.w.v=B.bs.p.f=B.bs.m.f=0.0;@+}\
  if((I)&b001) HTEG32((B).lsl); @+else B.lsl=0;
@

@<cases to skip content@>=
@t\1\kern1em@>case TAG(baseline_kind,b001): @+{ Baseline b;@+ HTEG_BASELINE(b001,b);@+ }@+break;
case TAG(baseline_kind,b010): @+{ Baseline b;@+ HTEG_BASELINE(b010,b);@+ }@+break;
case TAG(baseline_kind,b011): @+{ Baseline b;@+ HTEG_BASELINE(b011,b);@+ }@+break;
case TAG(baseline_kind,b100): @+{ Baseline b;@+ HTEG_BASELINE(b100,b);@+ }@+break;
case TAG(baseline_kind,b101): @+{ Baseline b;@+ HTEG_BASELINE(b101,b);@+ }@+break;
case TAG(baseline_kind,b110): @+{ Baseline b;@+ HTEG_BASELINE(b110,b);@+ }@+break;
case TAG(baseline_kind,b111): @+{ Baseline b;@+ HTEG_BASELINE(b111,b);@+ }@+break;
@
\subsection{Ligatures}\index{ligature}
\noindent
@<skip macros@>=
#define @[HTEG_LIG(I,L)@] @/\
if ((I)==7) hteg_list(&((L).l)); \
else {(L).l.s=(I); @+hpos-=(L).l.s; @+ (L).l.p=hpos-hstart;@+} \
(L).f=HTEG8;
@

@<cases to skip content@>=
@t\1\kern1em@>case TAG(ligature_kind,1):@+ {Lig l; @+HTEG_LIG(1,l);@+} @+break;
case TAG(ligature_kind,2):@+ {Lig l; @+HTEG_LIG(2,l);@+} @+break;
case TAG(ligature_kind,3):@+ {Lig l; @+HTEG_LIG(3,l);@+} @+break;
case TAG(ligature_kind,4):@+ {Lig l; @+HTEG_LIG(4,l);@+} @+break;
case TAG(ligature_kind,5):@+ {Lig l; @+HTEG_LIG(5,l);@+} @+break;
case TAG(ligature_kind,6):@+ {Lig l; @+HTEG_LIG(6,l);@+} @+break;
case TAG(ligature_kind,7):@+ {Lig l; @+HTEG_LIG(7,l);@+} @+break;
@


\subsection{Discretionary breaks}\index{discretionary breaks}
\noindent
@<skip macros@>=
#define @[HTEG_DISC(I,H)@]\
if ((I)&b001) hteg_list(&((H).q)); else { (H).q.p=hpos-hstart; @+(H).q.s=0; @+(H).q.k=list_kind; @+}\
if ((I)&b010) hteg_list(&((H).p)); else { (H).p.p=hpos-hstart; @+(H).p.s=0; @+(H).p.k=list_kind; @+} \
if ((I)&b100) (H).r=HTEG8; @+else (H).r=0;
@
@<cases to skip content@>=
@t\1\kern1em@>case TAG(disc_kind,b001): @+{Disc h; @+HTEG_DISC(b001,h); @+} @+break;
case TAG(disc_kind,b010): @+{Disc h; @+HTEG_DISC(b010,h); @+} @+break;
case TAG(disc_kind,b011): @+{Disc h; @+HTEG_DISC(b011,h); @+} @+break;
case TAG(disc_kind,b100): @+{Disc h; @+HTEG_DISC(b100,h); @+} @+break;
case TAG(disc_kind,b101): @+{Disc h; @+HTEG_DISC(b101,h); @+} @+break;
case TAG(disc_kind,b110): @+{Disc h; @+HTEG_DISC(b110,h); @+} @+break;
case TAG(disc_kind,b111): @+{Disc h; @+HTEG_DISC(b111,h); @+} @+break;
@


\subsection{Paragraphs}\index{paragraph}
\noindent
@<skip macros@>=
#define @[HTEG_PAR(I)@] @/\
 { List l; @+hteg_list(&l); @+} \
 if ((I)&b010) { List l; @+hteg_param_list(&l); @+}  else if ((I)!=b100) HTEG_REF(param_kind);\
 if ((I)&b100)  {Xdimen x; @+ hteg_xdimen_node(&x); @+}  else HTEG_REF(xdimen_kind);\
 if ((I)==b100) HTEG_REF(param_kind);
@

@<cases to skip content@>=
@t\1\kern1em@>case TAG(par_kind,b000): @+HTEG_PAR(b000);@+break;
case TAG(par_kind,b010): @+HTEG_PAR(b010);@+break;
case TAG(par_kind,b100): @+HTEG_PAR(b100);@+break;
case TAG(par_kind,b110): @+HTEG_PAR(b110);@+break;
@


\subsection{Mathematics}\index{mathematics}\index{displayed formula}%
\noindent
@<skip macros@>=
#define @[HTEG_MATH(I)@] \
if ((I)&b001) hteg_hbox_node();\
{ List l; @+hteg_list(&l); @+} \
if ((I)&b010) hteg_hbox_node(); \
if ((I)&b100) { List l; @+hteg_param_list(&l); @+} @+ else HTEG_REF(param_kind);
@

@<cases to skip content@>=
@t\1\kern1em@>case TAG(math_kind,b000): HTEG_MATH(b000); @+ break;
case TAG(math_kind,b001): HTEG_MATH(b001); @+ break;
case TAG(math_kind,b010): HTEG_MATH(b010); @+ break;
case TAG(math_kind,b100): HTEG_MATH(b100); @+ break;
case TAG(math_kind,b101): HTEG_MATH(b101); @+ break;
case TAG(math_kind,b110): HTEG_MATH(b110); @+ break;
case TAG(math_kind,b011): 
case TAG(math_kind,b111): @+ break;
@

\subsection{Images}\index{image}
\noindent
@<skip macros@>=
#define @[HTEG_IMAGE(I)@] @/\
{ Image x={0}; List d; hteg_list(&d);\
if ((I)&b100) {\
 if ((I)==b111) {hteg_xdimen_node(&x.h);hteg_xdimen_node(&x.w);}\
 else if ((I)==b110) {hteg_xdimen_node(&x.w);x.hr=HTEG8;}\
 else if ((I)==b101) {hteg_xdimen_node(&x.h);x.wr=HTEG8;}\
 else  {x.hr=HTEG8;x.wr=HTEG8;}\
x.a=hteg_float32();}\
else if((I)==b011) {HTEG32(x.h.w);HTEG32(x.w.w);} \
else if((I)==b010) { HTEG32(x.w.w); x.a=hteg_float32();}\
else if((I)==b001){ HTEG32(x.h.w); x.a=hteg_float32();}\
HTEG16(x.n);}
@

@<cases to skip content@>=
@t\1\kern1em@>
case TAG(image_kind,b001): @+ HTEG_IMAGE(b001);@+break;
case TAG(image_kind,b010): @+ HTEG_IMAGE(b010);@+break;
case TAG(image_kind,b011): @+ HTEG_IMAGE(b011);@+break;
case TAG(image_kind,b100): @+ HTEG_IMAGE(b100);@+break;
case TAG(image_kind,b101): @+ HTEG_IMAGE(b101);@+break;
case TAG(image_kind,b110): @+ HTEG_IMAGE(b110);@+break;
case TAG(image_kind,b111): @+ HTEG_IMAGE(b111);@+break;
@

\subsection{Links and Labels}
\noindent
@<skip macros@>=
#define @[HTEG_LINK(I)@] @/\
{ uint16_t n; if (I&b001) HTEG16(n);@+ else n=HTEG8; @+}
@

@<cases to skip content@>=
@t\1\kern1em@>case TAG(link_kind,b000): @+ HTEG_LINK(b000); @+break;
case TAG(link_kind,b001): @+ HTEG_LINK(b001); @+break;
case TAG(link_kind,b010): @+ HTEG_LINK(b010); @+break;
case TAG(link_kind,b011): @+ HTEG_LINK(b011); @+break;
@


\subsection{Plain Lists, Texts, and Parameter Lists}\index{list}

\noindent
@<shared skip functions@>=
void hteg_size_boundary(Info info)
{ uint32_t n;
  if (info<2) return;
  n=HTEG8;
  if (n-1!=0x100-info) QUIT(@["List size boundary byte 0x%x does not match info value %d at " SIZE_F@],
                            n, info,hpos-hstart);
}

uint32_t hteg_list_size(Info info)
{ uint32_t n;  
  if (info==1) return 0;
  else if (info==2) n=HTEG8;
  else if (info==3) HTEG16(n);
  else if (info==4) HTEG24(n);
  else if (info==5) HTEG32(n);
  else QUIT("List info %d must be 1, 2, 3, 4, or 5",info);
  return n;
} 

void hteg_list(List *l)
{ @<skip the end byte |z|@>@,
  @+if (KIND(z)!=list_kind && KIND(z)!=text_kind  &&@| KIND(z)!=param_kind) @/
    QUIT("List expected at 0x%x", (uint32_t)(hpos-hstart)); 
   else
  { uint32_t s;
    l->k=KIND(z);
    l->s=hteg_list_size(INFO(z));
    hteg_size_boundary(INFO(z));
    hpos=hpos-l->s;
    l->p=hpos-hstart;
    hteg_size_boundary(INFO(z));
    s=hteg_list_size(INFO(z));
    if (s!=l->s) QUIT(@["List sizes at " SIZE_F " and 0x%x do not match 0x%x != 0x%x"@],
                        hpos-hstart,node_pos-1,s,l->s);
    @<skip and check the start byte |a|@>@;
  }
}

void hteg_param_list(List *l)
{ @+if (KIND(*(hpos-1))!=param_kind) return;
  hteg_list(l);
}


@

\subsection{Adjustments}\index{adjustment}
\noindent
@<cases to skip content@>=
@t\1\kern1em@>case TAG(adjust_kind,b001): @+ { List l; @+hteg_list(&l);@+ } @+ break;
@

\subsection{Tables}\index{table}
\noindent
@<skip macros@>=
#define @[HTEG_TABLE(I)@] \
{@+ List l; @+ hteg_list(&l);@+}\
{@+ List l; @+ hteg_list(&l);@+}\
if ((I)&b100) {Xdimen x;@+ hteg_xdimen_node(&x);@+} else HTEG_REF(xdimen_kind)@;
@

@<cases to skip content@>=
@t\1\kern1em@>case TAG(table_kind,b000): @+ HTEG_TABLE(b000); @+ break;
case TAG(table_kind,b001): @+ HTEG_TABLE(b001); @+ break;
case TAG(table_kind,b010): @+ HTEG_TABLE(b010); @+ break;
case TAG(table_kind,b011): @+ HTEG_TABLE(b011); @+ break;
case TAG(table_kind,b100): @+ HTEG_TABLE(b100); @+ break;
case TAG(table_kind,b101): @+ HTEG_TABLE(b101); @+ break;
case TAG(table_kind,b110): @+ HTEG_TABLE(b110); @+ break;
case TAG(table_kind,b111): @+ HTEG_TABLE(b111); @+ break;@#

case TAG(item_kind,b000):  @+{@+ List l; @+hteg_list(&l);@+ } @+ break;
case TAG(item_kind,b001):  hteg_content_node(); @+ break;
case TAG(item_kind,b010):  hteg_content_node(); @+ break;
case TAG(item_kind,b011):  hteg_content_node(); @+ break;
case TAG(item_kind,b100):  hteg_content_node(); @+ break;
case TAG(item_kind,b101):  hteg_content_node(); @+ break;
case TAG(item_kind,b110):  hteg_content_node(); @+ break;
case TAG(item_kind,b111):  hteg_content_node(); @+{uint8_t n;@+ n=HTEG8;@+}@+ break;
@



\subsection{Stream Nodes}\index{stream}
@<skip macros@>=
#define @[HTEG_STREAM(I)@] @/\
{ List l; @+hteg_list(&l); @+}\
if ((I)&b010) { List l; @+hteg_param_list(&l); @+} @+ else HTEG_REF(param_kind);\
HTEG_REF(stream_kind);
@

@<cases to skip content@>=
@t\1\kern1em@>case TAG(stream_kind,b000): HTEG_STREAM(b000); @+ break;
case TAG(stream_kind,b010):  HTEG_STREAM(b010); @+ break;
@



\subsection{References}\index{reference}
\noindent
@<skip macros@>=
#define @[HTEG_REF(K)@] do@+{uint8_t n; @+ n=HTEG8;@+} @+ while (false)
@

@<cases to skip content@>=
@t\1\kern1em@>case TAG(penalty_kind,0): HTEG_REF(penalty_kind); @+break;
case TAG(kern_kind,b000):  HTEG_REF(dimen_kind); @+break;
case TAG(kern_kind,b100):  HTEG_REF(dimen_kind); @+break;
case TAG(kern_kind,b001):  HTEG_REF(xdimen_kind); @+break;
case TAG(kern_kind,b101):  HTEG_REF(xdimen_kind); @+break;
case TAG(ligature_kind,0):  HTEG_REF(ligature_kind); @+break;
case TAG(disc_kind,0):  HTEG_REF(disc_kind); @+break;
case TAG(glue_kind,0):  HTEG_REF(glue_kind); @+break;
case TAG(language_kind,0):  HTEG_REF(language_kind); @+break;
case TAG(rule_kind,0): HTEG_REF(rule_kind); @+break;
case TAG(image_kind,0):   HTEG_REF(image_kind); @+break;
case TAG(leaders_kind,0):  HTEG_REF(leaders_kind); @+break;
case TAG(baseline_kind,0):  HTEG_REF(baseline_kind); @+break;
@


\section{Code and Header Files}\index{code file}\index{header file}

\subsection{{\tt basetypes.h}}
To define basic types in a portable way, we create an include file.
The macro |_MSC_VER| (Microsoft Visual C Version)\index{Microsoft Visual C}
is defined only if using the respective compiler.
\index{false+\\{false}}\index{true+\\{true}}\index{bool+\&{bool}}
@(hibasetypes.h@>=
#ifndef __BASETYPES_H__
#define __BASETYPES_H__
#include <stdlib.h>
#include <stdio.h>
#ifndef _STDLIB_H
#define _STDLIB_H
#endif
#ifdef  _MSC_VER
#include <windows.h>
#define uint8_t UINT8
#define uint16_t UINT16
#define uint32_t UINT32
#define uint64_t UINT64
#define int8_t INT8
#define int16_t INT16
#define int32_t INT32
#define bool BOOL
#define true (0==0)
#define false (!true)
#define __SIZEOF_FLOAT__ 4
#define __SIZEOF_DOUBLE__ 8
#define PRIx64 "I64x"
#pragma  @[warning( disable : @[4244@]@t @> @[4996@]@t @> @[4127@])@]
#else 
#include <stdint.h>
#include <stdbool.h>
#include <inttypes.h>
#include <unistd.h>
#ifdef WIN32
#include <io.h>
#endif
#endif
typedef float float32_t;
typedef double float64_t;
#if __SIZEOF_FLOAT__!=4
#error  @=float32 type must have size 4@>
#endif
#if __SIZEOF_DOUBLE__!=8
#error  @=float64 type must have size 8@>
#endif
#define HINT_VERSION 1
#define HINT_SUB_VERSION 4
#endif
@

\subsection{{\tt format.h}}\index{format.h+{\tt format.h}}
The \.{format.h} file contains definitions of types, macros, variables and functions
that are needed in other compilation units.

@(hiformat.h@>=
#ifndef _HFORMAT_H_
#define _HFORMAT_H_
@<debug macros@>@;
@<debug constants@>@;
@<hint macros@>@;
@<hint basic types@>@;
@<default names@>@;

extern const char *content_name[32];
extern const char *definition_name[32];
extern unsigned int debugflags;
extern FILE *hlog;
extern int max_fixed[32], max_default[32], max_ref[32], max_outline;
extern int32_t int_defaults[MAX_INT_DEFAULT+1];
extern Dimen dimen_defaults[MAX_DIMEN_DEFAULT+1];
extern Xdimen xdimen_defaults[MAX_XDIMEN_DEFAULT+1];
extern Glue glue_defaults[MAX_GLUE_DEFAULT+1];
extern Baseline baseline_defaults[MAX_BASELINE_DEFAULT+1];
extern Label label_defaults[MAX_LABEL_DEFAULT+1];
extern signed char hnode_size[0x100];

#endif
@
\subsection{{\tt tables.c}}\index{tables.c+{\tt tables.c}}\index{mktables.c+{\tt mktables.c}}
For maximum flexibility and efficiency, the file {\tt tables.c}
is generated by a \CEE\ program.
Here is the |main| program of {\tt mktables}:

@(himktables.c@>=
#include "hibasetypes.h"
#include "hiformat.h"
@<skip macros@>@;

int max_fixed[32], max_default[32];

int32_t int_defaults[MAX_INT_DEFAULT+1]={0};
Dimen dimen_defaults[MAX_DIMEN_DEFAULT+1]={0};
Xdimen xdimen_defaults[MAX_XDIMEN_DEFAULT+1]={{0}};
Glue glue_defaults[MAX_GLUE_DEFAULT+1]={{{0}}};
Baseline baseline_defaults[MAX_BASELINE_DEFAULT+1]={{{{0}}}};

signed char hnode_size[0x100]={0};
@<define |content_name| and |definition_name|@>@;
int main(void)
{ Kind k;
  int i;
  
  
  printf("#include \"hibasetypes.h\"\n"@/
         "#include \"hiformat.h\"\n\n");@/

  @<print |content_name| and |definition_name|@>@;

  printf("int max_outline=-1;\n\n");

  @<take care of variables without defaults@>@;  
  @<define |int_defaults|@>@;
  @<define |dimen_defaults|@>@;
  @<define |glue_defaults|@>@;
  @<define |xdimen_defaults|@>@;
  @<define |baseline_defaults|@>@;
  @<define page defaults@>@;
  @<define stream defaults@>@;
  @<define range defaults@>@;
  @<define |label_defaults|@>@;
  @<print defaults@>@;
 
  @<initialize the  |hnode_size| array@>@;
  @<print the |hnode_size| variable@>@;
  return 0;
}
@

The following code prints the arrays containing the default values.

@<print defaults@>=
  printf("int max_fixed[32]= {");
  for (k=0; k<32; k++)@/
  { printf("%d",max_fixed[k]);@+
    if (k<31) printf(", ");@+
  }
  printf("};\n\n");@#
  printf("int max_default[32]= {");
  for (k=0; k<32; k++)@/
  { printf("%d",max_default[k]);@+
    if (k<31) printf(", ");@+
  }
  printf("};\n\n");
  printf("int max_ref[32]= {");
  for (k=0; k<32; k++)@/
  { printf("%d",max_default[k]);@+
    if (k<31) printf(", ");@+
  }
  printf("};\n\n");
@


\subsection{{\tt get.h}}\index{get.h+{\tt get.h}}
The \.{get.h} file contains function prototypes for all the functions
that read the short format.

@(higet.h@>=
@<hint types@>@;
@<directory entry type@>@;
@<shared get macros@>@;

extern Entry *dir;
extern uint16_t section_no,  max_section_no;
extern uint8_t *hpos, *hstart, *hend, *hpos0;
extern uint64_t hin_size, hin_time;
extern uint8_t *hin_addr;

extern Label *labels;
extern char *hin_name;
extern bool hget_map(void);
extern void hget_unmap(void);

extern void new_directory(uint32_t entries);
extern void hset_entry(Entry *e, uint16_t i, @|uint32_t size, uint32_t xsize, char *file_name);

extern void hget_banner(void);
extern void hget_section(uint16_t n);
extern void hget_entry(Entry *e);
extern void hget_directory(void);
extern void hclear_dir(void);
extern bool hcheck_banner(char *magic);

extern void hget_max_definitions(void);
extern uint32_t hget_utf8(void);
extern void hget_size_boundary(Info info);
extern uint32_t hget_list_size(Info info);
extern void hget_list(List *l);
extern uint32_t hget_utf8(void);
extern float32_t hget_float32(void);
extern float32_t hteg_float32(void);
extern void hteg_size_boundary(Info info);
extern uint32_t hteg_list_size(Info info);
extern void hteg_list(List *l);
extern void hff_hpos(void);
extern uint32_t hff_list_pos, hff_list_size;
extern uint8_t hff_tag;
@



\subsection{{\tt get.c}}\index{get.c+{\tt get.c}}
@(higet.c@>=
#include "hibasetypes.h"
#include <string.h>
#include <math.h>
#include <zlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#include "hierror.h"
#include "hiformat.h"
#include "higet.h"

@<common variables@>@;

@<map functions@>@;
@<function to check the banner@>@;
@<directory functions@>@;

@<get file functions@>@;
@<shared get functions@>@;
@<shared skip functions@>@;
@

\subsection{{\tt put.h}}\index{put.h+{\tt put.h}}
The \.{put.h} file contains function prototypes for all the functions
that write the short format.


@(hiput.h@>=
@<put macros@>@;
@<hint macros@>@;
@<hint types@>@;
@<directory entry type@>@;
extern Entry *dir;
extern uint16_t section_no,  max_section_no;
extern uint8_t *hpos, *hstart, *hend, *hpos0;
extern int next_range;
extern RangePos *range_pos;
extern int *page_on; 
extern Label *labels;
extern int first_label;
extern int max_outline;
extern Outline *outlines;


extern FILE *hout;
extern void new_directory(uint32_t entries);
extern void new_output_buffers(void);

/* declarations for the parser */
extern void hput_definitions_start(void);
extern void hput_definitions_end(void);
extern void hput_content_start(void);
extern void hput_content_end(void);

extern void hset_label(int n,int w);
extern uint8_t hput_link(int n, int on);
extern void hset_outline(int m, int r, int d, uint32_t p);
extern void hput_label_defs(void);

extern void hput_tags(uint32_t pos, uint8_t tag);
extern uint8_t hput_glyph(Glyph *g);
extern uint8_t hput_xdimen(Xdimen *x);
extern uint8_t hput_int(int32_t p);
extern uint8_t hput_language(uint8_t n);
extern uint8_t hput_rule(Rule *r);
extern uint8_t hput_glue(Glue *g);
extern uint8_t hput_list(uint32_t size_pos, List *y);
extern uint8_t hsize_bytes(uint32_t n);
extern void hput_txt_cc(uint32_t c);
extern void hput_txt_font(uint8_t f);
extern void hput_txt_global(Ref *d);
extern void hput_txt_local(uint8_t n);
extern Info hput_box_dimen(Dimen h, Dimen d, Dimen w);
extern Info hput_box_shift(Dimen a);
extern Info hput_box_glue_set(int8_t s, float32_t r, Order o);
extern void hput_stretch(Stretch *s);
extern uint8_t hput_kern(Kern *k);
extern void hput_utf8(uint32_t c);
extern uint8_t hput_ligature(Lig *l);
extern uint8_t hput_disc(Disc *h);
extern Info hput_span_count(uint32_t n);
extern Info hput_image_spec(uint32_t n, float32_t a, uint32_t wr, Xdimen *w, uint32_t hr, Xdimen *h);
extern void hput_string(char *str);
extern void hput_range(uint8_t pg, bool on);
extern void hput_max_definitions(void);
extern uint8_t hput_dimen(Dimen d);
extern uint8_t hput_font_head(uint8_t f,  char *n, Dimen s,@| uint16_t m, uint16_t y);
extern void hput_range_defs(void);
extern void hput_xdimen_node(Xdimen *x);
extern void hput_directory(void);
extern void hput_hint(char * str);
extern void hput_list_size(uint32_t n, int i);
extern int hcompress_depth(int n, int c);
@


\subsection{{\tt put.c}}\label{writeshort}\index{put.c+{\tt put.c}}
\noindent
@(hiput.c@>=
#include "hibasetypes.h"
#include <string.h>
#include <ctype.h>
#include <math.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <zlib.h>
#include "hierror.h"
#include "hiformat.h"
#include "hiput.h"

@<common variables@>@;
@<shared put variables@>@;
@<directory functions@>@;
@<function to write the banner@>@;
@<put functions@>@;
@

\subsection{{\tt lexer.l}}\index{lexer.l+{\tt lexer.l}}\index{scanning}
The definitions for lex are collected in the file {\tt lexer.l}

@(hilexer.l@>=
%{
#include "hibasetypes.h"
#include "hierror.h"
#include "hiformat.h"
#include "hiput.h"

@<enable bison debugging@>@;
#include "hiparser.h"

@<scanning macros@>@;@+
@<scanning functions@>@;
int yywrap (void )@+{ return 1;@+}
#ifdef _MSC_VER
#pragma  warning( disable : 4267)
#endif
%}

%option yylineno stack batch never-interactive 
%option debug 
%option nounistd nounput noinput noyy_top_state

@<scanning definitions@>@/

%%

@<scanning rules@>@/
::@=[a-z]+@>     :< QUIT("Unexpected keyword '%s' in line %d",@|yytext,yylineno); >:
::@=.@>    :< QUIT("Unexpected character '%c' (0x%02X) in line %d",@|yytext[0]>' '?yytext[0]:' ',yytext[0],yylineno); >:

%%
@



\subsection{{\tt parser.y}}\index{parser.y+{\tt parser.y}}\index{parsing}

The grammar rules for bison are collected in the file  {\tt parser.y}.
% for the option %token-table use the command line parameter -k


@(hiparser.y@>=
%{
#include "hibasetypes.h"
#include <string.h>
#include <math.h>
#include "hierror.h"
#include "hiformat.h"
#include "hiput.h"
extern char **hfont_name; /* in common variables */

@<definition checks@>@;

extern void hset_entry(Entry *e, uint16_t i, @|uint32_t size, 
                       uint32_t xsize, char *file_name);

@<enable bison debugging@>@;
extern int yylex(void);

@<parsing functions@>@;

%}


@t{\label{union}\index{union}\index{parsing}}@>


%union {uint32_t u; @+ int32_t i; @+ char *s; @+ float64_t f; @+ Glyph c; 
        @+  Dimen @+d; Stretch st; @+ Xdimen xd; @+ Kern kt;
        @+ Rule r; @+ Glue g; @+ @+ Image x; 
        @+ List l; @+ Box h;  @+ Disc dc; @+ Lig lg;
        @+ Ref rf; @+ Info info; @+ Order o; bool@+ b; 
   }

@t{}@>

%error_verbose
%start hint
@t@>
@<symbols@>@/
%%
@<parsing rules@>@;
%%
@

\subsection{{\tt shrink.c}}\index{shrink.c+{\tt shrink.c}}

\.{shrink} is a \CEE\ program translating a \HINT\ file in long format into a \HINT\ file in short format.

@(hishrink.c@>=
#include "hibasetypes.h"
#include <math.h>
#include <string.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/stat.h>
#ifdef WIN32
#include <direct.h>
#endif
#include <zlib.h>

#include "hierror.h"
#include "hiformat.h"
#include "hiput.h"

@<enable bison debugging@>@;
#include "hiparser.h"

extern void yyset_debug(int lex_debug);
extern int yylineno;
extern FILE *yyin, *yyout;
extern int yyparse(void);

@<put macros@>@;

@<common variables@>@;
@<shared put variables@>@;
@<function to check the banner@>@;
@<directory functions@>@;
@<function to write the banner@>@;
@<put functions@>@;

#define SHRINK
#define DESCRIPTION "\nConvert a `long' ASCII HINT file into a `short' binary HINT file.\n"

int main(int argc, char *argv[])
{ @<local variables in |main|@>@;
   in_ext=".hint";
   out_ext=".hnt";
  @<process the command line@>@;

  if (debugflags&DBGFLEX) yyset_debug(1); else  yyset_debug(0);  
#if YYDEBUG
  if (debugflags&DBGBISON) yydebug=1; 
  else yydebug=0;
#endif
  @<open the log file@>@;
  @<open the input file@>@;
  @<open the output file@>@;

  yyin=hin;
  yyout=hlog;
  @<read the banner@>@;
  if (!hcheck_banner("HINT")) QUIT("Invalid banner");
  yylineno++;
  DBG(DBGBISON|DBGFLEX,"Parsing Input\n");
  yyparse();

  hput_directory();
  @<rewrite the file names of optional sections@>@;
  hput_hint("created by shrink");
  
  @<close the output file@>@;
  @<close the input file@>@;
  @<close the log file@>@;
  return 0;
}
@



\subsection{{\tt stretch.c}}\label{stretchmain}\index{stretch.c+{\tt stretch.c}}
\.{stretch} is a \CEE\ program translating a \HINT\ file in short 
format into a \HINT\ file in long format.

@(histretch.c@>=
#include "hibasetypes.h"
#include <math.h>
#include <string.h>
#include <ctype.h>
#include <zlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#ifdef WIN32
#include <direct.h>
#endif
#include <fcntl.h>
#include "hierror.h"
#include "hiformat.h"
#include "higet.h"

@<get macros@>@;
@<write macros@>@;
@<common variables@>@;
@<shared put variables@>@;
@<map functions@>@;
@<function to check the banner@>@;
@<function to write the banner@>@;
@<directory functions@>@;

@<definition checks@>@;
@<get function declarations@>@;
@<write functions@>@;
@<get file functions@>@;
@<shared get functions@>@;
@<get functions@>@;

#define STRETCH
#define DESCRIPTION "\nConvert a `short' binary HINT file into a `long' ASCII HINT file.\n"

int main(int argc, char *argv[])
{ @<local variables in |main|@>@;

  in_ext=".hnt";
  out_ext=".hint";
  @<process the command line@>@;
  @<open the log file@>@;
  @<open the output file@>@;
  @<determine the |stem_name| from the output |file_name|@>@;
  if (!hget_map()) QUIT("Unable to map the input file");
  hpos=hstart=hin_addr;
  hend=hstart+hin_size;
  hget_banner();
  if (!hcheck_banner("hint")) QUIT("Invalid banner");
  hput_banner("HINT","created by stretch");
  hget_directory();
  hwrite_directory();
  hget_definition_section();
  hwrite_content_section();
  hwrite_aux_files();
  hget_unmap();
  @<close the output file@>@;
  DBG(DBGBASIC,"End of Program\n");
  @<close the log file@>@;
  return 0;
}
@

In the above program, the get functions call the write functions
and the write functions call some get functions. This requires
function declarations to satisfy the define before use requirement
of \CEE. Some of the necessary function declarations are already
contained in {\tt get.h}. The remaining declarations are these:

@<get function declarations@>=
extern void hget_xdimen_node(Xdimen *x);
extern void hget_def_node(void);
extern void hget_font_def(uint8_t f);
extern void hget_content_section(void);
extern uint8_t hget_content_node(void);
extern void hget_glue_node(void);
extern void hget_rule_node(void);
extern void hget_hbox_node(void);
extern void hget_vbox_node(void);
extern void hget_param_list(List *l);
extern int hget_txt(void);
@


\subsection{{\tt skip.c}}\label{skip}\index{skip.c+{\tt skip.c}}
\.{skip} is a \CEE\ program reading the content section of a \HINT\ file in short format 
backwards.

@(hiskip.c@>=
#include "hibasetypes.h"
#include <string.h>
#include <zlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "hierror.h"
#include "hiformat.h"
@<hint types@>@;

@<common variables@>@;

@<map functions@>@;
@<function to check the banner@>@;
@<directory entry type@>@;
@<directory functions@>@;
@<shared get macros@>@;
@<get file functions@>@;

@<skip macros@>@;
@<skip function declarations@>@;
@<shared skip functions@>@;
@<skip functions@>@;

#define SKIP
#define DESCRIPTION "\n This program tests parsing a binary HINT file in reverse direction.\n"

int main(int argc, char *argv[])
{ @<local variables in |main|@>@;
  in_ext=".hnt";
  out_ext=".bak";

  @<process the command line@>@;
  @<open the log file@>@;
  if (!hget_map()) QUIT("Unable to map the input file");
  hpos=hstart=hin_addr;
  hend=hstart+hin_size;
  hget_banner();
  if (!hcheck_banner("hint")) QUIT("Invalid banner");
  hget_directory();
  DBG(DBGBASIC,"Skipping Content Section\n");
  hteg_content_section();
  DBG(DBGBASIC,"Fast forward Content Section\n");
  hpos=hstart;
      while(hpos<hend) 
      { hff_hpos();
        if (KIND(*(hpos-1))==par_kind && KIND(hff_tag)==list_kind && hff_list_size>0)
        { uint8_t *p=hpos,*q;
	  DBG(DBGTAGS,"Fast forward list at 0x%x, size %d",hff_list_pos,hff_list_size);
          hpos=hstart+hff_list_pos;
          q=hpos+hff_list_size;
          while (hpos<q)
               hff_hpos();
          hpos=p;
        }
      }
  hget_unmap();
  @<close the log file@>@;
  return 0;
}
@

As we have seen already in the {\tt stretch} program, a few
function declarations are necessary to satisfy the define before
use requirement of \CEE.

@<skip function declarations@>=
static void hteg_content_node(void);
static void hteg_content(uint8_t z);
static void hteg_xdimen_node(Xdimen *x);
static void hteg_list(List *l);
static void hteg_param_list(List *l);
static float32_t hteg_float32(void);
static void hteg_rule_node(void);
static void hteg_hbox_node(void);
static void hteg_vbox_node(void);
static void hteg_glue_node(void);
@

\thecodeindex

\crosssections

\plainsection{References}

{\baselineskip=11pt
\def\bfblrm{\small\rm}%
\def\bblem{\small\it}%
\bibliography{../hint}
\bibliographystyle{plain}
}

\plainsection{Index}
{
\def\_{{\tt \UL}} % underline in a string
\catcode`\_=\active \let_=\_ % underline is a letter
\input format.ind
}

\write\cont{} % ensure that the contents file isn't empty
%  \write\cont{\catcode `\noexpand\@=12\relax}   % \makeatother
\closeout\cont% the contents information has been fully gathered