1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
/*
* Copyright (c) 1987, 1989 University of Maryland
* Department of Computer Science. All rights reserved.
* Permission to copy for any purpose is hereby granted
* so long as this copyright notice remains intact.
*/
#ifndef lint
static char rcsid[] = "$Header: /usr/src/local/tex/local/mctex/lib/RCS/scaletfm.c,v 3.2 89/11/23 16:34:43 chris Exp $";
#endif
#include "types.h"
#include "error.h"
#include "font.h"
/*
* From DVITYPE.WEB:
*
* ``The most important part of in_TFM is the width computation, which
* involvles multiplying the relative widths in the TFM file by the scaling
* factor in the DVI file. This fixed-point multiplication must be done with
* precisely the same accuracy by all DVI-reading programs, in order to
* validate the assumptions made by DVI-writing programs like \TeX 82.
*
* Let us therefore summarize what needs to be done. Each width in a TFM
* file appears as a four-byte quantity called a fix_word. A fix_word whose
* respective bytes are (a,b,c,d) represents the number
*
* {{ b * 2^{-4} + c * 2^{-12} + d * 2^{-20}, if a = 0;
* x = {{
* {{ -16 + b * 2^{-4} + c * 2^{-12} + d * 2^{-20}, if a = 255.
*
* (No other choices of a are allowed, since the magnitude of a TFM dimension
* must be less than 16.) We want to multiply this quantity by the integer
* z, which is known to be less than 2^{27}. Let \alpha = 16z. If z <
* 2^{23}, the individual multiplications b * z, c * z, d * z cannot
* overflow; otherwise we will divide z by 2, 4, 8, or 16, to obtain a
* multiplier less than 2^{23}, and we can compensate for this later. If z
* has thereby been replaced by z' = z/2^e, let \beta = 2^{4-e}; we shall
* compute
*
* \lfloor (b + c * 2^{-8} + d * 2^{-16})z' / \beta \rfloor
*
* if a = 0, or the same quantity minus \alpha if a = 255. This calculation
* must be done exactly, for the reasons stated above; the following program
* does the job in a system-independent way, assuming that arithmetic is
* exact on numbers less than 2^{31} in magnitude.''
*/
#define ZLIM ((i32)1 << 23) /* z must be < zlim */
/*
* Scale the single TFM width t by z.
*/
i32
ScaleOneWidth(t, z)
register i32 t, z;
{
register i32 alpha, log2beta;
register int a0;
/* First compute \alpha, \beta, and z': */
alpha = 16 * z;
log2beta = 4;
while (z >= ZLIM) {
z >>= 1;
log2beta--;
}
/* The four values 'a', 'b', 'c', and 'd' are fields within t: */
#define a (UnSign8(t >> 24))
#define b (UnSign8(t >> 16))
#define c (UnSign8(t >> 8))
#define d (UnSign8(t))
if (t) {
a0 = a;
t = (((((d * z) >> 8) + c * z) >> 8) + b * z) >> log2beta;
if (a0) {
if (a0 != 255)
error(0, 0, "bad TFM width! [ScaleOneWidth]");
t -= alpha;
}
}
return (t);
}
/*
* Scale a set of glyphs [l..h) in font f according to f->f_dvimag
* (that is, set g_tfmwidth from g_rawtfmwidth).
*/
ScaleGlyphs(f, l, h)
register struct font *f;
int l, h;
{
register int i, a0;
register i32 t, z, alpha, log2beta;
z = f->f_dvimag;
alpha = 16 * z;
log2beta = 4;
while (z >= ZLIM) {
z >>= 1;
log2beta--;
}
for (i = l; i < h; i++) {
if ((t = f->f_gly[i]->g_rawtfmwidth) != 0) {
a0 = a;
t = (((((d * z) >> 8) + c * z) >> 8) + b * z) >>
log2beta;
if (a0) {
if (a0 != 255)
error(0, 0,
"\"%s\", glyph %d: bad TFM width",
f->f_path, i);
t -= alpha;
}
}
f->f_gly[i]->g_tfmwidth = t;
}
}
|