1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
|
/* $XConsortium: objects.c,v 1.5 92/03/20 15:56:06 eswu Exp $ */
/* Copyright International Business Machines, Corp. 1991
* All Rights Reserved
* Copyright Lexmark International, Inc. 1991
* All Rights Reserved
*
* License to use, copy, modify, and distribute this software and its
* documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation, and that the name of IBM or Lexmark not be
* used in advertising or publicity pertaining to distribution of the
* software without specific, written prior permission.
*
* IBM AND LEXMARK PROVIDE THIS SOFTWARE "AS IS", WITHOUT ANY WARRANTIES OF
* ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
* AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE ENTIRE RISK AS TO THE
* QUALITY AND PERFORMANCE OF THE SOFTWARE, INCLUDING ANY DUTY TO SUPPORT
* OR MAINTAIN, BELONGS TO THE LICENSEE. SHOULD ANY PORTION OF THE
* SOFTWARE PROVE DEFECTIVE, THE LICENSEE (NOT IBM OR LEXMARK) ASSUMES THE
* ENTIRE COST OF ALL SERVICING, REPAIR AND CORRECTION. IN NO EVENT SHALL
* IBM OR LEXMARK BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
* THIS SOFTWARE.
*/
/* OBJECTS CWEB V0025 ******** */
/*
:h1.OBJECTS Module - TYPE1IMAGER Objects Common Routines
This module defines and implements the C structures that represent
objects in the TYPE1IMAGER. All common routines for manipulating these
objects are defined in this module. Specific routines for
specific objects are defined in the modules that deal with that
object type.
&author. Jeffrey B. Lotspiech (lotspiech@almaden.ibm.com)
:h3.Include Files
The included files are:
*/
#define GLOBALS 1 /* see :hdref refid=debugvar. */
/*
The following two includes are C standards; we include them because we
use 'toupper' and the 'str'-type functions in this module. Potentially
these may be defined as macros; if these ".h" files do not exist on your
system it is a pretty safe bet that these are external entry points and
you do do not need to include these header files.
*/
#include "types.h"
#include <string.h>
#include <ctype.h>
/*
override incorrect system functions; for example you might define
a macro for "strcpy" that diverts it to "my_strcpy".
*/
/* moved these includes from above the */
/* was included first (it contains com- */
/* piler defines). dsr 081291 */
#include "objects.h"
#include "spaces.h"
#include "paths.h"
#include "regions.h"
#include "fonts.h"
#include "pictures.h"
#include "strokes.h"
#include "cluts.h"
static char *TypeFmt();
static int ObjectPostMortem(struct xobject *obj);
/*
:h3.The "pointer" Macro - Define a Generic Pointer
Sadly, many compilers will give a warning message when a pointer to
one structure is assigned to a pointer to another. We've even seen
some that give severe errors (when the wrong pointer type is used as
an initializer or returned from a function). TYPE1IMAGER has routines
like Dup and Allocate that are perfectly willing to duplicate or
allocate any of a number of different types of structures. How to
declare them in a truely portable way?
Well, there is no single good answer that I've found. You can always
beg the question and "cast" everything. I find this distracting and the
resulting code ugly. On the other hand, we have found at least one
compiler that will accept "void *" as a generic pointer that can
assigned to any other pointer type without error or warning (apparently
this is also the ANSI standard). So, we define "void *" to be a generic
pointer. (You might have to change this for your compiler; the "ifndef"
allows the change to be made on the command line if you want.)
:i1/portability assumptions/
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
:h3.Functions Provided to the TYPE1IMAGER User
This module provides the following TYPE1IMAGER entry points:
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
Note that entry points that are intended for use external to TYPE1IMAGER
begin with the characters :q/xi/. Macros are used to make the names
more mnemonic.
*/
/*
:h3.Functions Provided to Other Modules
This module provides the following functions for other modules:
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
Note that entry points that intended for use within TYPE1IMAGER, but
which must be global because they are used across module boundaries,
begin with the characters :q/I_/. Macros are used to make the names
more mnemonic.
Entry points totally within a module use mnemonic names and are
declared :hp2/static/. One of the compilers I used had a bug when
static functions were passed as addresses. Thus, some functions
which are logically "static" are not so declared.
Note also the trick of declaring routines, like Consume(), with a
variable number of arguments. To avoid the restrictions on variable
numbers of arguments in the macro processor, we just replace the
text 'Consume' with 'I_Consume'.
*/
/*
:h3.Macros Provided to Other Modules
This is the module where we define all the useful constants like
TRUE, FALSE, and NULL, and simple expressions like MIN(), MAX(), and ABS().
We might as well get to it right here:
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
Notice that upper case is used for constant values and macro
definitions. I generally follow that convention.
Many more global macros are defined later in this module.
*/
/*
:h2.Basic TYPE1IMAGER Object Structure
All TYPE1IMAGER objects which are available to the user have a common
header. This header is defined below:
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
The following define is an attempt to centralize the definition of the
common xobject data shared by structures that are derived from the
generic xobject structure. For example, the structure font, defined in
fonts.shr :
&code.
struct font {
char type;
char flag;
int references;
... other data types & structs ...
}
&ecode.
would now be defined as:
&code.
struct font {
XOBJ_COMMON
... other data types & structs ...
}
&ecode.
Thus we have a better-structured inheritance mechanism. 3-26-91 PNM
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
:h3.Object Type Definitions
These constants define the values which go in the 'type' field of
an TYPE1IMAGER object structure:
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
:h3.Flag Byte Definitions
Many programmers define flag bits as a mask (for example, 0x04), and
test, set, and reset them as follows:
&code.
if ((flag & PERMANENT) != 0)
flag |= PERMANENT;
flag &= &inv.PERMANENT;
:exmp.
I favor a style where the 'if' statement can ask a question:
&code.
if (ISPERMANENT(flag))
flag |= ISPERMANENT(ON);
flag &= &inv.ISPERMANENT(ON);
:exmp.
This said, we now define two bit settings of the flag byte of the
object. "ISPERMANENT" will be set by the user, when he calls
Permanent(). "ISIMMORTAL" will be used for compiled-in objects
that we don't want the user to ever destroy.
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
Flag bit definitions that apply to all objects are assigned
starting with the least significant (0x01) bit. Flag bit definitions
specific to a certain object type are assigned starting with the
most significant (0x80) bit. We hope they never meet.
*/
/*
:h3 id=preserve.PRESERVE() Macro
Occasionally an TYPE1IMAGER operator is implemented by calling other
TYPE1IMAGER operators. For example, Arc2() calls Conic(). When we
call more than one operator as a subroutine, we have to be careful
of temporary objects. A temporary object will be consumed by the
subroutine operator and then is no longer available for the caller.
This can be prevented simply by bumping a temporary object's reference
count.
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
:h3.RefRoll() Macro to Detect References Count Rollover
The following macro is designed to check for reference count rollover.
A return value of TRUE means rollover has not occurred; a return value
of FALSE means we cannot increment the reference count. Note also that
those functions that use this macro must decrement the reference count
afterwards. 3-26-91 PNM
*/
#define RefRoll(obj) (++(obj)->references > 0)
/*
:h2.TYPE1IMAGER Object Functions
:h3.LONGCOPY() - Macro to Copy "long" Aligned Data
Copying arbitrary bytes in C is a bit of a problem. "strcpy" can't be
used, because 0 bytes are special-cased. Most environments have a
routine "memcopy" or "bcopy" or "bytecopy" that copies memory containing
zero bytes. Sadly, there is no standard on the name of such a routine,
which makes it impossible to write truely portable code to use it.
It turns out that TYPE1IMAGER, when it wants to copy data, frequently
knows that both the source and destination are aligned on "long"
boundaries. This allows us to copy by using "long *" pointers. This
is usually very efficient on almost all processors. Frequently, it
is more efficient than using general-purpose assembly language routines.
So, we define a macro to do this in a portable way. "dest" and "source"
must be long-aligned, and "bytes" must be a multiple of "sizeof(long)":
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
:h3.Allocate() - Allocating a Memory Block
Allocate returns a pointer to memory object that is a copy of
the template passed (if any). In addition, extra bytes may be
allocated contiguously with the object. (This may be useful for
variable size objects such as edge lists. See :hdref refid=regions..)
Allocate() always returns a non-immortal object, even if the template is
immortal. Therefore a non-NULL template must have a "flag" byte.
If the template is NULL, then 'size' bytes are cleared to all NULLs.
If the template is non-NULL, a new object is allocated in memory.
It therefore seems logical that its reference count field should be
set to 1. So, a nun-NULL template must also have a "references" field.
PNM 3-26-91
*/
struct xobject *t1_Allocate(size, template, extra) /* non-ANSI; type checking was too strict */
register int size; /* number of bytes to allocate & initialize */
register struct xobject *template; /* example structure to allocate */
register int extra; /* any extra uninitialized bytes needed contiguously */
{
#ifdef WIN32
extern char *Xalloc(int); /* standard C routine */
#else
extern char *Xalloc(); /* standard C routine */
#endif
register struct xobject *r;
/*
* round up 'size' and 'extra' to be an integer number of 'long's:
*/
size = (size + sizeof(LONG) - 1) & -sizeof(LONG);
extra = (extra + sizeof(LONG) - 1) & -sizeof(LONG);
if (size + extra <= 0)
t1_abort("Non-positive allocate?");
r = (struct xobject *) Xalloc(size + extra);
while (r == NULL) {
if (!GimeSpace()) {
IfTrace1(TRUE, "malloc attempted %d bytes.\n",
size + extra);
t1_abort("We have REALLY run out of memory");
}
r = (struct xobject *) Xalloc(size + extra);
}
/*
* copy the template into the new memory:
*/
if (template != NULL) {
/* Added references count decrement if template is not permanent.
This is for the case where Allocate is called by a Dupxxxx
function, which was in turn called by Unique(). (PNM) */
if (!ISPERMANENT(template->flag))
--template->references;
LONGCOPY(r, template, size);
r->flag &= ~(ISPERMANENT(ON) | ISIMMORTAL(ON));
/* added reference field 3-2-6-91 PNM */
r->references = 1;
}
else {
register char **p1;
for (p1=(char **)r; size > 0; size -= sizeof(char *))
*p1++ = NULL;
}
if (MemoryDebug > 1) {
register int *L;
L = (int *) r;
IfTrace4(TRUE, "Allocating at %p: %x %x %x\n",
L, L[-1], L[0], L[1]);
}
return(r);
}
/*
:h3.Free() - Frees an Allocated Object
This routine makes a sanity check to make sure the "type" field of the
standard object structure has not been cleared. If the object is
not a standard structure, then the macro "NonObjectFree" is available
that does not perform this check.
In either case, the object must not be the NULL pointer. This preserves
portability, as the C system Xfree() will not always accept NULL.
*/
void Free(obj) /* non-ANSI to avoid overly strict type checking */
register struct xobject *obj; /* structure to free */
{
if (obj->type == INVALIDTYPE)
t1_abort("Free of already freed object?");
obj->type = INVALIDTYPE;
if (MemoryDebug > 1) {
register int *L;
L = (int *) obj;
IfTrace4(TRUE,"Freeing at %p: %x %x %x\n", L, L[-1], L[0], L[1]);
}
Xfree(obj);
}
/*
:h3.Permanent() - Makes an Object Permanent
Real simple--just set a flag. Every routine that consumes its objects
(which is almost every user entry) must check this flag, and not consume
the object if it is set.
If a temporary object is made permanent, and there is more than one
reference to it, we must first Copy() it, then set the ISPERMANENT
flag. Note also that the reference count must be incremented when an
object is changed from temporary to permanent (see the ISUNIQUE macro).
Note that the purpose of this function is to convert an object into a
permanent object:
If it was permanent to begin with, we do nothing;
If it was temporary and unique, we set the PERMANENT flag and increment
the reference count;
If it was temporary and nonunique, we must make a unique Copy(), set
the PERMANENT flag, and set the reference count to 2. We must also
decrement the original object's reference count, because what we have
done is to change one of the old temporary handles to a permanent one.
3-26-91 PNM
*/
struct xobject *t1_Permanent(obj) /* non-ANSI to avoid overly strict type checking */
register struct xobject *obj; /* object to be made permanent */
{
IfTrace1((MustTraceCalls),"Permanent(%p)\n", obj);
if ( (obj != NULL) && ( !(ISPERMANENT(obj->flag)) ) )
{
/* there is a non-NULL, temporary object to be made permanent.
If there are multiple references to this object, first get
a new COPY().
Note also that we have to decrement the reference count if
we do a Copy() here, because we are consuming the temporary
argument passed, and returning a unique, permanent one.
*/
if ( obj->references > 1)
{
obj = Copy(obj);
}
/* now set the permanent flag, and increment the reference
count, since a temporary object has now become permanent. */
obj->references++;
obj->flag |= ISPERMANENT(ON);
}
return(obj);
}
/*
:h3.Temporary() - Undoes the Effect of "Permanent()"
This simply resets the "ISPERMANENT" flag.
If a permanent object is made temporary, and there is more than one reference
to it, we must first Copy() it, then reset the ISPERMANENT flag. However,
if the permanent object has obly one reference, we need only decrement the
reference count ( and reset the flag).
Note that this function, in the case of a PERMANENT argument, basically
converts the PERMANENT handle to a TEMPORARY one. Thus, in the case of
a nonunique, permanent argument passed, we not only make a Copy(),
we also decrement the reference count, to reflect the fact that we have
lost a permanent handle and gained a temporary one.
PNM 3-2-6-91
*/
struct xobject *xiTemporary(obj) /* non-ANSI to avoid overly strict type checking */
register struct xobject *obj; /* object to be made permanent */
{
IfTrace1((MustTraceCalls),"Temporary(%p)\n", obj);
if (obj != NULL) {
/* if it's already temporary, there's nothing to do. */
if ISPERMANENT(obj->flag)
{
/* if there are multiple references to this object, get a
Copy we can safely alter. Recall that the reference count
is incremented for permanent objects.
Recall further that Copy returns an object with the
same flag state and a reference count of 2 (for PERMANENT
objects).
Thus, regardless of whether or not we need to copy a
permanent object, we still decrement its reference
count and reset the flag.
*/
if (obj->references != 2 || ISIMMORTAL(obj->flag))
{
/* not unique; consume handle, get a temporary Copy! */
obj = Copy(obj);
}
/* else decrement the reference count (since it's going from
permanent to temporary) and clear the flag. */
else {
obj->references--;
obj->flag &= ~ISPERMANENT(ON);
}
}
}
return(obj);
}
/*
:h3.Dup() - Duplicate an Object
Dup will increment the reference count of an object, only making a
Copy() if needed.
Note that Dup() retains the state of the permanent flag.
3-26-91 PNM
*/
struct xobject *t1_Dup(obj) /* non-ANSI avoids overly strict type checking */
register struct xobject *obj; /* object to be duplicated */
{
register char oldflag; /* copy of original object's flag byte */
IfTrace1((MustTraceCalls),"Dup(%p)\n", obj);
if (obj == NULL)
return(NULL);
/* An immortal object must be Copy'ed, so that we get a mortal
copy of it, since we try not to destroy immortal objects. */
if (ISIMMORTAL(obj->flag))
return(Copy(obj));
/* if incrementing the reference count doesn't cause the count
to wrap, simply return the object with the count bumped. Note
that the RefRoll macro increments the count to perform the
rollover check, so we must decrement the count. */
if (RefRoll(obj))
return(obj);
/* that didn't work out, so put the count back and call Copy(). */
--obj->references;
oldflag = obj->flag;
obj = Copy(obj);
if (ISPERMANENT(oldflag))
obj = Permanent(obj);
return(obj);
}
/*
:h3.Copy() - Make a New Copy of an Object
This is the generic Copy() where the object type is unknown. There
are specific Copyxxx functions for known object types.
Copy will create a NEW temporary object, and WILL NOT simply bump the
reference count.
Sometimes duplicating an object is just as simple as Allocating with it
as a template. But other objects are complicated linked lists. So, we
let each module provide us a routine (or macro) that duplicates the
objects it knows about.
*/
struct xobject *t1_Copy(obj)
register struct xobject *obj; /* object to be Copy'ed */
{
if (obj == NULL)
return(NULL);
if (ISPATHTYPE(obj->type))
obj = (struct xobject *) CopyPath(obj);
else
switch (obj->type) {
case SPACETYPE:
obj = (struct xobject *) CopySpace(obj); break;
case FONTTYPE:
obj = (struct xobject *) CopyFont(obj); break;
case REGIONTYPE:
obj = (struct xobject *) CopyRegion(obj); break;
case PICTURETYPE:
obj = (struct xobject *) CopyPicture(obj); break;
case LINESTYLETYPE:
obj = (struct xobject *) CopyLineStyle(obj); break;
case STROKEPATHTYPE:
obj = (struct xobject *) CopyStrokePath(obj); break;
case CLUTTYPE:
obj = (struct xobject *) CopyCLUT(obj); break;
default:
return(ArgErr("Copy: invalid object", obj, NULL));
}
return(obj);
}
/*
:h3.Destroy() - Destroys an Object
This can get complicated. Just like with Copy(), we let the experts
handle it.
*/
struct xobject *Destroy(obj) /* non-ANSI avoids overly strict type checking */
register struct xobject *obj; /* object to be destroyed */
{
IfTrace1((MustTraceCalls),"Destroy(%p)\n", obj);
if (obj == NULL)
return(NULL);
if (ISIMMORTAL(obj->flag)) {
IfTrace1(TRUE,"Destroy of immortal object %p ignored\n", obj);
return(NULL);
}
if (ISPATHTYPE(obj->type))
KillPath(obj);
else {
switch (obj->type) {
case REGIONTYPE:
KillRegion(obj);
break;
case SPACETYPE:
KillSpace(obj);
break;
case LINESTYLETYPE:
KillLineStyle(obj);
break;
case FONTTYPE:
KillFont(obj);
break;
case PICTURETYPE:
KillPicture(obj);
break;
case STROKEPATHTYPE:
KillStrokePath(obj);
break;
case CLUTTYPE:
KillCLUT(obj);
break;
default:
return(ArgErr("Destroy: invalid object", obj, NULL));
}
}
return(NULL);
}
/*
:h2.Generally Useful Macros
:h3.FOLLOWING() - Macro to Point to the Data Following a Structure
There are several places in TYPE1IMAGER where we will allocate variable
data that belongs to a structure immediately after that structure.
This is a performance technique, because it reduces the number of
trips we have to take through Xalloc() and Xfree(). It turns out C has
a very convenient way to point past a structure--if 'p' is a pointer
to a structure, 'p+1' is a pointer to the data after it. This
behavior of C is somewhat startling and somewhat hard to follow, if
you are not used to it, so we define a macro to point to the data
following a structure:
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
:h3.TYPECHECK() - Verify the Type of an Argument
This macro tests the type of an argument. If the test fails, it consumes
any other arguments as necessary and causes the imbedding routine to
return the value 'whenBAD'.
Note that the consumeables list should be an argument list itself, for
example (0) or (2,A,B). See :hdref refid=consume. below.
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
:h3.ARGCHECK() - Perform an Arbitrary Check on an Argument
This macro is a generalization of TYPECHECK to take an arbitrary
predicate. If the error occurs (i.e., the predicate is true), the
arbitrary message 'msg' is returned.
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
:h3.TYPENULLCHECK() - Extension of TYPECHECK() for NULL arguments
Many routines allow NULLs to be passed as arguments. 'whenBAD' will
be returned in this case, too.
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
:h3.MAKECONSUME() - Create a "Consume"-type Macro
Consuming an object means destroying it if it is not permanent. This
logic is so common to all the routines, that it is immortalized in this
macro. For example, ConsumePath(p) can be simply defined as
MAKECONSUME(p,KillPath(p)). In effect, this macro operates on a
meta-level.
:i1/consuming objects/
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
:h3.MAKEUNIQUE() - Create a "Unique"-type Macro
Many routines are written to modify their arguments in place. Thus,
they want to insure that they duplicate an object if it is permanent.
This is called making an object "unique". For example, UniquePath(p)
can be simply defined as MAKEUNIQUE(p,DupPath(p)).
:i1/unique objects/
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
An object is unique (and directly alterable) if there is only one
reference to it, and it is not permanent (in which case we increment
the reference count, so we don't have to check the permanent bit).
3-26-91 PNM
Note the rules for making a unique object:
&drawing.
IF (obj->references = 1) return(obj);
ELSE (references > 1)
IF (ISPERMANENT(obj->flag)) return(Dupxxx(obj));
ELSE (nonunique, temporary object!)
obj->references--; return(Dupxxx(obj));
&edrawing.
If we must make a Copy of a nonunique, temporary object, we decrement
reference count of the original object!
*/
/*
:h3.Unique() - Make a Unique Object
Here is a generic 'Unique' function if the object type is not known.
Why didn't we build it with the MAKEUNIQUE macro, you ask? Well, we
used to, but there is at least one damn compiler in the world that
raises errors if the types of an "(a) ? b : c" expression do not match.
Also, when we changed Dup() to retain the permanent/temporary flag, we
wanted to make sure "Unique" always returned a temporary object.
Note that we cannot use Dup() to create a copy of the object in question,
because Dup() may simply bump the reference count, and not return a
unique copy to us. That is why we use t1_Copy().
The purpose of this function is to make sure we have a copy of an object
that we can safely alter:
:ol.
:li.If we have a unique, temporary object, we simply return the argument.
:li.If we have a nonunique, temporary object, we have to make a new copy
of it, and decrement the reference count of the original object, to reflect
the fact that we traded temporary handles.
:li.If we have a permanent object, we make a temporary copy of it, but
we do not decrement the reference count of the original permanent object,
because permanent objects, by definition, are persistent. 3-2-6-91 PNM
:eol.
*/
struct xobject *t1_Unique(obj)
struct xobject *obj;
{
/* if the original object is not already unique, make a unique
copy...Note also that if the object was not permanent, we must
consume the old handle! 3-26-91 PNM
NOTE : consumption of the old handle moved to Allocate. 4-18-91 */
if (!obj || obj->references == 1)
return(obj);
obj = Copy(obj);
/* and make sure we return a temporary object ! */
if (ISPERMANENT(obj->flag))
{
obj->flag &= ~ISPERMANENT(ON);
obj->references--;
}
return(obj);
}
/*
:h2.Initialization, Error, and Debug Routines
:h3 id=debugvar.Declarations for Debug Purposes
We declare all the debug flags here. Some link editors make the not
unreasonable restriction that only one module may declare and
initialize global variables; all the rest must declare the variable
'extern'. This is logical, but is somewhat awkward to implement with
C include files. We solve the problem by temporarily making the name
'extern' a null name if GLOBALS is defined. (GLOBALS is only defined
in this OBJECTS module.) Since 'externs' can't be initialized, we
have to handle that with #defines too.
:i1/GLOBALS (&#define.)/
*/
/*SHARED LINE(S) ORIGINATED HERE*/
static char *ErrorMessage = NULL;
/*
:h3.Pragmatics() - Set/Reset Debug Flags
We provide a controlled way for the TYPE1IMAGER user to set and reset
our debugging and tracing:
*/
void Pragmatics(username, value)
char *username; /* name of the flag */
int value; /* value to set it to */
{
register char *p; /* temporary loop variable */
#define NAMESIZE 40
char name[NAMESIZE]; /* buffer to store my copy of 'username' */
if (strlen(username) >= NAMESIZE)
t1_abort("Pragmatics name too large");
strcpy(name, username);
for (p = name; *p != '\0'; p++)
*p = toupper(*p);
if (!strcmp(name, "ALL"))
MustTraceCalls = InternalTrace = /* MustCrash = */
LineIOTrace = value;
else if (!strcmp(name, "LINEIOTRACE"))
LineIOTrace = value;
else if (!strcmp(name, "TRACECALLS"))
MustTraceCalls = value;
else if (!strcmp(name, "CHECKARGS"))
MustCheckArgs = value;
else if (!strcmp(name, "PROCESSHINTS"))
ProcessHints = value;
else if (!strcmp(name, "SAVEFONTPATHS"))
SaveFontPaths = value;
else if (!strcmp(name, "CRASTERCOMPRESSIONTYPE"))
CRASTERCompressionType = value;
else if (!strcmp(name, "CRASHONUSERERROR"))
MustCrash = value;
else if (!strcmp(name, "DEBUG"))
StrokeDebug = SpaceDebug = PathDebug = ConicDebug = LineDebug =
RegionDebug = MemoryDebug = FontDebug =
HintDebug = ImageDebug = OffPageDebug = value;
else if (!strcmp(name, "CONICDEBUG"))
ConicDebug = value;
else if (!strcmp(name, "LINEDEBUG"))
LineDebug = value;
else if (!strcmp(name, "REGIONDEBUG"))
RegionDebug = value;
else if (!strcmp(name, "PATHDEBUG"))
PathDebug = value;
else if (!strcmp(name, "SPACEDEBUG"))
SpaceDebug = value;
else if (!strcmp(name, "STROKEDEBUG"))
StrokeDebug = value;
else if (!strcmp(name, "MEMORYDEBUG"))
MemoryDebug = value;
else if (!strcmp(name, "FONTDEBUG"))
FontDebug = value;
else if (!strcmp(name, "HINTDEBUG"))
HintDebug = value;
else if (!strcmp(name, "IMAGEDEBUG"))
ImageDebug = value;
else if (!strcmp(name, "OFFPAGEDEBUG"))
OffPageDebug = value;
#ifdef MC68000
/*
The following pragmatics flag turns on or off instruction histograming
for performance analysis. It is only defined in the Delta card
environment.
*/
else if (!strcmp(name, "PROFILE")) {
if (value)
StartProfile();
else
StopProfile();
}
#endif
else if (!strcmp(name, "FLUSHCACHE")) {
while (GimeSpace()) { ; }
}
else if (!strcmp(name, "CACHEDCHARS"))
CachedChars = (value <= 0) ? 1 : value;
else if (!strcmp(name, "CACHEDFONTS"))
CachedFonts = (value <= 0) ? 1 : value;
else if (!strcmp(name, "CACHEBLIMIT"))
CacheBLimit = value;
else if (!strcmp(name, "CONTINUITY"))
Continuity = value;
else {
printf("Pragmatics flag = '%s'\n", name);
ArgErr("Pragmatics: flag not known", NULL, NULL);
}
return;
}
/*
:h3.Consume() - Consume a List of Arguments
This general purpose routine is provided in the case where the object
type(s) to be consumed are unknown or not yet verified, and/or it is
not known whether the object is permanent.
If the type of the argument is known, it is faster to directly consume
that type, for example, ConsumeRegion() or ConsumePath(). Furthermore,
if it is already known that the object is temporary, it is faster to
just kill it rather than consume it, for example, KillSpace().
*/
void
Consume(int n, ...)
{
struct xobject *arg;
int i;
va_list ap;
va_start (ap, n);
for(i = 0; i < n; i++) {
arg = va_arg(ap, struct xobject *);
if (arg != NULL && !ISPERMANENT(arg->flag))
Destroy(arg);
}
va_end(ap);
return;
}
/*
:h3.TypeErr() - Handles "Invalid Object Type" Errors
*/
struct xobject *TypeErr(name, obj, expect, ret) /* non-ANSI avoids overly strict type checking */
char *name; /* Name of routine (for error message) */
struct xobject *obj; /* Object in error */
int expect; /* type expected */
struct xobject *ret; /* object to return to caller */
{
static char typemsg[80];
if (MustCrash)
LineIOTrace = TRUE;
sprintf(typemsg, "Wrong object type in %s; expected %s seen %s\n",
name, TypeFmt(expect), TypeFmt(obj->type));
IfTrace0(TRUE,typemsg);
ObjectPostMortem(obj);
if (MustCrash)
t1_abort("Terminating because of CrashOnUserError...");
else
ErrorMessage = typemsg;
/* changed ISPERMANENT to ret->references > 1 3-26-91 PNM */
if (ret != NULL && (ret->references > 1))
ret = Dup(ret);
return(ret);
}
/*
:h4.TypeFmt() - Returns Pointer to English Name of Object Type
This is a subroutine of TypeErr().
*/
static char *TypeFmt(type)
int type; /* type field */
{
char *r;
if (ISPATHTYPE(type))
if (type == TEXTTYPE)
r = "path or region (from TextPath)";
else
r = "path";
else {
switch (type) {
case INVALIDTYPE:
r = "INVALID (previously consumed?)";
break;
case REGIONTYPE:
r = "region";
break;
case SPACETYPE:
r = "XYspace";
break;
case LINESTYLETYPE:
r = "linestyle";
break;
case FONTTYPE:
r = "font";
break;
case PICTURETYPE:
r = "picture";
break;
case STROKEPATHTYPE:
r = "path (from StrokePath)";
break;
default:
r = "UNKNOWN";
break;
}
}
return(r);
}
/*
:h4.ObjectPostMortem() - Prints as Much as We Can About a Bad Object
This is a subroutine of TypeErr() and ArgErr().
*/
static int ObjectPostMortem(register struct xobject *obj)
{
extern struct XYspace *USER;
Pragmatics("Debug", 10);
IfTrace2(TRUE,"Bad object is of %s type %p\n", TypeFmt(obj->type), obj);
IfTrace0((obj == (struct xobject *) USER),
"Suspect that InitImager() was omitted.\n");
Pragmatics("Debug", 0);
/* NOTREACHED? */
return 0;
}
/*
:h3.ArgErr() - Invalid Argument Passed to a Routine
A common routine to report argument errors. It is usually called
is returned to the caller in case MustCrash is FALSE and ArgErr
returns to its caller.
*/
struct xobject *ArgErr(str, obj, ret) /* non-ANSI avoids overly strict type checking */
char *str; /* description of error */
struct xobject *obj; /* object, if any, that was in error */
struct xobject *ret; /* object returned to caller or NULL */
{
if (MustCrash)
LineIOTrace = TRUE;
IfTrace1(TRUE,"ARGUMENT ERROR-- %s.\n", str);
if (obj != NULL)
ObjectPostMortem(obj);
if (MustCrash)
t1_abort("Terminating because of CrashOnUserError...");
else
ErrorMessage = str;
return(ret);
}
/*
:h3.t1_abort() - Crash Due to Error
We divide by zero, and if that doesn't work, call exit(), the results of
which is system dependent (and thus is part of the Hourglass required
environment).
*/
static int test = 0;
/*ARGSUSED*/
void t1_abort(str)
char *str;
{
LineIOTrace = TRUE;
IfTrace1(TRUE,"\nABORT: reason='%s'\n", str);
TraceClose();
test = 1/test;
exit(99);
}
/*
:h3.REAL Miscellaneous Stuff
:h4.ErrorMsg() - Return the User an Error Message
*/
char *ErrorMsg()
{
register char *r;
r = ErrorMessage;
ErrorMessage = NULL;
return(r);
}
/*
:h4.InitImager() - Initialize TYPE1IMAGER
We check that a short is 16 bits and a long 32 bits; we have made
those assumptions elsewhere in the code. (This is almost a C standard,
anyway.) Note that TYPE1IMAGER makes no assumptions about the size of an
'int'!
:i1/portability assumptions/
*/
void InitImager()
{
/* Check to see if we have been using our own malloc. If so,*/
/* Undef malloc so that we can get to the system call. */
/* All other calls to malloc are defined to Xalloc. */
if (sizeof(SHORT) != 2 || sizeof(LONG) != 4)
t1_abort("Fundamental TYPE1IMAGER assumptions invalid in this port");
InitSpaces();
InitFonts();
InitFiles();
/*
In some environments, constants and/or exception handling need to be
*/
LibInit();
}
/*
:h4.TermImager() - Terminate TYPE1IMAGER
This only makes sense in a server environment; true TYPE1IMAGER needs do
nothing.
*/
void TermImager()
{
return;
}
/*
:h4.reportusage() - A Stub to Get a Clean Link with Portable PMP
*/
void reportusage()
{
return;
}
|