summaryrefslogtreecommitdiff
path: root/Build/source/texk/dvisvgm/dvisvgm-1.8/src/PathClipper.cpp
blob: fcc231fb5fe109cea54642aacd89d32f44684d02 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
/*************************************************************************
** PathClipper.cpp                                                      **
**                                                                      **
** This file is part of dvisvgm -- the DVI to SVG converter             **
** Copyright (C) 2005-2014 Martin Gieseking <martin.gieseking@uos.de>   **
**                                                                      **
** This program is free software; you can redistribute it and/or        **
** modify it under the terms of the GNU General Public License as       **
** published by the Free Software Foundation; either version 3 of       **
** the License, or (at your option) any later version.                  **
**                                                                      **
** This program is distributed in the hope that it will be useful, but  **
** WITHOUT ANY WARRANTY; without even the implied warranty of           **
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the         **
** GNU General Public License for more details.                         **
**                                                                      **
** You should have received a copy of the GNU General Public License    **
** along with this program; if not, see <http://www.gnu.org/licenses/>. **
*************************************************************************/

#include <config.h>
#include "Bezier.h"
#include "PathClipper.h"
#include "types.h"

using namespace std;
using namespace ClipperLib;

typedef ClipperLib::Path Polygon;
typedef ClipperLib::Paths Polygons;
typedef PathClipper::CurvedPath CurvedPath;

const int SCALE_FACTOR = 1000;

inline cInt to_cInt (double x) {
	if (x < 0)
		return static_cast<cInt>(x*SCALE_FACTOR - 0.5);
	return static_cast<cInt>(x*SCALE_FACTOR + 0.5);
}


inline double to_double (cInt x) {
	return static_cast<double>(x)/SCALE_FACTOR;
}


inline DPair to_DPair (const IntPoint &p) {
	return DPair(to_double(p.X), to_double(p.Y));
}


/** In order to flatten a curved path, all path segements are processed sequentially.
 *  Depending on the type of the segment, one of the methods provided by this class
 *  is called. */
class FlattenActions : public CurvedPath::Actions {
	public:
		FlattenActions (vector<Bezier> &curves, Polygons &polygons, int &numLines)
			: _polygons(polygons), _curves(curves), _numLines(numLines) {}

		void moveto (const CurvedPath::Point &p) {
			if (p == _currentPoint && !_currentPoly.empty())
				return;
			closepath();
			_currentPoly.push_back(IntPoint(to_cInt(p.x()), to_cInt(p.y()), 0));
			_currentPoint = _startPoint = p;
		}

		void lineto (const CurvedPath::Point &p) {
			if (p == _currentPoint && !_currentPoly.empty())
				return;
			if (_currentPoly.empty()) // this shouldn't happen but in case it does...
				_currentPoly.push_back(IntPoint(0, 0, 0)); // ...add a start point first
			_numLines--;
			_currentPoly.back().Z.label2 = _numLines;
			_currentPoly.push_back(IntPoint(to_cInt(p.x()), to_cInt(p.y()), ZType(_numLines, 0)));
			_currentPoint = p;
		}

		void conicto (const CurvedPath::Point &p1, const CurvedPath::Point &p2) {
			Bezier bezier(_currentPoint, p1, p2);
			addCurvePoints(bezier);
		}

		void cubicto (const CurvedPath::Point &p1, const CurvedPath::Point &p2, const CurvedPath::Point &p3) {
			Bezier bezier(_currentPoint, p1, p2, p3);
			addCurvePoints(bezier);
		}

		void closepath () {
			if (_currentPoly.empty())
				return;
			_numLines--;
			_currentPoly.back().Z.label2 = ZLabel(_numLines, 0);
			_currentPoly.front().Z.label1 = ZLabel(_numLines, 0);
			_polygons.push_back(_currentPoly);
			_currentPoly.clear();
		}

		void finished () {
			closepath();
		}

	protected:
		void addCurvePoints (const Bezier &bezier) {
			if (_currentPoly.empty()) // this shouldn't happen but in case it does, ...
				_currentPoly.push_back(IntPoint(0, 0, 0)); // ...add a start point first
			vector<DPair> points;  // points of flattened curve
			vector<double> t;      // corresponding 'time' parameters
			bezier.approximate(0.01, points, &t);
			if (points.size() < 2)
				return;
			_curves.push_back(bezier);
			for (size_t i=1; i < points.size(); i++) {
				const DPair &p = points[i];
				if (p == _currentPoint)
					continue;
				_currentPoly.back().Z.label2 = ZLabel(_curves.size(), t[i-1]);
				ZLabel label(_curves.size(), t[i]);
				_currentPoly.push_back(IntPoint(to_cInt(p.x()), to_cInt(p.y()), ZType(label, label)));
				_currentPoint = p;
			}
		}

	private:
		CurvedPath::Point _startPoint, _currentPoint;
		Polygon _currentPoly;    ///< polygon being created
		Polygons &_polygons;     ///< all polygons created
		vector<Bezier> &_curves;
		int &_numLines;
};


/** Removes adjacent polygon vertices that equal their predecessor. */
static void remove_redundant_vertices (Polygon &polygon) {
	Polygon::iterator it1=polygon.begin();
	while (it1 != polygon.end()) {
		Polygon::iterator it2 = it1+1;
		if (it2 == polygon.end())
			it2 = polygon.begin();
		if (it1 == it2)
			return;

		if (*it1 != *it2)
			++it1;
		else {
			it1->Z.label2 = it2->Z.label2;
			polygon.erase(it2);
		}
	}
}


/** Approximates a curved path by a set of polygons and stores information
 *  to reconstruct the curved segments later. The z component of each
 *  polygon vertex holds two integers representing information about the two
 *  adjacent edges the vertex belongs to. This is required to identify the
 *  affected edges and thus the former (curve/line) segment of the path during
 *  the intersection process.
 *  @param[in] curvedPath curved path to be flattened
 *  @param[out] polygons the flattened path (set of polygons) */
void PathClipper::flatten (const CurvedPath &curvedPath, Polygons &polygons) {
	FlattenActions flattenActions(_curves, polygons, _numLines);
	curvedPath.iterate(flattenActions, false);
	for (size_t i=0; i < polygons.size(); i++)
		remove_redundant_vertices(polygons[i]);
}


/** Returns the ID of the path segment the polygon edge defined by its start
 *  and end point belongs to. The z component of a polygon vertex holds a pair
 *  of labels that allows to identify the original path segments the point belongs to.
 *  Since always two adjacent segments share a point, each point gets two values assigned.
 *  Negative numbers denote line segments, positive ones Bézier curves.
 *  There are only these two segment types, so we don't need further flags in
 *  order to distinguish them. By comparing the labels of two adjacent polygon
 *  vertexes it's possible to identify the original path segment the corresponding
 *  edge belongs to.
 *  @param[in] p1 first of two adjacent vertices
 *  @param[in] p2 second of two adjacent vertices
 *  @param[out] t1 time paramater of p1
 *  @param[out] t2 time paramater of p2
 *  @return id of edge between p1 and p2, or 0 if it's not possible to identify the segment */
static Int32 segment_id (const IntPoint &p1, const IntPoint &p2, double &t1, double &t2) {
	const ZType &z1=p1.Z, &z2=p2.Z;
	if (z1 == z2 && z1.minLabel().id < 0) return z1.minLabel().id;
	if (z1.label1 == z2.label2) {t1=z1.label1.t; t2=z2.label2.t; return z1.label1.id;}
	if (z1.label2 == z2.label1) {t1=z1.label2.t; t2=z2.label1.t; return z1.label2.id;}
	if (z1.label1 == z2.label1) {t1=z1.label1.t; t2=z2.label1.t; return z1.label1.id;}
	if (z1.label2 == z2.label2) {t1=z1.label2.t; t2=z2.label2.t; return z1.label2.id;}
	// if we get here, it's not possible to identify the segment
	// => the edge is going to be handled as line segment
	return 0;
}


inline Int32 edge_id (const IntPoint &p1, const IntPoint &p2) {
	double t;
	return segment_id(p1, p2, t, t);
}


/** This function expects 3 colinear points p1, p2, and q where q lies between p1 and p2,
 *  i.e. q divides the line \f$ \overline{p_1 p_2} \f$ somewhere. The function returns
 *  the corresponding division ratio. */
static double division_ratio (const IntPoint &p1, const IntPoint &p2, const IntPoint &q) {
	if (p1 == p2 || q == p1)
		return 0;
	if (q == p2)
		return 1;
	if (p1.X == p2.X)
		return double(q.Y-p1.Y)/(p2.Y-p1.Y);
	return double(q.X-p1.X)/(p2.X-p1.X);
}


/** Returns the label of point q that lies on the line between points p1 and p2. */
inline ZLabel division_label (const IntPoint &p1, const IntPoint &p2, const IntPoint &q) {
	double t1, t2;
	double s=0;
	Int32 id = segment_id(p1, p2, t1, t2);
	if (id > 0)
		s = t1+(t2-t1)*division_ratio(p1, p2, q);
	return ZLabel(id, s);
}


/** This method is called if the clipper library finds an intersection between two polygon edges.
 *  It populates the z coordinate of the intersection point with the idexes of the two edges.
 *  @param[in] e1bot first endpoint of edge 1
 *  @param[in] e1top second endpoint of edge 1
 *  @param[in] e2bot first endpoint of edge 2
 *  @param[in] e1top second endpoint of edge 2
 *  @param[in] ip intersection point of edge 1 and 2
 *  @param[in] userval pointer to PathClipper object set by ZFillFunction() */
void PathClipper::callback (IntPoint &e1bot, IntPoint &e1top, IntPoint &e2bot, IntPoint &e2top, IntPoint &ip) {
	ZLabel label1 = division_label(e1bot, e1top, ip);
	ZLabel label2 = division_label(e2bot, e2top, ip);
	ip.Z = ZType(label1, label2);
}


/** Iterates along the polygon edges until the endpoint of the current
 *  path segment is found and returns its vector index afterwards.
 *  @param[in] points the vertices of the polygon
 *  @param[in] start index of the vertex where the iteration starts
 *  @param[out] label if not 0, retrieves the label of the endpoint
 *  @param[in] startLabel if true, the found endpoint is treated as start point and
 *             parameter 'label' gets the corresponding value */
static size_t find_segment_endpoint (const Polygon &polygon, size_t start, ZLabel *label=0, bool startLabel=false) {
	if (polygon.empty())
		return 0;

	const size_t num_points = polygon.size();
	int i = start%num_points;
	double t1, t2; // time parameters of start and endpoint of current edge
	Int32 id1 = segment_id(polygon[i], polygon[(i+1)%num_points], t1, t2);
	Int32 id2 = id1;
	double t = t2; // time parameter of resulting endpoint
	for (size_t j=1; id1 == id2 && j < num_points; j++) {
		t = t2;
		i = (i+1)%num_points;
		if (id1 == 0)
			break;
		id2 = segment_id(polygon[i], polygon[(i+1)%num_points], t1, t2);
	}
	if (label) {
		*label = ZLabel(id1, id1 < 0 ? 0 : t);
		if (startLabel && id1 != 0)
			*label = polygon[i].Z.otherLabel(*label);
	}
	return i;
}


/** Reconstructs a curved path from the set of polygons.
 *  @param[in] polygons set of polygons to reconstruct
 *  @param[out] path the reconstructed curved path */
void PathClipper::reconstruct (const Polygons &polygons, CurvedPath &path) {
	for (size_t i=0; i < polygons.size(); i++)
		reconstruct(polygons[i], path);
}


/** Reconstructs a curved path from a single polygon.
 *  @param[in] polygon polygon to reconstruct
 *  @param[out] path the reconstructed curved path */
void PathClipper::reconstruct (const Polygon &polygon, CurvedPath &path) {
	size_t num_points = polygon.size();
	if (num_points < 2)
		return;

	ZLabel label1, label2;  // labels of the current segment's start and endpoint
	int index1 = find_segment_endpoint(polygon, 0, &label1, true);
	int index2 = find_segment_endpoint(polygon, index1, &label2);
	int diff = (num_points+index2-index1)%num_points;
	path.moveto(to_DPair(polygon[index1]));
	for (size_t count = diff; count <= num_points; count += diff) {
		if (diff == 1 || label1.id <= 0)  // line segment?
			path.lineto(to_DPair(polygon[index2]));
		else {  // Bézier curve segment
			Bezier bezier(_curves[label1.id-1], label1.t, label2.t);
			if (label1.t > label2.t)
				bezier.reverse();
			path.cubicto(bezier.point(1), bezier.point(2), bezier.point(3));
		}
		if (label1.id == 0)
			find_segment_endpoint(polygon, index2, &label1, true);
		else
			label1 = polygon[index2].Z.otherLabel(label2);
		index1 = index2;
		index2 = find_segment_endpoint(polygon, index1, &label2);
		diff = (num_points+index2-index1)%num_points;
	}
	path.closepath();
}


inline PolyFillType polyFillType (CurvedPath::WindingRule wr) {
	return (wr == CurvedPath::WR_NON_ZERO) ? pftNonZero : pftEvenOdd;
}


/** Computes the intersection of to curved path.
 *  @param[in] p1 first curved path
 *  @param[in] wr1 winding rule to be applied to p1
 *  @param[in] p2 second curved path
 *  @param[in] wr2 winding rule to be applied to p2
 *  @param[out] result intersection of p1 and p2 */
void PathClipper::intersect (const CurvedPath &p1, const CurvedPath &p2, CurvedPath &result) {
	if (p1.size() < 2 || p2.size() < 2)
		return;
	Clipper clipper;
	Polygons polygons;
	flatten(p1, polygons);
	clipper.AddPaths(polygons, ptSubject, true);
	polygons.clear();
	flatten(p2, polygons);
	clipper.AddPaths(polygons, ptClip, true);
	clipper.ZFillFunction(callback);
	Polygons flattenedPath;
	clipper.Execute(ctIntersection, flattenedPath, polyFillType(p1.windingRule()), polyFillType(p2.windingRule()));
	reconstruct(flattenedPath, result);
}