1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
|
/*************************************************************************
** GraphicPath.h **
** **
** This file is part of dvisvgm -- the DVI to SVG converter **
** Copyright (C) 2005-2015 Martin Gieseking <martin.gieseking@uos.de> **
** **
** This program is free software; you can redistribute it and/or **
** modify it under the terms of the GNU General Public License as **
** published by the Free Software Foundation; either version 3 of **
** the License, or (at your option) any later version. **
** **
** This program is distributed in the hope that it will be useful, but **
** WITHOUT ANY WARRANTY; without even the implied warranty of **
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the **
** GNU General Public License for more details. **
** **
** You should have received a copy of the GNU General Public License **
** along with this program; if not, see <http://www.gnu.org/licenses/>. **
*************************************************************************/
#ifndef DVISVGM_GRAPHICPATH_H
#define DVISVGM_GRAPHICPATH_H
#include <cctype>
#include <list>
#include <ostream>
#include <vector>
#include "BoundingBox.h"
#include "Matrix.h"
#include "Pair.h"
#include "XMLString.h"
template <typename T>
class GraphicPath
{
friend class PathClipper;
public:
enum WindingRule {WR_EVEN_ODD, WR_NON_ZERO};
typedef Pair<T> Point;
struct Command {
enum Type {MOVETO, LINETO, CONICTO, CUBICTO, CLOSEPATH};
Command (Type t) : type(t) {}
Command (Type t, const Point &p) : type(t) {
params[0] = p;
}
Command (Type t, const Point &p1, const Point &p2) : type(t) {
params[0] = p1;
params[1] = p2;
}
Command (Type t, const Point &p1, const Point &p2, const Point &p3) : type(t) {
params[0] = p1;
params[1] = p2;
params[2] = p3;
}
int numParams () const {
switch (type) {
case CLOSEPATH : return 0;
case MOVETO :
case LINETO : return 1;
case CONICTO : return 2;
case CUBICTO : return 3;
}
return 0;
}
void transform (const Matrix &matrix) {
for (int i=0; i < numParams(); i++)
params[i] = matrix * params[i];
}
Type type;
Point params[3];
};
struct Actions
{
virtual ~Actions () {}
virtual void moveto (const Point &p) {}
virtual void lineto (const Point &p) {}
virtual void hlineto (const T &y) {}
virtual void vlineto (const T &x) {}
virtual void sconicto (const Point &p) {}
virtual void conicto (const Point &p1, const Point &p2) {}
virtual void scubicto (const Point &p1, const Point &p2) {}
virtual void cubicto (const Point &p1, const Point &p2, const Point &p3) {}
virtual void closepath () {}
virtual void draw (char cmd, const Point *points, int n) {}
virtual bool quit () {return false;}
virtual void finished () {}
};
typedef typename std::vector<Command>::iterator Iterator;
typedef typename std::vector<Command>::const_iterator ConstIterator;
typedef typename std::vector<Command>::const_reverse_iterator ConstRevIterator;
public:
GraphicPath (WindingRule wr=WR_NON_ZERO) : _windingRule(wr) {}
void setWindingRule (WindingRule wr) {_windingRule = wr;}
WindingRule windingRule () const {return _windingRule;}
void clear () {
_commands.clear();
}
/// Returns true if the path is empty, i.e. there is nothing to draw
bool empty () const {
return _commands.empty();
}
/// Returns the number of path commands used to describe the path.
size_t size () const {
return _commands.size();
}
/// Insert another path at the beginning of this one.
void prepend (const GraphicPath &path) {
_commands.insert(_commands.begin(), path._commands.begin(), path._commands.end());
}
void moveto (const T &x, const T &y) {
moveto(Point(x, y));
}
void moveto (const Point &p) {
// avoid sequences of several MOVETOs; always use latest
if (_commands.empty() || _commands.back().type != Command::MOVETO)
_commands.push_back(Command(Command::MOVETO, p));
else
_commands.back().params[0] = p;
}
void lineto (const T &x, const T &y) {
lineto(Point(x, y));
}
void lineto (const Point &p) {
_commands.push_back(Command(Command::LINETO, p));
}
void conicto (const T &x1, const T &y1, const T &x2, const T &y2) {
conicto(Point(x1, y1), Point(x2, y2));
}
void conicto (const Point &p1, const Point &p2) {
_commands.push_back(Command(Command::CONICTO, p1, p2));
}
void cubicto (const T &x1, const T &y1, const T &x2, const T &y2, const T &x3, const T &y3) {
cubicto(Point(x1, y1), Point(x2, y2), Point(x3, y3));
}
void cubicto (const Point &p1, const Point &p2, const Point &p3) {
_commands.push_back(Command(Command::CUBICTO, p1, p2, p3));
}
void closepath () {
_commands.push_back(Command(Command::CLOSEPATH));
}
const std::vector<Command>& commands () const {
return _commands;
}
/** Detects all open subpaths and closes them by adding a closePath command.
* Most font formats only support closed outline paths so there are no explicit closePath statements
* in the glyph's outline description. All open paths are automatically closed by the renderer.
* This method detects all open paths and adds the missing closePath statement. */
void closeOpenSubPaths () {
Command *prevCommand = 0;
FORALL(_commands, Iterator, it) {
if (it->type == Command::MOVETO && prevCommand && prevCommand->type != Command::CLOSEPATH) {
prevCommand = &(*it);
it = _commands.insert(it, Command(Command::CLOSEPATH))+1;
// ++it; // skip inserted closePath command in next iteration step
}
else
prevCommand = &(*it);
}
if (!_commands.empty() && _commands.back().type != Command::CLOSEPATH)
closepath();
}
/** Writes the path data as SVG path drawing command to a given output stream.
* @param[in] os output stream used to write the SVG commands to
* @param[in] relative if true, create relative rather than absolute coordinate values
* @param[in] sx horizontal scale factor
* @param[in] sy vertical scale factor
* @param[in] dx horizontal translation in PS point units
* @param[in] dy vertical translation in PS point units */
void writeSVG (std::ostream &os, bool relative, double sx=1.0, double sy=1.0, double dx=0.0, double dy=0.0) const {
struct WriteActions : Actions {
WriteActions (std::ostream &os, bool relative, double sx, double sy, double dx, double dy)
: _os(os), _relative(relative), _sx(sx), _sy(sy), _dx(dx), _dy(dy) {}
void draw (char cmd, const Point *points, int n) {
if (_relative)
cmd = tolower(cmd);
_os << cmd;
switch (cmd) {
case 'h': _os << XMLString(_sx*(points->x()-_currentPoint.x())+_dx); break;
case 'v': _os << XMLString(_sy*(points->y()-_currentPoint.y())+_dy); break;
case 'z': _currentPoint = _startPoint; break;
case 'H': _os << XMLString(_sx*points->x()+_dx); break;
case 'V': _os << XMLString(_sy*points->y()+_dy); break;
default :
for (int i=0; i < n; i++) {
if (i > 0)
_os << ' ';
Point p = points[i];
if (_relative)
p -= _currentPoint;
_os << XMLString(_sx*p.x()+_dx) << ' ' << XMLString(_sy*p.y()+_dy);
}
}
if (cmd == 'm')
_startPoint = points[0];
if (islower(cmd) && n > 0)
_currentPoint = points[n-1];
}
std::ostream &_os;
bool _relative;
double _sx, _sy, _dx, _dy;
Point _startPoint, _currentPoint;
} actions(os, relative, sx, sy, dx, dy);
iterate(actions, true);
}
#if 0
void writePS (std::ostream &os, double sx=1.0, double sy=1.0, double dx=0.0, double dy=0.0) const {
struct WriteActions : Actions {
WriteActions (std::ostream &os, double sx, double sy, double dx, double dy)
: _os(os), _sx(sx), _sy(sy), _dx(dx), _dy(dy) {}
void draw (char cmd, const Point *points, int n) {
for (int i=0; i < n; i++)
_os << _sx*points[i].x()+_dx << ' ' << _sy*points[i].y()+_dy << ' ';
switch (cmd) {
case 'M': _os << "moveto"; break;
case 'L': _os << "lineto"; break;
case 'C': _os << "curveto"; break;
case 'Z': _os << "closepath"; break;
default: ;
}
_os << '\n';
}
std::ostream &_os;
bool _relative;
double _sx, _sy, _dx, _dy;
} actions(os, sx, sy, dx, dy);
iterate(actions, false);
}
#endif
/** Computes the bounding box of the current path.
* @param[out] bbox the computed bounding box */
void computeBBox (BoundingBox &bbox) const {
struct BBoxActions : Actions {
BBoxActions (BoundingBox &bb) : bbox(bb) {}
void moveto (const Point &p) {bbox.embed(p);}
void lineto (const Point &p) {bbox.embed(p);}
void conicto (const Point &p1, const Point &p2) {bbox.embed(p1); bbox.embed(p2);}
void cubicto (const Point &p1, const Point &p2, const Point &p3) {bbox.embed(p1); bbox.embed(p2); bbox.embed(p3);}
BoundingBox &bbox;
} actions(bbox);
iterate(actions, false);
}
/** Checks whether the current path describes a dot/point only (with no extent).
* @param[out] p coordinates of the point if path describes a dot
* @return true if path is a dot/point */
bool isDot (Point &p) const {
struct DotActions : Actions {
DotActions () : differs(false) {}
void moveto (const Point &p) {point = p;}
void lineto (const Point &p) {differs = (p != point);}
void conicto (const Point &p1, const Point &p2) {differs = (point != p1 || point != p2);}
void cubicto (const Point &p1, const Point &p2, const Point &p3) {differs = (point != p1 || point != p2 || point != p3);}
bool quit () {return differs;}
Point point;
bool differs;
} actions;
iterate(actions, false);
p = actions.point;
return !actions.differs;
}
/** Transforms the path according to a given Matrix.
* @param[in] matrix Matrix describing the affine transformation */
void transform (const Matrix &matrix) {
FORALL(_commands, Iterator, it)
it->transform(matrix);
}
void iterate (Actions &actions, bool optimize) const;
private:
std::vector<Command> _commands;
WindingRule _windingRule;
};
/** Iterates over all commands defining this path and calls the corresponding template methods.
* In the case of successive bezier curve sequences, control points or tangent slopes are often
* identical so that the path description contains redundant information. SVG provides shorthand
* curve commands that require less parameters. If 'optimize' is true, this method detects such
* command sequences.
* @param[in] actions template methods called by each iteration step
* @param[in] optimize if true, shorthand drawing commands (sconicto, scubicto,...) are considered */
template <typename T>
void GraphicPath<T>::iterate (Actions &actions, bool optimize) const {
ConstIterator prev = _commands.end(); // pointer to preceding command
Point fp; // first point of current path
Point cp; // current point
Point pstore[2];
for (ConstIterator it=_commands.begin(); it != _commands.end() && !actions.quit(); ++it) {
const Point *params = it->params;
switch (it->type) {
case Command::MOVETO:
actions.moveto(params[0]);
actions.draw('M', params, 1);
fp = params[0];
break;
case Command::LINETO:
if (optimize) {
if (cp.x() == params[0].x()) {
actions.vlineto(params[0].y());
actions.draw('V', params, 1);
}
else if (cp.y() == params[0].y()) {
actions.hlineto(params[0].x());
actions.draw('H', params, 1);
}
else {
actions.lineto(params[0]);
actions.draw('L', params, 1);
}
}
else {
actions.lineto(params[0]);
actions.draw('L', params, 1);
}
break;
case Command::CONICTO:
if (optimize && prev != _commands.end() && prev->type == Command::CONICTO && params[0] == pstore[1]*T(2)-pstore[0]) {
actions.sconicto(params[1]);
actions.draw('T', params+1, 1);
}
else {
actions.conicto(params[0], params[1]);
actions.draw('Q', params, 2);
}
pstore[0] = params[0]; // store control point and
pstore[1] = params[1]; // curve endpoint
break;
case Command::CUBICTO:
// is first control point reflection of preceding second control point?
if (optimize && prev != _commands.end() && prev->type == Command::CUBICTO && params[0] == pstore[1]*T(2)-pstore[0]) {
actions.scubicto(params[1], params[2]);
actions.draw('S', params+1, 2);
}
else {
actions.cubicto(params[0], params[1], params[2]);
actions.draw('C', params, 3);
}
pstore[0] = params[1]; // store second control point and
pstore[1] = params[2]; // curve endpoint
break;
case Command::CLOSEPATH:
actions.closepath();
actions.draw('Z', params, 0);
cp = fp;
}
// update current point
const int np = it->numParams();
if (np > 0)
cp = it->params[np-1];
prev = it;
}
actions.finished();
}
#endif
|