1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
/* mpfr_tan -- tangent of a floating-point number
Copyright 2001-2019 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* computes tan(x) = sign(x)*sqrt(1/cos(x)^2-1) */
int
mpfr_tan (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_prec_t precy, m;
int inexact;
mpfr_t s, c;
MPFR_ZIV_DECL (loop);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_GROUP_DECL (group);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
("y[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec (y), mpfr_log_prec, y, inexact));
if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(x)))
{
if (MPFR_IS_NAN(x) || MPFR_IS_INF(x))
{
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
else /* x is zero */
{
MPFR_ASSERTD(MPFR_IS_ZERO(x));
MPFR_SET_ZERO(y);
MPFR_SET_SAME_SIGN(y, x);
MPFR_RET(0);
}
}
/* tan(x) = x + x^3/3 + ... so the error is < 2^(3*EXP(x)-1) */
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, -2 * MPFR_GET_EXP (x), 1, 1,
rnd_mode, {});
MPFR_SAVE_EXPO_MARK (expo);
/* Compute initial precision */
precy = MPFR_PREC (y);
m = precy + MPFR_INT_CEIL_LOG2 (precy) + 13;
MPFR_ASSERTD (m >= 2); /* needed for the error analysis in algorithms.tex */
MPFR_GROUP_INIT_2 (group, m, s, c);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
/* The only way to get an overflow is to get ~ Pi/2
But the result will be ~ 2^Prec(y). */
mpfr_sin_cos (s, c, x, MPFR_RNDN); /* err <= 1/2 ulp on s and c */
mpfr_div (c, s, c, MPFR_RNDN); /* err <= 4 ulps */
MPFR_ASSERTD (!MPFR_IS_SINGULAR (c));
if (MPFR_LIKELY (MPFR_CAN_ROUND (c, m - 2, precy, rnd_mode)))
break;
MPFR_ZIV_NEXT (loop, m);
MPFR_GROUP_REPREC_2 (group, m, s, c);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (y, c, rnd_mode);
MPFR_GROUP_CLEAR (group);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd_mode);
}
|