1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
|
/* mpfr_strtofr -- set a floating-point number from a string
Copyright 2004-2016 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include <stdlib.h> /* For strtol */
#include <ctype.h> /* For isspace */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
#define MPFR_MAX_BASE 62
struct parsed_string {
int negative; /* non-zero iff the number is negative */
int base; /* base of the string */
unsigned char *mantissa; /* raw significand (without any point) */
unsigned char *mant; /* stripped significand (without starting and
ending zeroes). This points inside the area
allocated for the mantissa field. */
size_t prec; /* length of mant (zero for +/-0) */
size_t alloc; /* allocation size of mantissa */
mpfr_exp_t exp_base; /* number of digits before the point */
mpfr_exp_t exp_bin; /* exponent in case base=2 or 16, and the pxxx
format is used (i.e., exponent is given in
base 10) */
};
/* This table has been generated by the following program.
For 2 <= b <= MPFR_MAX_BASE,
RedInvLog2Table[b-2][0] / RedInvLog2Table[b-2][1]
is an upper approximation of log(2)/log(b).
*/
static const unsigned long RedInvLog2Table[MPFR_MAX_BASE-1][2] = {
{1UL, 1UL},
{53UL, 84UL},
{1UL, 2UL},
{4004UL, 9297UL},
{53UL, 137UL},
{2393UL, 6718UL},
{1UL, 3UL},
{665UL, 2108UL},
{4004UL, 13301UL},
{949UL, 3283UL},
{53UL, 190UL},
{5231UL, 19357UL},
{2393UL, 9111UL},
{247UL, 965UL},
{1UL, 4UL},
{4036UL, 16497UL},
{665UL, 2773UL},
{5187UL, 22034UL},
{4004UL, 17305UL},
{51UL, 224UL},
{949UL, 4232UL},
{3077UL, 13919UL},
{53UL, 243UL},
{73UL, 339UL},
{5231UL, 24588UL},
{665UL, 3162UL},
{2393UL, 11504UL},
{4943UL, 24013UL},
{247UL, 1212UL},
{3515UL, 17414UL},
{1UL, 5UL},
{4415UL, 22271UL},
{4036UL, 20533UL},
{263UL, 1349UL},
{665UL, 3438UL},
{1079UL, 5621UL},
{5187UL, 27221UL},
{2288UL, 12093UL},
{4004UL, 21309UL},
{179UL, 959UL},
{51UL, 275UL},
{495UL, 2686UL},
{949UL, 5181UL},
{3621UL, 19886UL},
{3077UL, 16996UL},
{229UL, 1272UL},
{53UL, 296UL},
{109UL, 612UL},
{73UL, 412UL},
{1505UL, 8537UL},
{5231UL, 29819UL},
{283UL, 1621UL},
{665UL, 3827UL},
{32UL, 185UL},
{2393UL, 13897UL},
{1879UL, 10960UL},
{4943UL, 28956UL},
{409UL, 2406UL},
{247UL, 1459UL},
{231UL, 1370UL},
{3515UL, 20929UL} };
#if 0
#define N 8
int main ()
{
unsigned long tab[N];
int i, n, base;
mpfr_t x, y;
mpq_t q1, q2;
int overflow = 0, base_overflow;
mpfr_init2 (x, 200);
mpfr_init2 (y, 200);
mpq_init (q1);
mpq_init (q2);
for (base = 2 ; base < 63 ; base ++)
{
mpfr_set_ui (x, base, MPFR_RNDN);
mpfr_log2 (x, x, MPFR_RNDN);
mpfr_ui_div (x, 1, x, MPFR_RNDN);
printf ("Base: %d x=%e ", base, mpfr_get_d1 (x));
for (i = 0 ; i < N ; i++)
{
mpfr_floor (y, x);
tab[i] = mpfr_get_ui (y, MPFR_RNDN);
mpfr_sub (x, x, y, MPFR_RNDN);
mpfr_ui_div (x, 1, x, MPFR_RNDN);
}
for (i = N-1 ; i >= 0 ; i--)
if (tab[i] != 0)
break;
mpq_set_ui (q1, tab[i], 1);
for (i = i-1 ; i >= 0 ; i--)
{
mpq_inv (q1, q1);
mpq_set_ui (q2, tab[i], 1);
mpq_add (q1, q1, q2);
}
printf("Approx: ", base);
mpq_out_str (stdout, 10, q1);
printf (" = %e\n", mpq_get_d (q1) );
fprintf (stderr, "{");
mpz_out_str (stderr, 10, mpq_numref (q1));
fprintf (stderr, "UL, ");
mpz_out_str (stderr, 10, mpq_denref (q1));
fprintf (stderr, "UL},\n");
if (mpz_cmp_ui (mpq_numref (q1), 1<<16-1) >= 0
|| mpz_cmp_ui (mpq_denref (q1), 1<<16-1) >= 0)
overflow = 1, base_overflow = base;
}
mpq_clear (q2);
mpq_clear (q1);
mpfr_clear (y);
mpfr_clear (x);
if (overflow )
printf ("OVERFLOW for base =%d!\n", base_overflow);
}
#endif
/* Compatible with any locale, but one still assumes that 'a', 'b', 'c',
..., 'z', and 'A', 'B', 'C', ..., 'Z' are consecutive values (like
in any ASCII-based character set). */
static int
digit_value_in_base (int c, int base)
{
int digit;
MPFR_ASSERTD (base > 0 && base <= MPFR_MAX_BASE);
if (c >= '0' && c <= '9')
digit = c - '0';
else if (c >= 'a' && c <= 'z')
digit = (base >= 37) ? c - 'a' + 36 : c - 'a' + 10;
else if (c >= 'A' && c <= 'Z')
digit = c - 'A' + 10;
else
return -1;
return MPFR_LIKELY (digit < base) ? digit : -1;
}
/* Compatible with any locale, but one still assumes that 'a', 'b', 'c',
..., 'z', and 'A', 'B', 'C', ..., 'Z' are consecutive values (like
in any ASCII-based character set). */
/* TODO: support EBCDIC. */
static int
fast_casecmp (const char *s1, const char *s2)
{
unsigned char c1, c2;
do
{
c2 = *(const unsigned char *) s2++;
if (c2 == '\0')
return 0;
c1 = *(const unsigned char *) s1++;
if (c1 >= 'A' && c1 <= 'Z')
c1 = c1 - 'A' + 'a';
}
while (c1 == c2);
return 1;
}
/* Parse a string and fill pstr.
Return the advanced ptr too.
It returns:
-1 if invalid string,
0 if special string (like nan),
1 if the string is ok.
2 if overflows
So it doesn't return the ternary value
BUT if it returns 0 (NAN or INF), the ternary value is also '0'
(ie NAN and INF are exact) */
static int
parse_string (mpfr_t x, struct parsed_string *pstr,
const char **string, int base)
{
const char *str = *string;
unsigned char *mant;
int point;
int res = -1; /* Invalid input return value */
const char *prefix_str;
int decimal_point;
decimal_point = (unsigned char) MPFR_DECIMAL_POINT;
/* Init variable */
pstr->mantissa = NULL;
/* Optional leading whitespace */
while (isspace((unsigned char) *str)) str++;
/* An optional sign `+' or `-' */
pstr->negative = (*str == '-');
if (*str == '-' || *str == '+')
str++;
/* Can be case-insensitive NAN */
if (fast_casecmp (str, "@nan@") == 0)
{
str += 5;
goto set_nan;
}
if (base <= 16 && fast_casecmp (str, "nan") == 0)
{
str += 3;
set_nan:
/* Check for "(dummychars)" */
if (*str == '(')
{
const char *s;
for (s = str+1 ; *s != ')' ; s++)
if (!(*s >= 'A' && *s <= 'Z')
&& !(*s >= 'a' && *s <= 'z')
&& !(*s >= '0' && *s <= '9')
&& *s != '_')
break;
if (*s == ')')
str = s+1;
}
*string = str;
MPFR_SET_NAN(x);
/* MPFR_RET_NAN not used as the return value isn't a ternary value */
__gmpfr_flags |= MPFR_FLAGS_NAN;
return 0;
}
/* Can be case-insensitive INF */
if (fast_casecmp (str, "@inf@") == 0)
{
str += 5;
goto set_inf;
}
if (base <= 16 && fast_casecmp (str, "infinity") == 0)
{
str += 8;
goto set_inf;
}
if (base <= 16 && fast_casecmp (str, "inf") == 0)
{
str += 3;
set_inf:
*string = str;
MPFR_SET_INF (x);
(pstr->negative) ? MPFR_SET_NEG (x) : MPFR_SET_POS (x);
return 0;
}
/* If base=0 or 16, it may include '0x' prefix */
prefix_str = NULL;
if ((base == 0 || base == 16) && str[0]=='0'
&& (str[1]=='x' || str[1] == 'X'))
{
prefix_str = str;
base = 16;
str += 2;
}
/* If base=0 or 2, it may include '0b' prefix */
if ((base == 0 || base == 2) && str[0]=='0'
&& (str[1]=='b' || str[1] == 'B'))
{
prefix_str = str;
base = 2;
str += 2;
}
/* Else if base=0, we assume decimal base */
if (base == 0)
base = 10;
pstr->base = base;
/* Alloc mantissa */
pstr->alloc = (size_t) strlen (str) + 1;
pstr->mantissa = (unsigned char*) (*__gmp_allocate_func) (pstr->alloc);
/* Read mantissa digits */
parse_begin:
mant = pstr->mantissa;
point = 0;
pstr->exp_base = 0;
pstr->exp_bin = 0;
for (;;) /* Loop until an invalid character is read */
{
int c = (unsigned char) *str++;
/* The cast to unsigned char is needed because of digit_value_in_base;
decimal_point uses this convention too. */
if (c == '.' || c == decimal_point)
{
if (MPFR_UNLIKELY(point)) /* Second '.': stop parsing */
break;
point = 1;
continue;
}
c = digit_value_in_base (c, base);
if (c == -1)
break;
MPFR_ASSERTN (c >= 0); /* c is representable in an unsigned char */
*mant++ = (unsigned char) c;
if (!point)
pstr->exp_base ++;
}
str--; /* The last read character was invalid */
/* Update the # of char in the mantissa */
pstr->prec = mant - pstr->mantissa;
/* Check if there are no characters in the mantissa (Invalid argument) */
if (pstr->prec == 0)
{
/* Check if there was a prefix (in such a case, we have to read
again the mantissa without skipping the prefix)
The allocated mantissa is still big enough since we will
read only 0, and we alloc one more char than needed.
FIXME: Not really friendly. Maybe cleaner code? */
if (prefix_str != NULL)
{
str = prefix_str;
prefix_str = NULL;
goto parse_begin;
}
goto end;
}
/* Valid entry */
res = 1;
MPFR_ASSERTD (pstr->exp_base >= 0);
/* an optional exponent (e or E, p or P, @) */
if ( (*str == '@' || (base <= 10 && (*str == 'e' || *str == 'E')))
&& (!isspace((unsigned char) str[1])) )
{
char *endptr;
/* the exponent digits are kept in ASCII */
mpfr_exp_t sum;
long read_exp = strtol (str + 1, &endptr, 10);
if (endptr != str+1)
str = endptr;
sum =
read_exp < MPFR_EXP_MIN ? (str = endptr, MPFR_EXP_MIN) :
read_exp > MPFR_EXP_MAX ? (str = endptr, MPFR_EXP_MAX) :
(mpfr_exp_t) read_exp;
MPFR_SADD_OVERFLOW (sum, sum, pstr->exp_base,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN, MPFR_EXP_MAX,
res = 2, res = 3);
/* Since exp_base was positive, read_exp + exp_base can't
do a negative overflow. */
MPFR_ASSERTD (res != 3);
pstr->exp_base = sum;
}
else if ((base == 2 || base == 16)
&& (*str == 'p' || *str == 'P')
&& (!isspace((unsigned char) str[1])))
{
char *endptr;
long read_exp = strtol (str + 1, &endptr, 10);
if (endptr != str+1)
str = endptr;
pstr->exp_bin =
read_exp < MPFR_EXP_MIN ? (str = endptr, MPFR_EXP_MIN) :
read_exp > MPFR_EXP_MAX ? (str = endptr, MPFR_EXP_MAX) :
(mpfr_exp_t) read_exp;
}
/* Remove 0's at the beginning and end of mantissa[0..prec-1] */
mant = pstr->mantissa;
for ( ; (pstr->prec > 0) && (*mant == 0) ; mant++, pstr->prec--)
pstr->exp_base--;
for ( ; (pstr->prec > 0) && (mant[pstr->prec - 1] == 0); pstr->prec--);
pstr->mant = mant;
/* Check if x = 0 */
if (pstr->prec == 0)
{
MPFR_SET_ZERO (x);
if (pstr->negative)
MPFR_SET_NEG(x);
else
MPFR_SET_POS(x);
res = 0;
}
*string = str;
end:
if (pstr->mantissa != NULL && res != 1)
(*__gmp_free_func) (pstr->mantissa, pstr->alloc);
return res;
}
/* Transform a parsed string to a mpfr_t according to the rounding mode
and the precision of x.
Returns the ternary value. */
static int
parsed_string_to_mpfr (mpfr_t x, struct parsed_string *pstr, mpfr_rnd_t rnd)
{
mpfr_prec_t prec;
mpfr_exp_t exp;
mpfr_exp_t ysize_bits;
mp_limb_t *y, *result;
int count, exact;
size_t pstr_size;
mp_size_t ysize, real_ysize;
int res, err;
MPFR_ZIV_DECL (loop);
MPFR_TMP_DECL (marker);
/* initialize the working precision */
prec = MPFR_PREC (x) + MPFR_INT_CEIL_LOG2 (MPFR_PREC (x));
/* compute the value y of the leading characters as long as rounding is not
possible */
MPFR_TMP_MARK(marker);
MPFR_ZIV_INIT (loop, prec);
for (;;)
{
/* Set y to the value of the ~prec most significant bits of pstr->mant
(as long as we guarantee correct rounding, we don't need to get
exactly prec bits). */
ysize = MPFR_PREC2LIMBS (prec);
/* prec bits corresponds to ysize limbs */
ysize_bits = ysize * GMP_NUMB_BITS;
/* and to ysize_bits >= prec > MPFR_PREC (x) bits */
/* we need to allocate one more limb to work around bug
https://gmplib.org/list-archives/gmp-bugs/2013-December/003267.html */
y = MPFR_TMP_LIMBS_ALLOC (2 * ysize + 2);
y += ysize; /* y has (ysize+2) allocated limbs */
/* pstr_size is the number of characters we read in pstr->mant
to have at least ysize full limbs.
We must have base^(pstr_size-1) >= (2^(GMP_NUMB_BITS))^ysize
(in the worst case, the first digit is one and all others are zero).
i.e., pstr_size >= 1 + ysize*GMP_NUMB_BITS/log2(base)
Since ysize ~ prec/GMP_NUMB_BITS and prec < Umax/2 =>
ysize*GMP_NUMB_BITS can not overflow.
We compute pstr_size = 1 + ceil(ysize_bits * Num / Den)
where Num/Den >= 1/log2(base)
It is not exactly ceil(1/log2(base)) but could be one more (base 2)
Quite ugly since it tries to avoid overflow:
let Num = RedInvLog2Table[pstr->base-2][0]
and Den = RedInvLog2Table[pstr->base-2][1],
and ysize_bits = a*Den+b,
then ysize_bits * Num/Den = a*Num + (b * Num)/Den,
thus ceil(ysize_bits * Num/Den) = a*Num + floor(b * Num + Den - 1)/Den
*/
{
unsigned long Num = RedInvLog2Table[pstr->base-2][0];
unsigned long Den = RedInvLog2Table[pstr->base-2][1];
pstr_size = ((ysize_bits / Den) * Num)
+ (((ysize_bits % Den) * Num + Den - 1) / Den)
+ 1;
}
/* since pstr_size corresponds to at least ysize_bits full bits,
and ysize_bits > prec, the weight of the neglected part of
pstr->mant (if any) is < ulp(y) < ulp(x) */
/* if the number of wanted characters is more than what we have in
pstr->mant, round it down */
if (pstr_size >= pstr->prec)
pstr_size = pstr->prec;
MPFR_ASSERTD (pstr_size == (mpfr_exp_t) pstr_size);
/* convert str into binary: note that pstr->mant is big endian,
thus no offset is needed */
real_ysize = mpn_set_str (y, pstr->mant, pstr_size, pstr->base);
MPFR_ASSERTD (real_ysize <= ysize+1);
/* normalize y: warning we can even get ysize+1 limbs! */
MPFR_ASSERTD (y[real_ysize - 1] != 0); /* mpn_set_str guarantees this */
count_leading_zeros (count, y[real_ysize - 1]);
/* exact means that the number of limbs of the output of mpn_set_str
is less or equal to ysize */
exact = real_ysize <= ysize;
if (exact) /* shift y to the left in that case y should be exact */
{
/* we have enough limbs to store {y, real_ysize} */
/* shift {y, num_limb} for count bits to the left */
if (count != 0)
mpn_lshift (y + ysize - real_ysize, y, real_ysize, count);
if (real_ysize != ysize)
{
if (count == 0)
MPN_COPY_DECR (y + ysize - real_ysize, y, real_ysize);
MPN_ZERO (y, ysize - real_ysize);
}
/* for each bit shift decrease exponent of y */
/* (This should not overflow) */
exp = - ((ysize - real_ysize) * GMP_NUMB_BITS + count);
}
else /* shift y to the right, by doing this we might lose some
bits from the result of mpn_set_str (in addition to the
characters neglected from pstr->mant) */
{
/* shift {y, num_limb} for (GMP_NUMB_BITS - count) bits
to the right. FIXME: can we prove that count cannot be zero here,
since mpn_rshift does not accept a shift of GMP_NUMB_BITS? */
MPFR_ASSERTD (count != 0);
exact = mpn_rshift (y, y, real_ysize, GMP_NUMB_BITS - count) ==
MPFR_LIMB_ZERO;
/* for each bit shift increase exponent of y */
exp = GMP_NUMB_BITS - count;
}
/* compute base^(exp_base - pstr_size) on n limbs */
if (IS_POW2 (pstr->base))
{
/* Base: 2, 4, 8, 16, 32 */
int pow2;
mpfr_exp_t tmp;
count_leading_zeros (pow2, (mp_limb_t) pstr->base);
pow2 = GMP_NUMB_BITS - pow2 - 1; /* base = 2^pow2 */
MPFR_ASSERTD (0 < pow2 && pow2 <= 5);
/* exp += pow2 * (pstr->exp_base - pstr_size) + pstr->exp_bin
with overflow checking
and check that we can add/subtract 2 to exp without overflow */
MPFR_SADD_OVERFLOW (tmp, pstr->exp_base, -(mpfr_exp_t) pstr_size,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN, MPFR_EXP_MAX,
goto overflow, goto underflow);
/* On some FreeBsd/Alpha, LONG_MIN/1 produced an exception
so we used to check for this before doing the division.
Since this bug is closed now (Nov 26, 2009), we remove
that check (http://www.freebsd.org/cgi/query-pr.cgi?pr=72024) */
if (tmp > 0 && MPFR_EXP_MAX / pow2 <= tmp)
goto overflow;
else if (tmp < 0 && MPFR_EXP_MIN / pow2 >= tmp)
goto underflow;
tmp *= pow2;
MPFR_SADD_OVERFLOW (tmp, tmp, pstr->exp_bin,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN, MPFR_EXP_MAX,
goto overflow, goto underflow);
MPFR_SADD_OVERFLOW (exp, exp, tmp,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN+2, MPFR_EXP_MAX-2,
goto overflow, goto underflow);
result = y;
err = 0;
}
/* case non-power-of-two-base, and pstr->exp_base > pstr_size */
else if (pstr->exp_base > (mpfr_exp_t) pstr_size)
{
mp_limb_t *z;
mpfr_exp_t exp_z;
result = MPFR_TMP_LIMBS_ALLOC (2 * ysize + 1);
/* z = base^(exp_base-sptr_size) using space allocated at y-ysize */
z = y - ysize;
/* NOTE: exp_base-pstr_size can't overflow since pstr_size > 0 */
err = mpfr_mpn_exp (z, &exp_z, pstr->base,
pstr->exp_base - pstr_size, ysize);
if (err == -2)
goto overflow;
exact = exact && (err == -1);
/* If exact is non zero, then z equals exactly the value of the
pstr_size most significant digits from pstr->mant, i.e., the
only difference can come from the neglected pstr->prec-pstr_size
least significant digits of pstr->mant.
If exact is zero, then z is rounded toward zero with respect
to that value. */
/* multiply(y = 0.mant[0]...mant[pr-1])_base by base^(exp-g):
since both y and z are rounded toward zero, so is "result" */
mpn_mul_n (result, y, z, ysize);
/* compute the error on the product */
if (err == -1)
err = 0;
err ++;
/* compute the exponent of y */
/* exp += exp_z + ysize_bits with overflow checking
and check that we can add/subtract 2 to exp without overflow */
MPFR_SADD_OVERFLOW (exp_z, exp_z, ysize_bits,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN, MPFR_EXP_MAX,
goto overflow, goto underflow);
MPFR_SADD_OVERFLOW (exp, exp, exp_z,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN+2, MPFR_EXP_MAX-2,
goto overflow, goto underflow);
/* normalize result */
if (MPFR_LIMB_MSB (result[2 * ysize - 1]) == 0)
{
mp_limb_t *r = result + ysize - 1;
mpn_lshift (r, r, ysize + 1, 1);
/* Overflow checking not needed */
exp --;
}
/* if the low ysize limbs of {result, 2*ysize} are all zero,
then the result is still "exact" (if it was before) */
exact = exact && (mpn_scan1 (result, 0)
>= (unsigned long) ysize_bits);
result += ysize;
}
/* case exp_base < pstr_size */
else if (pstr->exp_base < (mpfr_exp_t) pstr_size)
{
mp_limb_t *z;
mpfr_exp_t exp_z;
result = MPFR_TMP_LIMBS_ALLOC (3 * ysize + 1);
/* set y to y * K^ysize */
y = y - ysize; /* we have allocated ysize limbs at y - ysize */
MPN_ZERO (y, ysize);
/* pstr_size - pstr->exp_base can overflow */
MPFR_SADD_OVERFLOW (exp_z, (mpfr_exp_t) pstr_size, -pstr->exp_base,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN, MPFR_EXP_MAX,
goto underflow, goto overflow);
/* (z, exp_z) = base^(exp_base-pstr_size) */
z = result + 2*ysize + 1;
err = mpfr_mpn_exp (z, &exp_z, pstr->base, exp_z, ysize);
/* Since we want y/z rounded toward zero, we must get an upper
bound of z. If err >= 0, the error on z is bounded by 2^err. */
if (err >= 0)
{
mp_limb_t cy;
unsigned long h = err / GMP_NUMB_BITS;
unsigned long l = err - h * GMP_NUMB_BITS;
if (h >= ysize) /* not enough precision in z */
goto next_loop;
cy = mpn_add_1 (z, z, ysize - h, MPFR_LIMB_ONE << l);
if (cy != 0) /* the code below requires z on ysize limbs */
goto next_loop;
}
exact = exact && (err == -1);
if (err == -2)
goto underflow; /* FIXME: Sure? */
if (err == -1)
err = 0;
/* compute y / z */
/* result will be put into result + n, and remainder into result */
mpn_tdiv_qr (result + ysize, result, (mp_size_t) 0, y,
2 * ysize, z, ysize);
/* exp -= exp_z + ysize_bits with overflow checking
and check that we can add/subtract 2 to exp without overflow */
MPFR_SADD_OVERFLOW (exp_z, exp_z, ysize_bits,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN, MPFR_EXP_MAX,
goto underflow, goto overflow);
MPFR_SADD_OVERFLOW (exp, exp, -exp_z,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN+2, MPFR_EXP_MAX-2,
goto overflow, goto underflow);
err += 2;
/* if the remainder of the division is zero, then the result is
still "exact" if it was before */
exact = exact && (mpn_popcount (result, ysize) == 0);
/* normalize result */
if (result[2 * ysize] == MPFR_LIMB_ONE)
{
mp_limb_t *r = result + ysize;
exact = exact && ((*r & MPFR_LIMB_ONE) == 0);
mpn_rshift (r, r, ysize + 1, 1);
/* Overflow Checking not needed */
exp ++;
}
result += ysize;
}
/* case exp_base = pstr_size: no multiplication or division needed */
else
{
/* base^(exp-pr) = 1 nothing to compute */
result = y;
err = 0;
}
/* If result is exact, we still have to consider the neglected part
of the input string. For a directed rounding, in that case we could
still correctly round, since the neglected part is less than
one ulp, but that would make the code more complex, and give a
speedup for rare cases only. */
exact = exact && (pstr_size == pstr->prec);
/* at this point, result is an approximation rounded toward zero
of the pstr_size most significant digits of pstr->mant, with
equality in case exact is non-zero. */
/* test if rounding is possible, and if so exit the loop */
if (exact || mpfr_can_round_raw (result, ysize,
(pstr->negative) ? -1 : 1,
ysize_bits - err - 1,
MPFR_RNDN, rnd, MPFR_PREC(x)))
break;
next_loop:
/* update the prec for next loop */
MPFR_ZIV_NEXT (loop, prec);
} /* loop */
MPFR_ZIV_FREE (loop);
/* round y */
if (mpfr_round_raw (MPFR_MANT (x), result,
ysize_bits,
pstr->negative, MPFR_PREC(x), rnd, &res ))
{
/* overflow when rounding y */
MPFR_MANT (x)[MPFR_LIMB_SIZE (x) - 1] = MPFR_LIMB_HIGHBIT;
/* Overflow Checking not needed */
exp ++;
}
if (res == 0) /* fix ternary value */
{
exact = exact && (pstr_size == pstr->prec);
if (!exact)
res = (pstr->negative) ? 1 : -1;
}
/* Set sign of x before exp since check_range needs a valid sign */
(pstr->negative) ? MPFR_SET_NEG (x) : MPFR_SET_POS (x);
/* DO NOT USE MPFR_SET_EXP. The exp may be out of range! */
MPFR_SADD_OVERFLOW (exp, exp, ysize_bits,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN, MPFR_EXP_MAX,
goto overflow, goto underflow);
MPFR_EXP (x) = exp;
res = mpfr_check_range (x, res, rnd);
goto end;
underflow:
/* This is called when there is a huge overflow
(Real expo < MPFR_EXP_MIN << __gmpfr_emin */
if (rnd == MPFR_RNDN)
rnd = MPFR_RNDZ;
res = mpfr_underflow (x, rnd, (pstr->negative) ? -1 : 1);
goto end;
overflow:
res = mpfr_overflow (x, rnd, (pstr->negative) ? -1 : 1);
end:
MPFR_TMP_FREE (marker);
return res;
}
static void
free_parsed_string (struct parsed_string *pstr)
{
(*__gmp_free_func) (pstr->mantissa, pstr->alloc);
}
int
mpfr_strtofr (mpfr_t x, const char *string, char **end, int base,
mpfr_rnd_t rnd)
{
int res;
struct parsed_string pstr;
/* For base <= 36, parsing is case-insensitive. */
MPFR_ASSERTN (base == 0 || (base >= 2 && base <= 62));
/* If an error occured, it must return 0 */
MPFR_SET_ZERO (x);
MPFR_SET_POS (x);
MPFR_ASSERTN (MPFR_MAX_BASE >= 62);
res = parse_string (x, &pstr, &string, base);
/* If res == 0, then it was exact (NAN or INF),
so it is also the ternary value */
if (MPFR_UNLIKELY (res == -1)) /* invalid data */
res = 0; /* x is set to 0, which is exact, thus ternary value is 0 */
else if (res == 1)
{
res = parsed_string_to_mpfr (x, &pstr, rnd);
free_parsed_string (&pstr);
}
else if (res == 2)
res = mpfr_overflow (x, rnd, (pstr.negative) ? -1 : 1);
MPFR_ASSERTD (res != 3);
#if 0
else if (res == 3)
{
/* This is called when there is a huge overflow
(Real expo < MPFR_EXP_MIN << __gmpfr_emin */
if (rnd == MPFR_RNDN)
rnd = MPFR_RNDZ;
res = mpfr_underflow (x, rnd, (pstr.negative) ? -1 : 1);
}
#endif
if (end != NULL)
*end = (char *) string;
return res;
}
|