1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
|
/* mpfr_strtofr -- set a floating-point number from a string
Copyright 2004-2019 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include <ctype.h> /* For isspace */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
#define MPFR_MAX_BASE 62
struct parsed_string {
int negative; /* non-zero iff the number is negative */
int base; /* base of the string */
unsigned char *mantissa; /* raw significand (without any point) */
unsigned char *mant; /* stripped significand (without starting and
ending zeroes). This points inside the area
allocated for the mantissa field. */
size_t prec; /* length of mant (zero for +/-0) */
size_t alloc; /* allocation size of mantissa */
mpfr_exp_t exp_base; /* number of digits before the point, + exponent
except in case of binary exponent (exp_bin) */
mpfr_exp_t exp_bin; /* binary exponent of the pxxx format for
base = 2 or 16 */
};
/* This table has been generated by the following program.
For 2 <= b <= MPFR_MAX_BASE,
RedInvLog2Table[b-2][0] / RedInvLog2Table[b-2][1]
is an upper approximation to log(2)/log(b), no larger than 1.
Note: these numbers must fit on 16 bits, thus unsigned int is OK.
*/
static const unsigned int RedInvLog2Table[MPFR_MAX_BASE-1][2] = {
{1, 1},
{53, 84},
{1, 2},
{4004, 9297},
{53, 137},
{2393, 6718},
{1, 3},
{665, 2108},
{4004, 13301},
{949, 3283},
{53, 190},
{5231, 19357},
{2393, 9111},
{247, 965},
{1, 4},
{4036, 16497},
{665, 2773},
{5187, 22034},
{4004, 17305},
{51, 224},
{949, 4232},
{3077, 13919},
{53, 243},
{73, 339},
{5231, 24588},
{665, 3162},
{2393, 11504},
{4943, 24013},
{247, 1212},
{3515, 17414},
{1, 5},
{4415, 22271},
{4036, 20533},
{263, 1349},
{665, 3438},
{1079, 5621},
{5187, 27221},
{2288, 12093},
{4004, 21309},
{179, 959},
{51, 275},
{495, 2686},
{949, 5181},
{3621, 19886},
{3077, 16996},
{229, 1272},
{53, 296},
{109, 612},
{73, 412},
{1505, 8537},
{5231, 29819},
{283, 1621},
{665, 3827},
{32, 185},
{2393, 13897},
{1879, 10960},
{4943, 28956},
{409, 2406},
{247, 1459},
{231, 1370},
{3515, 20929} };
#if 0
#define N 8
int main ()
{
unsigned long tab[N];
int i, n, base;
mpfr_t x, y;
mpq_t q1, q2;
int overflow = 0, base_overflow;
mpfr_init2 (x, 200);
mpfr_init2 (y, 200);
mpq_init (q1);
mpq_init (q2);
for (base = 2 ; base < 63 ; base ++)
{
mpfr_set_ui (x, base, MPFR_RNDN);
mpfr_log2 (x, x, MPFR_RNDN);
mpfr_ui_div (x, 1, x, MPFR_RNDN);
printf ("Base: %d x=%e ", base, mpfr_get_d1 (x));
for (i = 0 ; i < N ; i++)
{
mpfr_floor (y, x);
tab[i] = mpfr_get_ui (y, MPFR_RNDN);
mpfr_sub (x, x, y, MPFR_RNDN);
mpfr_ui_div (x, 1, x, MPFR_RNDN);
}
for (i = N-1 ; i >= 0 ; i--)
if (tab[i] != 0)
break;
mpq_set_ui (q1, tab[i], 1);
for (i = i-1 ; i >= 0 ; i--)
{
mpq_inv (q1, q1);
mpq_set_ui (q2, tab[i], 1);
mpq_add (q1, q1, q2);
}
printf("Approx: ", base);
mpq_out_str (stdout, 10, q1);
printf (" = %e\n", mpq_get_d (q1) );
fprintf (stderr, "{");
mpz_out_str (stderr, 10, mpq_numref (q1));
fprintf (stderr, "UL, ");
mpz_out_str (stderr, 10, mpq_denref (q1));
fprintf (stderr, "UL},\n");
if (mpz_cmp_ui (mpq_numref (q1), 1<<16-1) >= 0
|| mpz_cmp_ui (mpq_denref (q1), 1<<16-1) >= 0)
overflow = 1, base_overflow = base;
}
mpq_clear (q2);
mpq_clear (q1);
mpfr_clear (y);
mpfr_clear (x);
if (overflow )
printf ("OVERFLOW for base =%d!\n", base_overflow);
}
#endif
/* Compatible with any locale, but one still assumes that 'a', 'b', 'c',
..., 'z', and 'A', 'B', 'C', ..., 'Z' are consecutive values (like
in any ASCII-based character set). */
static int
digit_value_in_base (int c, int base)
{
int digit;
MPFR_ASSERTD (base > 0 && base <= MPFR_MAX_BASE);
if (c >= '0' && c <= '9')
digit = c - '0';
else if (c >= 'a' && c <= 'z')
digit = (base >= 37) ? c - 'a' + 36 : c - 'a' + 10;
else if (c >= 'A' && c <= 'Z')
digit = c - 'A' + 10;
else
return -1;
return MPFR_LIKELY (digit < base) ? digit : -1;
}
/* Compatible with any locale, but one still assumes that 'a', 'b', 'c',
..., 'z', and 'A', 'B', 'C', ..., 'Z' are consecutive values (like
in any ASCII-based character set). */
/* TODO: support EBCDIC. */
static int
fast_casecmp (const char *s1, const char *s2)
{
unsigned char c1, c2;
do
{
c2 = *(const unsigned char *) s2++;
if (c2 == '\0')
return 0;
c1 = *(const unsigned char *) s1++;
if (c1 >= 'A' && c1 <= 'Z')
c1 = c1 - 'A' + 'a';
}
while (c1 == c2);
return 1;
}
/* Parse a string and fill pstr.
Return the advanced ptr too.
It returns:
-1 if invalid string,
0 if special string (like nan),
1 if the string is OK.
2 if overflows
So it doesn't return the ternary value
BUT if it returns 0 (NAN or INF), the ternary value is also '0'
(ie NAN and INF are exact) */
static int
parse_string (mpfr_t x, struct parsed_string *pstr,
const char **string, int base)
{
const char *str = *string;
unsigned char *mant;
int point;
int res = -1; /* Invalid input return value */
const char *prefix_str;
int decimal_point;
decimal_point = (unsigned char) MPFR_DECIMAL_POINT;
/* Init variable */
pstr->mantissa = NULL;
/* Optional leading whitespace */
while (isspace((unsigned char) *str)) str++;
/* An optional sign `+' or `-' */
pstr->negative = (*str == '-');
if (*str == '-' || *str == '+')
str++;
/* Can be case-insensitive NAN */
if (fast_casecmp (str, "@nan@") == 0)
{
str += 5;
goto set_nan;
}
if (base <= 16 && fast_casecmp (str, "nan") == 0)
{
str += 3;
set_nan:
/* Check for "(dummychars)" */
if (*str == '(')
{
const char *s;
for (s = str+1 ; *s != ')' ; s++)
if (!(*s >= 'A' && *s <= 'Z')
&& !(*s >= 'a' && *s <= 'z')
&& !(*s >= '0' && *s <= '9')
&& *s != '_')
break;
if (*s == ')')
str = s+1;
}
*string = str;
MPFR_SET_NAN(x);
/* MPFR_RET_NAN not used as the return value isn't a ternary value */
__gmpfr_flags |= MPFR_FLAGS_NAN;
return 0;
}
/* Can be case-insensitive INF */
if (fast_casecmp (str, "@inf@") == 0)
{
str += 5;
goto set_inf;
}
if (base <= 16 && fast_casecmp (str, "infinity") == 0)
{
str += 8;
goto set_inf;
}
if (base <= 16 && fast_casecmp (str, "inf") == 0)
{
str += 3;
set_inf:
*string = str;
MPFR_SET_INF (x);
(pstr->negative) ? MPFR_SET_NEG (x) : MPFR_SET_POS (x);
return 0;
}
/* If base=0 or 16, it may include '0x' prefix */
prefix_str = NULL;
if ((base == 0 || base == 16) && str[0]=='0'
&& (str[1]=='x' || str[1] == 'X'))
{
prefix_str = str;
base = 16;
str += 2;
}
/* If base=0 or 2, it may include '0b' prefix */
if ((base == 0 || base == 2) && str[0]=='0'
&& (str[1]=='b' || str[1] == 'B'))
{
prefix_str = str;
base = 2;
str += 2;
}
/* Else if base=0, we assume decimal base */
if (base == 0)
base = 10;
pstr->base = base;
/* Alloc mantissa */
pstr->alloc = (size_t) strlen (str) + 1;
pstr->mantissa = (unsigned char*) mpfr_allocate_func (pstr->alloc);
/* Read mantissa digits */
parse_begin:
mant = pstr->mantissa;
point = 0;
pstr->exp_base = 0;
pstr->exp_bin = 0;
for (;;) /* Loop until an invalid character is read */
{
int c = (unsigned char) *str++;
/* The cast to unsigned char is needed because of digit_value_in_base;
decimal_point uses this convention too. */
if (c == '.' || c == decimal_point)
{
if (MPFR_UNLIKELY(point)) /* Second '.': stop parsing */
break;
point = 1;
continue;
}
c = digit_value_in_base (c, base);
if (c == -1)
break;
MPFR_ASSERTN (c >= 0); /* c is representable in an unsigned char */
*mant++ = (unsigned char) c;
if (!point)
pstr->exp_base ++;
}
str--; /* The last read character was invalid */
/* Update the # of char in the mantissa */
pstr->prec = mant - pstr->mantissa;
/* Check if there are no characters in the mantissa (Invalid argument) */
if (pstr->prec == 0)
{
/* Check if there was a prefix (in such a case, we have to read
again the mantissa without skipping the prefix)
The allocated mantissa is still big enough since we will
read only 0, and we alloc one more char than needed.
FIXME: Not really friendly. Maybe cleaner code? */
if (prefix_str != NULL)
{
str = prefix_str;
prefix_str = NULL;
goto parse_begin;
}
goto end;
}
/* Valid entry */
res = 1;
MPFR_ASSERTD (pstr->exp_base >= 0);
/* FIXME: In the code below (both cases), if the exponent from the
string is large, it will be replaced by MPFR_EXP_MIN or MPFR_EXP_MAX,
i.e. it will have a different value. This may not change the result
in most cases, but there is no guarantee on very long strings when
mpfr_exp_t is a 32-bit type, as the exponent could be brought back
to the current exponent range. */
/* an optional exponent (e or E, p or P, @) */
if ( (*str == '@' || (base <= 10 && (*str == 'e' || *str == 'E')))
&& (!isspace((unsigned char) str[1])) )
{
char *endptr;
/* the exponent digits are kept in ASCII */
mpfr_exp_t sum;
long read_exp = strtol (str + 1, &endptr, 10);
if (endptr != str+1)
str = endptr;
sum =
read_exp < MPFR_EXP_MIN ? (str = endptr, MPFR_EXP_MIN) :
read_exp > MPFR_EXP_MAX ? (str = endptr, MPFR_EXP_MAX) :
(mpfr_exp_t) read_exp;
MPFR_SADD_OVERFLOW (sum, sum, pstr->exp_base,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN, MPFR_EXP_MAX,
res = 2, res = 3);
/* Since exp_base was positive, read_exp + exp_base can't
do a negative overflow. */
MPFR_ASSERTD (res != 3);
pstr->exp_base = sum;
}
else if ((base == 2 || base == 16)
&& (*str == 'p' || *str == 'P')
&& (!isspace((unsigned char) str[1])))
{
char *endptr;
long read_exp = strtol (str + 1, &endptr, 10);
if (endptr != str+1)
str = endptr;
pstr->exp_bin =
read_exp < MPFR_EXP_MIN ? (str = endptr, MPFR_EXP_MIN) :
read_exp > MPFR_EXP_MAX ? (str = endptr, MPFR_EXP_MAX) :
(mpfr_exp_t) read_exp;
}
/* Remove 0's at the beginning and end of mantissa[0..prec-1] */
mant = pstr->mantissa;
for ( ; (pstr->prec > 0) && (*mant == 0) ; mant++, pstr->prec--)
pstr->exp_base--;
for ( ; (pstr->prec > 0) && (mant[pstr->prec - 1] == 0); pstr->prec--);
pstr->mant = mant;
/* Check if x = 0 */
if (pstr->prec == 0)
{
MPFR_SET_ZERO (x);
if (pstr->negative)
MPFR_SET_NEG(x);
else
MPFR_SET_POS(x);
res = 0;
}
*string = str;
end:
if (pstr->mantissa != NULL && res != 1)
mpfr_free_func (pstr->mantissa, pstr->alloc);
return res;
}
/* Transform a parsed string to a mpfr_t according to the rounding mode
and the precision of x.
Returns the ternary value. */
static int
parsed_string_to_mpfr (mpfr_t x, struct parsed_string *pstr, mpfr_rnd_t rnd)
{
mpfr_prec_t precx, prec, ysize_bits, pstr_size;
mpfr_exp_t exp;
mp_limb_t *result;
int count, exact;
mp_size_t ysize, real_ysize, diff_ysize;
int res, err;
const int extra_limbs = GMP_NUMB_BITS >= 12 ? 1 : 2; /* see below */
MPFR_ZIV_DECL (loop);
MPFR_TMP_DECL (marker);
/* initialize the working precision */
precx = MPFR_GET_PREC (x);
prec = precx + MPFR_INT_CEIL_LOG2 (precx);
/* Compute the value y of the leading characters as long as rounding is not
possible.
Note: We have some integer overflow checking using MPFR_EXP_MIN and
MPFR_EXP_MAX in this loop. Thanks to the large margin between these
extremal values of the mpfr_exp_t type and the valid minimum/maximum
exponents, such integer overflows would correspond to real underflow
or overflow on the result (possibly except in huge precisions, which
are disregarded here; anyway, in practice, such issues could occur
only with 32-bit precision and exponent types). Such checks could be
extended to real early underflow/overflow checking, in order to avoid
useless computations in such cases; in such a case, be careful that
the approximation errors need to be taken into account. */
MPFR_TMP_MARK(marker);
MPFR_ZIV_INIT (loop, prec);
for (;;)
{
mp_limb_t *y0, *y;
/* y will be regarded as a number with precision prec. */
ysize = MPFR_PREC2LIMBS (prec);
/* prec bits corresponds to ysize limbs */
ysize_bits = (mpfr_prec_t) ysize * GMP_NUMB_BITS;
MPFR_ASSERTD (ysize_bits >= prec);
/* and to ysize_bits >= prec > precx bits. */
/* We need to allocate one more limb as specified by mpn_set_str
(a limb may be written in rp[rn]). Note that the manual of GMP
up to 5.1.3 was incorrect on this point.
See the following discussion:
https://gmplib.org/list-archives/gmp-bugs/2013-December/003267.html */
y0 = MPFR_TMP_LIMBS_ALLOC (2 * ysize + extra_limbs + 1);
y = y0 + ysize; /* y has (ysize + extra_limbs + 1) allocated limbs */
/* pstr_size is the number of bytes we want to read from pstr->mant
to fill at least ysize full limbs with mpn_set_str.
We must have base^(pstr_size-1) >= (2^(GMP_NUMB_BITS))^ysize
(in the worst case, the first digit is one and all others are zero).
i.e., pstr_size >= 1 + ysize*GMP_NUMB_BITS/log2(base)
Since ysize ~ prec/GMP_NUMB_BITS and prec < Umax/2 =>
ysize*GMP_NUMB_BITS can not overflow.
We compute pstr_size = 1 + ceil(ysize_bits * Num / Den)
where 1/log2(base) <= Num/Den <= 1
It is not exactly ceil(1/log2(base)) but could be one more (base 2).
Quite ugly since it tries to avoid overflow:
let Num = RedInvLog2Table[pstr->base-2][0]
and Den = RedInvLog2Table[pstr->base-2][1],
and ysize_bits = a*Den+b,
then ysize_bits * Num/Den = a*Num + (b * Num)/Den,
thus ceil(ysize_bits * Num/Den) = a*Num + floor(b * Num + Den - 1)/Den
Note: denoting m = pstr_size and n = ysize_bits, assuming we have
m = 1 + ceil(n/log2(b)), i.e., b^(m-1) >= 2^n > b^(m-2), then
b^(m-1)/2^n < b, and since we consider m characters of the input,
the corresponding part is less than b^m < b^2*2^n.
This implies that if b^2 < 2^GMP_NUMB_BITS, which for b <= 62 holds
for GMP_NUMB_BITS >= 12, we have real_ysize <= ysize+1 below
(this also implies that for GMP_NUMB_BITS >= 13, the number of bits
of y[real_ysize-1] below is less than GMP_NUMB_BITS, thus
count < GMP_NUMB_BITS).
Warning: for GMP_NUMB_BITS=8, we can have real_ysize = ysize + 2!
Hence the allocation above for ysize + extra_limbs limbs.
*/
{
unsigned int Num = RedInvLog2Table[pstr->base-2][0];
unsigned int Den = RedInvLog2Table[pstr->base-2][1];
MPFR_ASSERTD (Num <= Den && Den <= 65535); /* thus no overflow */
pstr_size = (ysize_bits / Den) * Num
+ ((unsigned long) (ysize_bits % Den) * Num + Den - 1) / Den
+ 1;
}
/* Since pstr_size corresponds to at least ysize_bits bits,
and ysize_bits >= prec, the weight of the neglected part of
pstr->mant (if any) is < ulp(y) < ulp(x). */
/* If the number of wanted bytes is more than what is available
in pstr->mant, i.e. pstr->prec, reduce it to pstr->prec. */
if (pstr_size > pstr->prec)
pstr_size = pstr->prec;
/* Convert str (potentially truncated to pstr_size) into binary.
Note that pstr->mant is big endian, thus no offset is needed. */
real_ysize = mpn_set_str (y, pstr->mant, pstr_size, pstr->base);
/* See above for the explanation of the following assertion. */
MPFR_ASSERTD (real_ysize <= ysize + extra_limbs);
/* The Boolean "exact" will attempt to track exactness of the result:
If it is true, then this means that the result is exact, allowing
termination, even though the rounding test may not succeed.
Conversely, if the result is exact, then "exact" will not
necessarily be true at the end of the Ziv loop, but we will need
to make sure that at some point, "exact" will be true in order to
guarantee termination. FIXME: check that. */
/* First, consider the part of the input string that has been ignored.
Note that the trailing zeros have been removed in parse_string, so
that if something has been ignored, it must be non-zero. */
exact = pstr_size == pstr->prec;
/* Normalize y and set the initial value of its exponent exp, which
is 0 when y is not shifted.
Since pstr->mant was normalized, mpn_set_str guarantees that
the most significant limb is non-zero. */
MPFR_ASSERTD (y[real_ysize - 1] != 0); /* mpn_set_str guarantees this */
count_leading_zeros (count, y[real_ysize - 1]);
diff_ysize = ysize - real_ysize;
MPFR_LOG_MSG (("diff_ysize = %ld\n", (long) diff_ysize));
if (diff_ysize >= 0)
{
/* We have enough limbs to store {y, real_ysize} exactly
in {y, ysize}, so that we can do a left shift, without
losing any information ("exact" will not change). */
if (count != 0)
mpn_lshift (y + diff_ysize, y, real_ysize, count);
if (diff_ysize > 0)
{
if (count == 0)
mpn_copyd (y + diff_ysize, y, real_ysize);
MPN_ZERO (y, diff_ysize);
}
/* exp = negation of the total shift count, avoiding overflows. */
exp = - ((mpfr_exp_t) diff_ysize * GMP_NUMB_BITS + count);
}
else
{
/* Shift {y, real_ysize} for (GMP_NUMB_BITS - count) bits to the
right, and put the ysize most significant limbs into {y, ysize}.
We have either real_ysize = ysize + 1 or real_ysize = ysize + 2
(only possible with extra_limbs == 2). */
MPFR_ASSERTD (diff_ysize == -1 ||
(extra_limbs == 2 && diff_ysize == -2));
if (count != 0)
{
/* Before doing the shift, consider the limb that will entirely
be lost if real_ysize = ysize + 2. */
exact = exact && (diff_ysize == -1 || y[0] == MPFR_LIMB_ZERO);
/* mpn_rshift allows overlap, provided destination <= source */
/* FIXME: The bits lost due to mpn_rshift are not taken
into account in the error analysis below! */
if (mpn_rshift (y, y - (diff_ysize + 1), real_ysize,
GMP_NUMB_BITS - count) != MPFR_LIMB_ZERO)
exact = 0; /* some non-zero bits have been shifted out */
}
else
{
/* the case real_ysize = ysize + 2 with count = 0 cannot happen
even with GMP_NUMB_BITS = 8 since 62^2 < 256^2/2 */
MPFR_ASSERTD (diff_ysize == -1);
exact = exact && y[0] == MPFR_LIMB_ZERO;
/* copy {y+real_ysize-ysize, ysize} to {y, ysize} */
mpn_copyi (y, y + 1, real_ysize - 1);
}
/* exp = shift count */
/* TODO: add some explanations about what exp means exactly. */
exp = GMP_NUMB_BITS * (- diff_ysize) - count;
}
/* compute base^(exp_base - pstr_size) on n limbs */
if (IS_POW2 (pstr->base))
{
/* Base: 2, 4, 8, 16, 32 */
int pow2;
mpfr_exp_t tmp;
MPFR_LOG_MSG (("case 1 (base = power of 2)\n", 0));
count_leading_zeros (pow2, (mp_limb_t) pstr->base);
pow2 = GMP_NUMB_BITS - pow2 - 1; /* base = 2^pow2 */
MPFR_ASSERTD (0 < pow2 && pow2 <= 5);
/* exp += pow2 * (pstr->exp_base - pstr_size) + pstr->exp_bin
with overflow checking
and check that we can add/subtract 2 to exp without overflow */
MPFR_SADD_OVERFLOW (tmp, pstr->exp_base, -(mpfr_exp_t) pstr_size,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN, MPFR_EXP_MAX,
goto overflow, goto underflow);
/* On some FreeBsd/Alpha, LONG_MIN/1 produced an exception
so we used to check for this before doing the division.
Since this bug is closed now (Nov 26, 2009), we remove
that check (http://www.freebsd.org/cgi/query-pr.cgi?pr=72024) */
if (tmp > 0 && MPFR_EXP_MAX / pow2 <= tmp)
goto overflow;
else if (tmp < 0 && MPFR_EXP_MIN / pow2 >= tmp)
goto underflow;
tmp *= pow2;
MPFR_SADD_OVERFLOW (tmp, tmp, pstr->exp_bin,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN, MPFR_EXP_MAX,
goto overflow, goto underflow);
MPFR_SADD_OVERFLOW (exp, exp, tmp,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN+2, MPFR_EXP_MAX-2,
goto overflow, goto underflow);
result = y;
err = 0;
}
/* case non-power-of-two-base, and pstr->exp_base > pstr_size */
else if (pstr->exp_base > (mpfr_exp_t) pstr_size)
{
mp_limb_t *z;
mpfr_exp_t exp_z;
MPFR_LOG_MSG (("case 2 (exp_base > pstr_size)\n", 0));
result = MPFR_TMP_LIMBS_ALLOC (2 * ysize + 1);
/* z = base^(exp_base-sptr_size) using space allocated at y-ysize */
z = y0;
/* NOTE: exp_base-pstr_size can't overflow since pstr_size > 0 */
err = mpfr_mpn_exp (z, &exp_z, pstr->base,
pstr->exp_base - pstr_size, ysize);
if (err == -2)
goto overflow;
exact = exact && (err == -1);
/* If exact is non zero, then z equals exactly the value of the
pstr_size most significant digits from pstr->mant, i.e., the
only difference can come from the neglected pstr->prec-pstr_size
least significant digits of pstr->mant.
If exact is zero, then z is rounded toward zero with respect
to that value. */
/* multiply(y = 0.mant[0]...mant[pr-1])_base by base^(exp-g):
since both y and z are rounded toward zero, so is "result" */
mpn_mul_n (result, y, z, ysize);
/* compute the error on the product */
if (err == -1)
err = 0;
err ++;
/* compute the exponent of y */
/* exp += exp_z + ysize_bits with overflow checking
and check that we can add/subtract 2 to exp without overflow */
MPFR_SADD_OVERFLOW (exp_z, exp_z, ysize_bits,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN, MPFR_EXP_MAX,
goto overflow, goto underflow);
MPFR_SADD_OVERFLOW (exp, exp, exp_z,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN+2, MPFR_EXP_MAX-2,
goto overflow, goto underflow);
/* normalize result */
if (MPFR_LIMB_MSB (result[2 * ysize - 1]) == 0)
{
mp_limb_t *r = result + ysize - 1;
mpn_lshift (r, r, ysize + 1, 1);
/* Overflow checking not needed */
exp --;
}
/* if the low ysize limbs of {result, 2*ysize} are all zero,
then the result is still "exact" (if it was before) */
exact = exact && (mpn_scan1 (result, 0) >= ysize_bits);
result += ysize;
}
/* case exp_base < pstr_size */
else if (pstr->exp_base < (mpfr_exp_t) pstr_size)
{
mp_limb_t *z;
mpfr_exp_t exp_z;
MPFR_LOG_MSG (("case 3 (exp_base < pstr_size)\n", 0));
result = MPFR_TMP_LIMBS_ALLOC (3 * ysize + 1);
/* y0 = y * K^ysize */
MPN_ZERO (y0, ysize);
/* pstr_size - pstr->exp_base can overflow */
MPFR_SADD_OVERFLOW (exp_z, (mpfr_exp_t) pstr_size, -pstr->exp_base,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN, MPFR_EXP_MAX,
goto underflow, goto overflow);
/* (z, exp_z) = base^(pstr_size - exp_base) */
z = result + 2*ysize + 1;
err = mpfr_mpn_exp (z, &exp_z, pstr->base, exp_z, ysize);
/* Now {z, ysize} * 2^(exp_z_out - ysize_bits) is an approximation
to base^exp_z_in (denoted b^e below), rounded toward zero, with:
* if err = -1, the result is exact;
* if err = -2, an overflow occurred in the computation of exp_z;
* otherwise the error is bounded by 2^err ulps.
Thus the exact value of b^e is between z and z + 2^err, where
z is {z, ysize} properly scaled by a power of 2. Then the error
will be:
y/b^e - trunc(y/z) = eps1 + eps2
with
eps1 = y/b^e - y/z <= 0
eps2 = y/z - trunc(y/z) >= 0
thus the errors will (partly) compensate, giving a bound
max(|eps1|,|eps2|).
In addition, there is a 3rd error eps3 since y might be the
conversion of only a part of the character string, and/or y
might be truncated by the mpn_rshift call above:
eps3 = exact_y/b^e - y/b^e >= 0.
*/
if (err == -2)
goto underflow; /* FIXME: Sure? */
else if (err == -1)
err = 0; /* see the note below */
else
exact = 0;
/* exp -= exp_z + ysize_bits with overflow checking
and check that we can add/subtract 2 to exp without overflow */
MPFR_SADD_OVERFLOW (exp_z, exp_z, ysize_bits,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN, MPFR_EXP_MAX,
goto underflow, goto overflow);
MPFR_SADD_OVERFLOW (exp, exp, -exp_z,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN+2, MPFR_EXP_MAX-2,
goto overflow, goto underflow);
/* Compute the integer division y/z rounded toward zero.
The quotient will be put at result + ysize (size: ysize + 1),
and the remainder at result (size: ysize).
Both the dividend {y, 2*ysize} and the divisor {z, ysize} are
normalized, i.e., the most significant bit of their most
significant limb is 1. */
MPFR_ASSERTD (MPFR_LIMB_MSB (y0[2 * ysize - 1]) != 0);
MPFR_ASSERTD (MPFR_LIMB_MSB (z[ysize - 1]) != 0);
mpn_tdiv_qr (result + ysize, result, (mp_size_t) 0, y0,
2 * ysize, z, ysize);
/* The truncation error of the mpn_tdiv_qr call (eps2 above) is at
most 1 ulp. Idem for the error eps3, which has the same sign,
thus eps2 + eps3 <= 2 ulps.
FIXME: For eps3, this is not obvious and should be explained.
For the error eps1 coming from the approximation to b^e,
we have (still up to a power-of-2 normalization):
y/z - y/b^e = y * (b^e-z) / (z * b^e) <= y * 2^err / (z * b^e).
We have to convert that error in terms of ulp(trunc(y/z)).
We first have ulp(trunc(y/z)) = ulp(y/z).
FIXME: There must be some discussion about the exponents,
because up to a power of 2, 1/2 <= |y/z| < 1 and
1 <= |y/z| < 2 are equivalent and give no information.
Moreover 1/2 <= b^e < 1 has not been explained and may
hide mistakes since one may have 1/2 <= z < 1 < b^e.
Since both y and z are normalized, the quotient
{result+ysize, ysize+1} has exactly ysize limbs, plus maybe one
bit (this corresponds to the MPFR_ASSERTD below):
* if the quotient has exactly ysize limbs, then 1/2 <= |y/z| < 1
(up to a power of 2) and since 1/2 <= b^e < 1, the error is at
most 2^(err+1) ulps;
* if the quotient has one extra bit, then 1 <= |y/z| < 2
(up to a power of 2) and since 1/2 <= b^e < 1, the error is at
most 2^(err+2) ulps; but since we will shift the result right
below by one bit, the final error will be at most 2^(err+1) ulps
too.
Thus the error is:
* at most 2^(err+1) ulps for eps1
* at most 2 ulps for eps2 + eps3, which is of opposite sign
and we can bound the error by 2^(err+1) ulps in all cases.
Note: If eps1 was 0, the error would be bounded by 2 ulps,
thus replacing err = -1 by err = 0 above was the right thing
to do, since 2^(0+1) = 2.
*/
MPFR_ASSERTD (result[2 * ysize] <= 1);
err += 1; /* see above for the explanation of the +1 term */
/* if the remainder of the division is zero, then the result is
still "exact" if it was before */
exact = exact && (mpn_popcount (result, ysize) == 0);
/* normalize result */
if (result[2 * ysize] == MPFR_LIMB_ONE)
{
mp_limb_t *r = result + ysize;
exact = exact && ((*r & MPFR_LIMB_ONE) == 0);
mpn_rshift (r, r, ysize + 1, 1);
/* Overflow Checking not needed */
exp ++;
}
result += ysize;
}
/* case exp_base = pstr_size: no multiplication or division needed */
else
{
MPFR_LOG_MSG (("case 4 (exp_base = pstr_size)\n", 0));
/* base^(exp-pr) = 1 nothing to compute */
result = y;
err = 0;
}
MPFR_LOG_MSG (("exact = %d, err = %d, precx = %Pu\n",
exact, err, precx));
/* at this point, result is an approximation rounded toward zero
of the pstr_size most significant digits of pstr->mant, with
equality in case exact is non-zero. */
/* test if rounding is possible, and if so exit the loop.
Note: we also need to be able to determine the correct ternary value,
thus we use the precx + (rnd == MPFR_RNDN) trick.
For example if result = xxx...xxx111...111 and rnd = RNDN,
then we know the correct rounding is xxx...xx(x+1), but we cannot know
the correct ternary value. */
if (exact || mpfr_round_p (result, ysize, ysize_bits - err - 1,
precx + (rnd == MPFR_RNDN)))
break;
/* update the prec for next loop */
MPFR_ZIV_NEXT (loop, prec);
} /* loop */
MPFR_ZIV_FREE (loop);
/* round y */
if (mpfr_round_raw (MPFR_MANT (x), result, ysize_bits,
pstr->negative, precx, rnd, &res))
{
/* overflow when rounding y */
MPFR_MANT (x)[MPFR_LIMB_SIZE (x) - 1] = MPFR_LIMB_HIGHBIT;
/* Overflow Checking not needed */
exp ++;
}
/* Note: if exact <> 0, then the approximation {result, ysize} is exact,
thus no double-rounding can occur:
(a) either the ternary value res is non-zero, and it is the correct
ternary value that we should return
(b) or the ternary value res is zero, and we should return 0. */
/* Set sign of x before exp since check_range needs a valid sign */
(pstr->negative) ? MPFR_SET_NEG (x) : MPFR_SET_POS (x);
/* DO NOT USE MPFR_SET_EXP. The exp may be out of range! */
MPFR_SADD_OVERFLOW (exp, exp, ysize_bits,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN, MPFR_EXP_MAX,
goto overflow, goto underflow);
MPFR_EXP (x) = exp;
res = mpfr_check_range (x, res, rnd);
goto end;
underflow:
/* This is called when there is a huge overflow
(Real expo < MPFR_EXP_MIN << __gmpfr_emin */
if (rnd == MPFR_RNDN)
rnd = MPFR_RNDZ;
res = mpfr_underflow (x, rnd, (pstr->negative) ? -1 : 1);
goto end;
overflow:
res = mpfr_overflow (x, rnd, (pstr->negative) ? -1 : 1);
end:
MPFR_TMP_FREE (marker);
return res;
}
static void
free_parsed_string (struct parsed_string *pstr)
{
mpfr_free_func (pstr->mantissa, pstr->alloc);
}
int
mpfr_strtofr (mpfr_t x, const char *string, char **end, int base,
mpfr_rnd_t rnd)
{
int res;
struct parsed_string pstr;
/* For base <= 36, parsing is case-insensitive. */
MPFR_ASSERTN (base == 0 || (base >= 2 && base <= 62));
/* If an error occurred, it must return 0. */
MPFR_SET_ZERO (x);
MPFR_SET_POS (x);
MPFR_STAT_STATIC_ASSERT (MPFR_MAX_BASE >= 62);
res = parse_string (x, &pstr, &string, base);
/* If res == 0, then it was exact (NAN or INF),
so it is also the ternary value */
if (MPFR_UNLIKELY (res == -1)) /* invalid data */
res = 0; /* x is set to 0, which is exact, thus ternary value is 0 */
else if (res == 1)
{
res = parsed_string_to_mpfr (x, &pstr, rnd);
free_parsed_string (&pstr);
}
else if (res == 2)
res = mpfr_overflow (x, rnd, (pstr.negative) ? -1 : 1);
MPFR_ASSERTD (res != 3);
#if 0
else if (res == 3)
{
/* This is called when there is a huge overflow
(Real expo < MPFR_EXP_MIN << __gmpfr_emin */
if (rnd == MPFR_RNDN)
rnd = MPFR_RNDZ;
res = mpfr_underflow (x, rnd, (pstr.negative) ? -1 : 1);
}
#endif
if (end != NULL)
*end = (char *) string;
return res;
}
|