1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
/* mpfr_set_q -- set a floating-point number from a multiple-precision rational
Copyright 2000-2002, 2004-2017 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
#ifndef MPFR_USE_MINI_GMP
/*
* Set f to z, choosing the smallest precision for f
* so that z = f*(2^BPML)*zs*2^(RetVal)
*/
static int
set_z (mpfr_ptr f, mpz_srcptr z, mp_size_t *zs)
{
mp_limb_t *p;
mp_size_t s;
int c;
mpfr_prec_t pf;
MPFR_ASSERTD (mpz_sgn (z) != 0);
/* Remove useless ending 0 */
for (p = PTR (z), s = *zs = ABSIZ (z) ; *p == 0; p++, s--)
MPFR_ASSERTD (s >= 0);
/* Get working precision */
count_leading_zeros (c, p[s-1]);
pf = s * GMP_NUMB_BITS - c;
if (pf < MPFR_PREC_MIN)
pf = MPFR_PREC_MIN;
mpfr_init2 (f, pf);
/* Copy Mantissa */
if (MPFR_LIKELY (c))
mpn_lshift (MPFR_MANT (f), p, s, c);
else
MPN_COPY (MPFR_MANT (f), p, s);
MPFR_SET_SIGN (f, mpz_sgn (z));
MPFR_SET_EXP (f, 0);
return -c;
}
/* set f to the rational q */
int
mpfr_set_q (mpfr_ptr f, mpq_srcptr q, mpfr_rnd_t rnd)
{
mpz_srcptr num, den;
mpfr_t n, d;
int inexact;
int cn, cd;
long shift;
mp_size_t sn, sd;
MPFR_SAVE_EXPO_DECL (expo);
num = mpq_numref (q);
den = mpq_denref (q);
/* NAN and INF for mpq are not really documented, but could be found */
if (MPFR_UNLIKELY (mpz_sgn (num) == 0))
{
if (MPFR_UNLIKELY (mpz_sgn (den) == 0))
{
MPFR_SET_NAN (f);
MPFR_RET_NAN;
}
else
{
MPFR_SET_ZERO (f);
MPFR_SET_POS (f);
MPFR_RET (0);
}
}
if (MPFR_UNLIKELY (mpz_sgn (den) == 0))
{
MPFR_SET_INF (f);
MPFR_SET_SIGN (f, mpz_sgn (num));
MPFR_RET (0);
}
MPFR_SAVE_EXPO_MARK (expo);
cn = set_z (n, num, &sn);
cd = set_z (d, den, &sd);
sn -= sd;
if (MPFR_UNLIKELY (sn > MPFR_EMAX_MAX / GMP_NUMB_BITS))
{
MPFR_SAVE_EXPO_FREE (expo);
inexact = mpfr_overflow (f, rnd, MPFR_SIGN (f));
goto end;
}
if (MPFR_UNLIKELY (sn < MPFR_EMIN_MIN / GMP_NUMB_BITS -1))
{
MPFR_SAVE_EXPO_FREE (expo);
if (rnd == MPFR_RNDN)
rnd = MPFR_RNDZ;
inexact = mpfr_underflow (f, rnd, MPFR_SIGN (f));
goto end;
}
inexact = mpfr_div (f, n, d, rnd);
shift = GMP_NUMB_BITS*sn+cn-cd;
MPFR_ASSERTD (shift == GMP_NUMB_BITS*sn+cn-cd);
cd = mpfr_mul_2si (f, f, shift, rnd);
MPFR_SAVE_EXPO_FREE (expo);
if (MPFR_UNLIKELY (cd != 0))
inexact = cd;
else
inexact = mpfr_check_range (f, inexact, rnd);
end:
mpfr_clear (d);
mpfr_clear (n);
MPFR_RET (inexact);
}
#endif
|