1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
|
/* mpfr_set_ld -- convert a machine long double to
a multiple precision floating-point number
Copyright 2002-2017 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include <float.h> /* needed so that MPFR_LDBL_MANT_DIG is correctly defined */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* Various i386 systems have been seen with <float.h> LDBL constants equal
to the DBL ones, whereas they ought to be bigger, reflecting the 10-byte
IEEE extended format on that processor. gcc 3.2.1 on FreeBSD and Solaris
has been seen with the problem, and gcc 2.95.4 on FreeBSD 4.7. */
#if HAVE_LDOUBLE_IEEE_EXT_LITTLE
static const union {
char bytes[10];
long double d;
} ldbl_max_struct = {
{ '\377','\377','\377','\377',
'\377','\377','\377','\377',
'\376','\177' }
};
#define MPFR_LDBL_MAX (ldbl_max_struct.d)
#else
#define MPFR_LDBL_MAX LDBL_MAX
#endif
/* To check for +inf, one can use the test x > MPFR_LDBL_MAX, as LDBL_MAX
is the maximum finite number representable in a long double, according
to DR 467; see
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2092.htm
If this fails on some platform, a test x - x != 0 might be used. */
#if defined(HAVE_LDOUBLE_IS_DOUBLE)
/* the "long double" format is the same as "double" */
int
mpfr_set_ld (mpfr_ptr r, long double d, mpfr_rnd_t rnd_mode)
{
return mpfr_set_d (r, (double) d, rnd_mode);
}
#elif defined(HAVE_LDOUBLE_IEEE_EXT_LITTLE)
/* IEEE Extended Little Endian Code */
int
mpfr_set_ld (mpfr_ptr r, long double d, mpfr_rnd_t rnd_mode)
{
int inexact, i, k, cnt;
mpfr_t tmp;
mp_limb_t tmpmant[MPFR_LIMBS_PER_LONG_DOUBLE];
mpfr_long_double_t x;
mpfr_exp_t exp;
int signd;
MPFR_SAVE_EXPO_DECL (expo);
/* Check for NAN */
if (MPFR_UNLIKELY (DOUBLE_ISNAN (d)))
{
MPFR_SET_NAN (r);
MPFR_RET_NAN;
}
/* Check for INF */
else if (MPFR_UNLIKELY (d > MPFR_LDBL_MAX))
{
MPFR_SET_INF (r);
MPFR_SET_POS (r);
return 0;
}
else if (MPFR_UNLIKELY (d < -MPFR_LDBL_MAX))
{
MPFR_SET_INF (r);
MPFR_SET_NEG (r);
return 0;
}
/* Check for ZERO */
else if (MPFR_UNLIKELY (d == 0.0))
{
x.ld = d;
MPFR_SET_ZERO (r);
if (x.s.sign == 1)
MPFR_SET_NEG(r);
else
MPFR_SET_POS(r);
return 0;
}
/* now d is neither 0, nor NaN nor Inf */
MPFR_SAVE_EXPO_MARK (expo);
MPFR_MANT (tmp) = tmpmant;
MPFR_PREC (tmp) = 64;
/* Extract sign */
x.ld = d;
signd = MPFR_SIGN_POS;
if (x.ld < 0.0)
{
signd = MPFR_SIGN_NEG;
x.ld = -x.ld;
}
/* Extract mantissa */
#if GMP_NUMB_BITS >= 64
tmpmant[0] = ((mp_limb_t) x.s.manh << 32) | ((mp_limb_t) x.s.manl);
#else
tmpmant[0] = (mp_limb_t) x.s.manl;
tmpmant[1] = (mp_limb_t) x.s.manh;
#endif
/* Normalize mantissa */
i = MPFR_LIMBS_PER_LONG_DOUBLE;
MPN_NORMALIZE_NOT_ZERO (tmpmant, i);
k = MPFR_LIMBS_PER_LONG_DOUBLE - i;
count_leading_zeros (cnt, tmpmant[i - 1]);
if (MPFR_UNLIKELY (cnt != 0))
mpn_lshift (tmpmant + k, tmpmant, i, cnt);
else if (MPFR_UNLIKELY (k != 0))
MPN_COPY (tmpmant + k, tmpmant, i);
if (MPFR_UNLIKELY (k != 0))
MPN_ZERO (tmpmant, k);
/* Set exponent */
exp = (mpfr_exp_t) ((x.s.exph << 8) + x.s.expl); /* 15-bit unsigned int */
if (MPFR_UNLIKELY (exp == 0))
exp -= 0x3FFD;
else
exp -= 0x3FFE;
MPFR_SET_EXP (tmp, exp - cnt - k * GMP_NUMB_BITS);
/* tmp is exact */
inexact = mpfr_set4 (r, tmp, rnd_mode, signd);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (r, inexact, rnd_mode);
}
#elif defined(HAVE_LDOUBLE_MAYBE_DOUBLE_DOUBLE)
/* double-double code */
int
mpfr_set_ld (mpfr_ptr r, long double d, mpfr_rnd_t rnd_mode)
{
mpfr_t t, u;
int inexact, shift_exp;
double h, l;
MPFR_SAVE_EXPO_DECL (expo);
/* Check for NAN */
LONGDOUBLE_NAN_ACTION (d, goto nan);
/* Check for INF */
if (d > MPFR_LDBL_MAX)
{
mpfr_set_inf (r, 1);
return 0;
}
else if (d < -MPFR_LDBL_MAX)
{
mpfr_set_inf (r, -1);
return 0;
}
/* Check for ZERO */
else if (d == 0.0)
return mpfr_set_d (r, (double) d, rnd_mode);
if (d >= (long double) MPFR_LDBL_MAX || d <= (long double) -MPFR_LDBL_MAX)
h = (d >= (long double) MPFR_LDBL_MAX) ? MPFR_LDBL_MAX : -MPFR_LDBL_MAX;
else
h = (double) d; /* should not overflow */
l = (double) (d - (long double) h);
MPFR_SAVE_EXPO_MARK (expo);
mpfr_init2 (t, IEEE_DBL_MANT_DIG);
mpfr_init2 (u, IEEE_DBL_MANT_DIG);
inexact = mpfr_set_d (t, h, MPFR_RNDN);
MPFR_ASSERTN(inexact == 0);
inexact = mpfr_set_d (u, l, MPFR_RNDN);
MPFR_ASSERTN(inexact == 0);
inexact = mpfr_add (r, t, u, rnd_mode);
mpfr_clear (t);
mpfr_clear (u);
MPFR_SAVE_EXPO_FREE (expo);
inexact = mpfr_check_range (r, inexact, rnd_mode);
return inexact;
nan:
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
#else
/* Generic code */
int
mpfr_set_ld (mpfr_ptr r, long double d, mpfr_rnd_t rnd_mode)
{
mpfr_t t, u;
int inexact, shift_exp;
long double x;
MPFR_SAVE_EXPO_DECL (expo);
/* Check for NAN */
LONGDOUBLE_NAN_ACTION (d, goto nan);
/* Check for INF */
if (d > MPFR_LDBL_MAX)
{
mpfr_set_inf (r, 1);
return 0;
}
else if (d < -MPFR_LDBL_MAX)
{
mpfr_set_inf (r, -1);
return 0;
}
/* Check for ZERO */
else if (d == 0.0)
return mpfr_set_d (r, (double) d, rnd_mode);
mpfr_init2 (t, MPFR_LDBL_MANT_DIG);
mpfr_init2 (u, IEEE_DBL_MANT_DIG);
MPFR_SAVE_EXPO_MARK (expo);
convert:
x = d;
MPFR_SET_ZERO (t); /* The sign doesn't matter. */
shift_exp = 0; /* invariant: remainder to deal with is d*2^shift_exp */
while (x != (long double) 0.0)
{
/* Check overflow of double */
if (x > (long double) DBL_MAX || (-x) > (long double) DBL_MAX)
{
long double div9, div10, div11, div12, div13;
#define TWO_64 18446744073709551616.0 /* 2^64 */
#define TWO_128 (TWO_64 * TWO_64)
#define TWO_256 (TWO_128 * TWO_128)
div9 = (long double) (double) (TWO_256 * TWO_256); /* 2^(2^9) */
div10 = div9 * div9;
div11 = div10 * div10; /* 2^(2^11) */
div12 = div11 * div11; /* 2^(2^12) */
div13 = div12 * div12; /* 2^(2^13) */
if (ABS (x) >= div13)
{
x /= div13; /* exact */
shift_exp += 8192;
mpfr_div_2si (t, t, 8192, MPFR_RNDZ);
}
if (ABS (x) >= div12)
{
x /= div12; /* exact */
shift_exp += 4096;
mpfr_div_2si (t, t, 4096, MPFR_RNDZ);
}
if (ABS (x) >= div11)
{
x /= div11; /* exact */
shift_exp += 2048;
mpfr_div_2si (t, t, 2048, MPFR_RNDZ);
}
if (ABS (x) >= div10)
{
x /= div10; /* exact */
shift_exp += 1024;
mpfr_div_2si (t, t, 1024, MPFR_RNDZ);
}
/* warning: we may have DBL_MAX=2^1024*(1-2^(-53)) < x < 2^1024,
therefore we have one extra exponent reduction step */
if (ABS (x) >= div9)
{
x /= div9; /* exact */
shift_exp += 512;
mpfr_div_2si (t, t, 512, MPFR_RNDZ);
}
} /* Check overflow of double */
else /* no overflow on double */
{
long double div9, div10, div11;
div9 = (long double) (double) 7.4583407312002067432909653e-155;
/* div9 = 2^(-2^9) */
div10 = div9 * div9; /* 2^(-2^10) */
div11 = div10 * div10; /* 2^(-2^11) if extended precision */
/* since -DBL_MAX <= x <= DBL_MAX, the cast to double should not
overflow here */
if (ABS(x) < div10 &&
div11 != (long double) 0.0 &&
div11 / div10 == div10) /* possible underflow */
{
long double div12, div13;
/* After the divisions, any bit of x must be >= div10,
hence the possible division by div9. */
div12 = div11 * div11; /* 2^(-2^12) */
div13 = div12 * div12; /* 2^(-2^13) */
if (ABS (x) <= div13)
{
x /= div13; /* exact */
shift_exp -= 8192;
mpfr_mul_2si (t, t, 8192, MPFR_RNDZ);
}
if (ABS (x) <= div12)
{
x /= div12; /* exact */
shift_exp -= 4096;
mpfr_mul_2si (t, t, 4096, MPFR_RNDZ);
}
if (ABS (x) <= div11)
{
x /= div11; /* exact */
shift_exp -= 2048;
mpfr_mul_2si (t, t, 2048, MPFR_RNDZ);
}
if (ABS (x) <= div10)
{
x /= div10; /* exact */
shift_exp -= 1024;
mpfr_mul_2si (t, t, 1024, MPFR_RNDZ);
}
if (ABS(x) <= div9)
{
x /= div9; /* exact */
shift_exp -= 512;
mpfr_mul_2si (t, t, 512, MPFR_RNDZ);
}
}
else /* no underflow */
{
inexact = mpfr_set_d (u, (double) x, MPFR_RNDZ);
MPFR_ASSERTD (inexact == 0);
if (mpfr_add (t, t, u, MPFR_RNDZ) != 0)
{
if (!mpfr_number_p (t))
break;
/* Inexact. This cannot happen unless the C implementation
"lies" on the precision or when long doubles are
implemented with FP expansions like double-double on
PowerPC. */
if (MPFR_PREC (t) != MPFR_PREC (r) + 1)
{
/* We assume that MPFR_PREC (r) < MPFR_PREC_MAX.
The precision MPFR_PREC (r) + 1 allows us to
deduce the rounding bit and the sticky bit. */
mpfr_set_prec (t, MPFR_PREC (r) + 1);
goto convert;
}
else
{
mp_limb_t *tp;
int rb_mask;
/* Since mpfr_add was inexact, the sticky bit is 1. */
tp = MPFR_MANT (t);
rb_mask = MPFR_LIMB_ONE <<
(GMP_NUMB_BITS - 1 -
(MPFR_PREC (r) & (GMP_NUMB_BITS - 1)));
if (rnd_mode == MPFR_RNDN)
rnd_mode = (*tp & rb_mask) ^ MPFR_IS_NEG (t) ?
MPFR_RNDU : MPFR_RNDD;
*tp |= rb_mask;
break;
}
}
x -= (long double) mpfr_get_d1 (u); /* exact */
}
}
}
inexact = mpfr_mul_2si (r, t, shift_exp, rnd_mode);
mpfr_clear (t);
mpfr_clear (u);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (r, inexact, rnd_mode);
nan:
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
#endif
|