1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
/* mpfr_rem1 -- internal function
mpfr_fmod -- compute the floating-point remainder of x/y
mpfr_remquo and mpfr_remainder -- argument reduction functions
Copyright 2007-2017 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
# include "mpfr-impl.h"
/* we return as many bits as we can, keeping just one bit for the sign */
# define WANTED_BITS (sizeof(long) * CHAR_BIT - 1)
/*
rem1 works as follows:
The first rounding mode rnd_q indicate if we are actually computing
a fmod (MPFR_RNDZ) or a remainder/remquo (MPFR_RNDN).
Let q = x/y rounded to an integer in the direction rnd_q.
Put x - q*y in rem, rounded according to rnd.
If quo is not null, the value stored in *quo has the sign of q,
and agrees with q with the 2^n low order bits.
In other words, *quo = q (mod 2^n) and *quo q >= 0.
If rem is zero, then it has the sign of x.
The returned 'int' is the inexact flag giving the place of rem wrt x - q*y.
If x or y is NaN: *quo is undefined, rem is NaN.
If x is Inf, whatever y: *quo is undefined, rem is NaN.
If y is Inf, x not NaN nor Inf: *quo is 0, rem is x.
If y is 0, whatever x: *quo is undefined, rem is NaN.
If x is 0, whatever y (not NaN nor 0): *quo is 0, rem is x.
Otherwise if x and y are neither NaN, Inf nor 0, q is always defined,
thus *quo is.
Since |x - q*y| <= y/2, no overflow is possible.
Only an underflow is possible when y is very small.
*/
static int
mpfr_rem1 (mpfr_ptr rem, long *quo, mpfr_rnd_t rnd_q,
mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd)
{
mpfr_exp_t ex, ey;
int compare, inex, q_is_odd, sign, signx = MPFR_SIGN (x);
mpz_t mx, my, r;
int tiny = 0;
MPFR_ASSERTD (rnd_q == MPFR_RNDN || rnd_q == MPFR_RNDZ);
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x) || MPFR_IS_SINGULAR (y)))
{
if (MPFR_IS_NAN (x) || MPFR_IS_NAN (y) || MPFR_IS_INF (x)
|| MPFR_IS_ZERO (y))
{
/* for remquo, quo is undefined */
MPFR_SET_NAN (rem);
MPFR_RET_NAN;
}
else /* either y is Inf and x is 0 or non-special,
or x is 0 and y is non-special,
in both cases the quotient is zero. */
{
if (quo)
*quo = 0;
return mpfr_set (rem, x, rnd);
}
}
/* now neither x nor y is NaN, Inf or zero */
mpz_init (mx);
mpz_init (my);
mpz_init (r);
ex = mpfr_get_z_2exp (mx, x); /* x = mx*2^ex */
ey = mpfr_get_z_2exp (my, y); /* y = my*2^ey */
/* to get rid of sign problems, we compute it separately:
quo(-x,-y) = quo(x,y), rem(-x,-y) = -rem(x,y)
quo(-x,y) = -quo(x,y), rem(-x,y) = -rem(x,y)
thus quo = sign(x/y)*quo(|x|,|y|), rem = sign(x)*rem(|x|,|y|) */
sign = (signx == MPFR_SIGN (y)) ? 1 : -1;
mpz_abs (mx, mx);
mpz_abs (my, my);
q_is_odd = 0;
/* divide my by 2^k if possible to make operations mod my easier */
{
unsigned long k = mpz_scan1 (my, 0);
ey += k;
mpz_fdiv_q_2exp (my, my, k);
}
if (ex <= ey)
{
/* q = x/y = mx/(my*2^(ey-ex)) */
/* First detect cases where q=0, to avoid creating a huge number
my*2^(ey-ex): if sx = mpz_sizeinbase (mx, 2) and sy =
mpz_sizeinbase (my, 2), we have x < 2^(ex + sx) and
y >= 2^(ey + sy - 1), thus if ex + sx <= ey + sy - 1
the quotient is 0 */
if (ex + (mpfr_exp_t) mpz_sizeinbase (mx, 2) <
ey + (mpfr_exp_t) mpz_sizeinbase (my, 2))
{
tiny = 1;
mpz_set (r, mx);
mpz_set_ui (mx, 0);
}
else
{
mpz_mul_2exp (my, my, ey - ex); /* divide mx by my*2^(ey-ex) */
/* since mx > 0 and my > 0, we can use mpz_tdiv_qr in all cases */
mpz_tdiv_qr (mx, r, mx, my);
/* 0 <= |r| <= |my|, r has the same sign as mx */
}
if (rnd_q == MPFR_RNDN)
q_is_odd = mpz_tstbit (mx, 0);
if (quo) /* mx is the quotient */
{
mpz_tdiv_r_2exp (mx, mx, WANTED_BITS);
*quo = mpz_get_si (mx);
}
}
else /* ex > ey */
{
if (quo) /* remquo case */
/* for remquo, to get the low WANTED_BITS more bits of the quotient,
we first compute R = X mod Y*2^WANTED_BITS, where X and Y are
defined below. Then the low WANTED_BITS of the quotient are
floor(R/Y). */
mpz_mul_2exp (my, my, WANTED_BITS); /* 2^WANTED_BITS*Y */
else if (rnd_q == MPFR_RNDN) /* remainder case */
/* Let X = mx*2^(ex-ey) and Y = my. Then both X and Y are integers.
Assume X = R mod Y, then x = X*2^ey = R*2^ey mod (Y*2^ey=y).
To be able to perform the rounding, we need the least significant
bit of the quotient, i.e., one more bit in the remainder,
which is obtained by dividing by 2Y. */
mpz_mul_2exp (my, my, 1); /* 2Y */
mpz_set_ui (r, 2);
mpz_powm_ui (r, r, ex - ey, my); /* 2^(ex-ey) mod my */
mpz_mul (r, r, mx);
mpz_mod (r, r, my);
if (quo) /* now 0 <= r < 2^WANTED_BITS*Y */
{
mpz_fdiv_q_2exp (my, my, WANTED_BITS); /* back to Y */
mpz_tdiv_qr (mx, r, r, my);
/* oldr = mx*my + newr */
*quo = mpz_get_si (mx);
q_is_odd = *quo & 1;
}
else if (rnd_q == MPFR_RNDN) /* now 0 <= r < 2Y in the remainder case */
{
mpz_fdiv_q_2exp (my, my, 1); /* back to Y */
/* least significant bit of q */
q_is_odd = mpz_cmpabs (r, my) >= 0;
if (q_is_odd)
mpz_sub (r, r, my);
}
/* now 0 <= |r| < |my|, and if needed,
q_is_odd is the least significant bit of q */
}
if (mpz_cmp_ui (r, 0) == 0)
{
inex = mpfr_set_ui (rem, 0, MPFR_RNDN);
/* take into account sign of x */
if (signx < 0)
mpfr_neg (rem, rem, MPFR_RNDN);
}
else
{
if (rnd_q == MPFR_RNDN)
{
/* FIXME: the comparison 2*r < my could be done more efficiently
at the mpn level */
mpz_mul_2exp (r, r, 1);
/* if tiny=1, we should compare r with my*2^(ey-ex) */
if (tiny)
{
if (ex + (mpfr_exp_t) mpz_sizeinbase (r, 2) <
ey + (mpfr_exp_t) mpz_sizeinbase (my, 2))
compare = 0; /* r*2^ex < my*2^ey */
else
{
mpz_mul_2exp (my, my, ey - ex);
compare = mpz_cmpabs (r, my);
}
}
else
compare = mpz_cmpabs (r, my);
mpz_fdiv_q_2exp (r, r, 1);
compare = ((compare > 0) ||
((rnd_q == MPFR_RNDN) && (compare == 0) && q_is_odd));
/* if compare != 0, we need to subtract my to r, and add 1 to quo */
if (compare)
{
mpz_sub (r, r, my);
if (quo && (rnd_q == MPFR_RNDN))
*quo += 1;
}
}
/* take into account sign of x */
if (signx < 0)
mpz_neg (r, r);
inex = mpfr_set_z_2exp (rem, r, ex > ey ? ey : ex, rnd);
}
if (quo)
*quo *= sign;
mpz_clear (mx);
mpz_clear (my);
mpz_clear (r);
return inex;
}
int
mpfr_remainder (mpfr_ptr rem, mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd)
{
return mpfr_rem1 (rem, (long *) 0, MPFR_RNDN, x, y, rnd);
}
int
mpfr_remquo (mpfr_ptr rem, long *quo,
mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd)
{
return mpfr_rem1 (rem, quo, MPFR_RNDN, x, y, rnd);
}
int
mpfr_fmod (mpfr_ptr rem, mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd)
{
return mpfr_rem1 (rem, (long *) 0, MPFR_RNDZ, x, y, rnd);
}
|