1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
|
/* mpfr_lngamma -- lngamma function
Copyright 2005-2017 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* given a precision p, return alpha, such that the argument reduction
will use k = alpha*p*log(2).
Warning: we should always have alpha >= log(2)/(2Pi) ~ 0.11,
and the smallest value of alpha multiplied by the smallest working
precision should be >= 4.
*/
static void
mpfr_gamma_alpha (mpfr_t s, mpfr_prec_t p)
{
MPFR_LOG_FUNC
(("p=%Pu", p),
("s[%Pu]=%.*Rg", mpfr_get_prec (s), mpfr_log_prec, s));
if (p <= 100)
mpfr_set_ui_2exp (s, 614, -10, MPFR_RNDN); /* about 0.6 */
else if (p <= 500)
mpfr_set_ui_2exp (s, 819, -10, MPFR_RNDN); /* about 0.8 */
else if (p <= 1000)
mpfr_set_ui_2exp (s, 1331, -10, MPFR_RNDN); /* about 1.3 */
else if (p <= 2000)
mpfr_set_ui_2exp (s, 1741, -10, MPFR_RNDN); /* about 1.7 */
else if (p <= 5000)
mpfr_set_ui_2exp (s, 2253, -10, MPFR_RNDN); /* about 2.2 */
else if (p <= 10000)
mpfr_set_ui_2exp (s, 3482, -10, MPFR_RNDN); /* about 3.4 */
else
mpfr_set_ui_2exp (s, 9, -1, MPFR_RNDN); /* 4.5 */
}
#ifdef IS_GAMMA
/* This function is called in case of intermediate overflow/underflow.
The s1 and s2 arguments are temporary MPFR numbers, having the
working precision. If the result could be determined, then the
flags are updated via pexpo, y is set to the result, and the
(non-zero) ternary value is returned. Otherwise 0 is returned
in order to perform the next Ziv iteration. */
static int
mpfr_explgamma (mpfr_ptr y, mpfr_srcptr x, mpfr_save_expo_t *pexpo,
mpfr_ptr s1, mpfr_ptr s2, mpfr_rnd_t rnd)
{
mpfr_t t1, t2;
int inex1, inex2, sign;
MPFR_BLOCK_DECL (flags1);
MPFR_BLOCK_DECL (flags2);
MPFR_GROUP_DECL (group);
MPFR_BLOCK (flags1, inex1 = mpfr_lgamma (s1, &sign, x, MPFR_RNDD));
MPFR_ASSERTN (inex1 != 0);
/* s1 = RNDD(lngamma(x)), inexact */
if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags1)))
{
if (MPFR_IS_POS (s1))
{
MPFR_SAVE_EXPO_UPDATE_FLAGS (*pexpo, MPFR_FLAGS_OVERFLOW);
return mpfr_overflow (y, rnd, sign);
}
else
{
MPFR_SAVE_EXPO_UPDATE_FLAGS (*pexpo, MPFR_FLAGS_UNDERFLOW);
return mpfr_underflow (y, rnd == MPFR_RNDN ? MPFR_RNDZ : rnd, sign);
}
}
mpfr_set (s2, s1, MPFR_RNDN); /* exact */
mpfr_nextabove (s2); /* v = RNDU(lngamma(z0)) */
if (sign < 0)
rnd = MPFR_INVERT_RND (rnd); /* since the result with be negated */
MPFR_GROUP_INIT_2 (group, MPFR_PREC (y), t1, t2);
MPFR_BLOCK (flags1, inex1 = mpfr_exp (t1, s1, rnd));
MPFR_BLOCK (flags2, inex2 = mpfr_exp (t2, s2, rnd));
/* t1 is the rounding with mode 'rnd' of a lower bound on |Gamma(x)|,
t2 is the rounding with mode 'rnd' of an upper bound, thus if both
are equal, so is the wanted result. If t1 and t2 differ or the flags
differ, at some point of Ziv's loop they should agree. */
if (mpfr_equal_p (t1, t2) && flags1 == flags2)
{
MPFR_ASSERTN ((inex1 > 0 && inex2 > 0) || (inex1 < 0 && inex2 < 0));
mpfr_set4 (y, t1, MPFR_RNDN, sign); /* exact */
if (sign < 0)
inex1 = - inex1;
MPFR_SAVE_EXPO_UPDATE_FLAGS (*pexpo, flags1);
}
else
inex1 = 0; /* couldn't determine the result */
MPFR_GROUP_CLEAR (group);
return inex1;
}
#else
static int
unit_bit (mpfr_srcptr x)
{
mpfr_exp_t expo;
mpfr_prec_t prec;
mp_limb_t x0;
expo = MPFR_GET_EXP (x);
if (expo <= 0)
return 0; /* |x| < 1 */
prec = MPFR_PREC (x);
if (expo > prec)
return 0; /* y is a multiple of 2^(expo-prec), thus an even integer */
/* Now, the unit bit is represented. */
prec = MPFR_PREC2LIMBS (prec) * GMP_NUMB_BITS - expo;
/* number of represented fractional bits (including the trailing 0's) */
x0 = *(MPFR_MANT (x) + prec / GMP_NUMB_BITS);
/* limb containing the unit bit */
return (x0 >> (prec % GMP_NUMB_BITS)) & 1;
}
#endif
/* FIXME: There is an internal overflow when z is very large.
Simple overflow detection with possible false negatives?
For the particular cases near the overflow boundary,
scaling by a power of two?
*/
/* lngamma(x) = log(gamma(x)).
We use formula [6.1.40] from Abramowitz&Stegun:
lngamma(z) = (z-1/2)*log(z) - z + 1/2*log(2*Pi)
+ sum (Bernoulli[2m]/(2m)/(2m-1)/z^(2m-1),m=1..infinity)
According to [6.1.42], if the sum is truncated after m=n, the error
R_n(z) is bounded by |B[2n+2]|*K(z)/(2n+1)/(2n+2)/|z|^(2n+1)
where K(z) = max (z^2/(u^2+z^2)) for u >= 0.
For z real, |K(z)| <= 1 thus R_n(z) is bounded by the first neglected term.
*/
#ifdef IS_GAMMA
#define GAMMA_FUNC mpfr_gamma_aux
#else
#define GAMMA_FUNC mpfr_lngamma_aux
#endif
static int
GAMMA_FUNC (mpfr_ptr y, mpfr_srcptr z0, mpfr_rnd_t rnd)
{
mpfr_prec_t precy, w; /* working precision */
mpfr_t s, t, u, v, z;
unsigned long m, k, maxm, l;
int compared, inexact;
mpfr_exp_t err_s, err_t;
double d;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ZIV_DECL (loop);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (z0), mpfr_log_prec, z0, rnd),
("y[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec (y), mpfr_log_prec, y, inexact));
compared = mpfr_cmp_ui (z0, 1);
MPFR_SAVE_EXPO_MARK (expo);
#ifndef IS_GAMMA /* lngamma or lgamma */
if (compared == 0 || (compared > 0 && mpfr_cmp_ui (z0, 2) == 0))
{
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_set_ui (y, 0, MPFR_RNDN); /* lngamma(1 or 2) = +0 */
}
/* Deal with very large inputs: according to [6.1.42], if we denote
R_n(z) = lngamma(z) - (z-1/2)*log(z) + z - 1/2*log(2*Pi), we have
|R_n(z)| <= B_2/2/z, thus for z >= 2 we have
|lngamma(z) - [z*(log(z) - 1)]| < 1/2*log(z) + 1. */
if (compared > 0 && MPFR_GET_EXP (z0) >= (mpfr_exp_t) MPFR_PREC(y) + 2)
{
/* Since PREC(y) >= 2, this ensures EXP(z0) >= 4, thus |z0| >= 8,
thus 1/2*log(z0) + 1 < log(z0).
Since the largest possible z is < 2^(2^62) on a 64-bit machine,
the largest value of log(z) is 2^62*log(2.) < 3.2e18 < 2^62,
thus if we use at least 62 bits of precision, then log(t)-1 will
be exact */
mpfr_init2 (t, MPFR_PREC(y) >= 52 ? MPFR_PREC(y) + 10 : 62);
mpfr_log (t, z0, MPFR_RNDU); /* error < 1 ulp */
inexact = mpfr_sub_ui (t, t, 1, MPFR_RNDU); /* err < 2 ulps, since the
exponent of t might have
decreased */
MPFR_ASSERTD(inexact == 0);
mpfr_mul (t, z0, t, MPFR_RNDU); /* err < 1+2*2=5 ulps according to
"Generic error on multiplication"
in algorithms.tex */
if (MPFR_IS_INF(t))
{
mpfr_clear (t);
MPFR_SAVE_EXPO_FREE (expo);
inexact = mpfr_overflow (y, rnd, 1);
return inexact;
}
if (MPFR_GET_EXP(t) - MPFR_PREC(t) >= 62)
{
/* then ulp(t) >= 2^62 > log(z0) thus the total error is bounded
by 6 ulp(t) */
if (MPFR_CAN_ROUND (t, MPFR_PREC(t) - 3, MPFR_PREC(y), rnd))
{
inexact = mpfr_set (y, t, rnd);
mpfr_clear (t);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd);
}
}
mpfr_clear (t);
}
/* Deal here with tiny inputs. We have for -0.3 <= x <= 0.3:
- log|x| - gamma*x <= log|gamma(x)| <= - log|x| - gamma*x + x^2 */
if (MPFR_GET_EXP (z0) <= - (mpfr_exp_t) MPFR_PREC(y))
{
mpfr_t l, h, g;
int ok, inex1, inex2;
mpfr_prec_t prec = MPFR_PREC(y) + 14;
MPFR_ZIV_DECL (loop);
MPFR_ZIV_INIT (loop, prec);
do
{
mpfr_init2 (l, prec);
if (MPFR_IS_POS(z0))
{
mpfr_log (l, z0, MPFR_RNDU); /* upper bound for log(z0) */
mpfr_init2 (h, MPFR_PREC(l));
}
else
{
mpfr_init2 (h, MPFR_PREC(z0));
mpfr_neg (h, z0, MPFR_RNDN); /* exact */
mpfr_log (l, h, MPFR_RNDU); /* upper bound for log(-z0) */
mpfr_set_prec (h, MPFR_PREC(l));
}
mpfr_neg (l, l, MPFR_RNDD); /* lower bound for -log(|z0|) */
mpfr_set (h, l, MPFR_RNDD); /* exact */
mpfr_nextabove (h); /* upper bound for -log(|z0|), avoids two calls
to mpfr_log */
mpfr_init2 (g, MPFR_PREC(l));
/* if z0>0, we need an upper approximation of Euler's constant
for the left bound */
mpfr_const_euler (g, MPFR_IS_POS(z0) ? MPFR_RNDU : MPFR_RNDD);
mpfr_mul (g, g, z0, MPFR_RNDD);
mpfr_sub (l, l, g, MPFR_RNDD);
mpfr_const_euler (g, MPFR_IS_POS(z0) ? MPFR_RNDD : MPFR_RNDU); /* cached */
mpfr_mul (g, g, z0, MPFR_RNDU);
mpfr_sub (h, h, g, MPFR_RNDD);
mpfr_mul (g, z0, z0, MPFR_RNDU);
mpfr_add (h, h, g, MPFR_RNDU);
inex1 = mpfr_prec_round (l, MPFR_PREC(y), rnd);
inex2 = mpfr_prec_round (h, MPFR_PREC(y), rnd);
/* Caution: we not only need l = h, but both inexact flags should
agree. Indeed, one of the inexact flags might be zero. In that
case if we assume lngamma(z0) cannot be exact, the other flag
should be correct. We are conservative here and request that both
inexact flags agree. */
ok = SAME_SIGN (inex1, inex2) && mpfr_cmp (l, h) == 0;
if (ok)
mpfr_set (y, h, rnd); /* exact */
mpfr_clear (l);
mpfr_clear (h);
mpfr_clear (g);
if (ok)
{
MPFR_ZIV_FREE (loop);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inex1, rnd);
}
/* since we have log|gamma(x)| = - log|x| - gamma*x + O(x^2),
if x ~ 2^(-n), then we have a n-bit approximation, thus
we can try again with a working precision of n bits,
especially when n >> PREC(y).
Otherwise we would use the reflection formula evaluating x-1,
which would need precision n. */
MPFR_ZIV_NEXT (loop, prec);
}
while (prec <= - MPFR_GET_EXP (z0));
MPFR_ZIV_FREE (loop);
}
#endif
precy = MPFR_PREC(y);
mpfr_init2 (s, MPFR_PREC_MIN);
mpfr_init2 (t, MPFR_PREC_MIN);
mpfr_init2 (u, MPFR_PREC_MIN);
mpfr_init2 (v, MPFR_PREC_MIN);
mpfr_init2 (z, MPFR_PREC_MIN);
inexact = 0; /* 0 means: result y not set yet */
if (compared < 0)
{
mpfr_exp_t err_u;
/* use reflection formula:
gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x)
thus lngamma(x) = log(Pi*(x-1)/sin(Pi*(2-x))) - lngamma(2-x) */
w = precy + MPFR_INT_CEIL_LOG2 (precy);
w += MPFR_INT_CEIL_LOG2 (w) + 14;
MPFR_ZIV_INIT (loop, w);
while (1)
{
MPFR_ASSERTD(w >= 3);
mpfr_set_prec (s, w);
mpfr_set_prec (t, w);
mpfr_set_prec (u, w);
mpfr_set_prec (v, w);
/* In the following, we write r for a real of absolute value
at most 2^(-w). Different instances of r may represent different
values. */
mpfr_ui_sub (s, 2, z0, MPFR_RNDD); /* s = (2-z0) * (1+2r) >= 1 */
mpfr_const_pi (t, MPFR_RNDN); /* t = Pi * (1+r) */
mpfr_lngamma (u, s, MPFR_RNDN); /* lngamma(2-x) */
/* Let s = (2-z0) + h. By construction, -(2-z0)*2^(1-w) <= h <= 0.
We have lngamma(s) = lngamma(2-z0) + h*Psi(z), z in [2-z0+h,2-z0].
Since 2-z0+h = s >= 1 and |Psi(x)| <= max(1,log(x)) for x >= 1,
the error on u is bounded by
ulp(u)/2 + (2-z0)*max(1,log(2-z0))*2^(1-w)
= (1/2 + (2-z0)*max(1,log(2-z0))*2^(1-E(u))) ulp(u) */
d = (double) MPFR_GET_EXP(s) * 0.694; /* upper bound for log(2-z0) */
if (MPFR_IS_ZERO(u)) /* in that case the error on u is zero */
err_u = 0;
else
err_u = MPFR_GET_EXP(s) + __gmpfr_ceil_log2 (d) + 1 - MPFR_GET_EXP(u);
err_u = (err_u >= 0) ? err_u + 1 : 0;
/* now the error on u is bounded by 2^err_u ulps */
mpfr_mul (s, s, t, MPFR_RNDN); /* Pi*(2-x) * (1+r)^4 */
err_s = MPFR_GET_EXP(s); /* 2-x <= 2^err_s */
mpfr_sin (s, s, MPFR_RNDN); /* sin(Pi*(2-x)) */
/* the error on s is bounded by 1/2*ulp(s) + [(1+2^(-w))^4-1]*(2-x)
<= 1/2*ulp(s) + 5*2^(-w)*(2-x) for w >= 3
<= (1/2 + 5 * 2^(-E(s)) * (2-x)) ulp(s) */
err_s += 3 - MPFR_GET_EXP(s);
err_s = (err_s >= 0) ? err_s + 1 : 0;
/* the error on s is bounded by 2^err_s ulp(s), thus by
2^(err_s+1)*2^(-w)*|s| since ulp(s) <= 2^(1-w)*|s|.
Now n*2^(-w) can always be written |(1+r)^n-1| for some
|r|<=2^(-w), thus taking n=2^(err_s+1) we see that
|S - s| <= |(1+r)^(2^(err_s+1))-1| * |s|, where S is the
true value.
In fact if ulp(s) <= ulp(S) the same inequality holds for
|S| instead of |s| in the right hand side, i.e., we can
write s = (1+r)^(2^(err_s+1)) * S.
But if ulp(S) < ulp(s), we need to add one ``bit'' to the error,
to get s = (1+r)^(2^(err_s+2)) * S. This is true since with
E = n*2^(-w) we have |s - S| <= E * |s|, thus
|s - S| <= E/(1-E) * |S|.
Now E/(1-E) is bounded by 2E as long as E<=1/2,
and 2E can be written (1+r)^(2n)-1 as above.
*/
err_s += 2; /* exponent of relative error */
mpfr_sub_ui (v, z0, 1, MPFR_RNDN); /* v = (x-1) * (1+r) */
mpfr_mul (v, v, t, MPFR_RNDN); /* v = Pi*(x-1) * (1+r)^3 */
mpfr_div (v, v, s, MPFR_RNDN); /* Pi*(x-1)/sin(Pi*(2-x)) */
mpfr_abs (v, v, MPFR_RNDN);
/* (1+r)^(3+2^err_s+1) */
err_s = (err_s <= 1) ? 3 : err_s + 1;
/* now (1+r)^M with M <= 2^err_s */
mpfr_log (v, v, MPFR_RNDN);
/* log(v*(1+e)) = log(v)+log(1+e) where |e| <= 2^(err_s-w).
Since |log(1+e)| <= 2*e for |e| <= 1/4, the error on v is
bounded by ulp(v)/2 + 2^(err_s+1-w). */
if (err_s + 2 > w)
{
w += err_s + 2;
}
else
{
/* if v = 0 here, it was 1 before the call to mpfr_log,
thus the error on v was zero */
if (!MPFR_IS_ZERO(v))
err_s += 1 - MPFR_GET_EXP(v);
err_s = (err_s >= 0) ? err_s + 1 : 0;
/* the error on v is bounded by 2^err_s ulps */
err_u += MPFR_GET_EXP(u); /* absolute error on u */
if (!MPFR_IS_ZERO(v)) /* same as above */
err_s += MPFR_GET_EXP(v); /* absolute error on v */
mpfr_sub (s, v, u, MPFR_RNDN);
/* the total error on s is bounded by ulp(s)/2 + 2^(err_u-w)
+ 2^(err_s-w) <= ulp(s)/2 + 2^(max(err_u,err_s)+1-w) */
err_s = (err_s >= err_u) ? err_s : err_u;
err_s += 1 - MPFR_GET_EXP(s); /* error is 2^err_s ulp(s) */
err_s = (err_s >= 0) ? err_s + 1 : 0;
if (MPFR_CAN_ROUND (s, w - err_s, precy, rnd))
goto end;
}
MPFR_ZIV_NEXT (loop, w);
}
MPFR_ZIV_FREE (loop);
}
/* now z0 > 1 */
MPFR_ASSERTD (compared > 0);
/* since k is O(w), the value of log(z0*...*(z0+k-1)) is about w*log(w),
so there is a cancellation of ~log(w) in the argument reconstruction */
w = precy + MPFR_INT_CEIL_LOG2 (precy);
w += MPFR_INT_CEIL_LOG2 (w) + 13;
MPFR_ZIV_INIT (loop, w);
while (1)
{
MPFR_ASSERTD (w >= 3);
/* argument reduction: we compute gamma(z0 + k), where the series
has error term B_{2n}/(z0+k)^(2n) ~ (n/(Pi*e*(z0+k)))^(2n)
and we need k steps of argument reconstruction. Assuming k is large
with respect to z0, and k = n, we get 1/(Pi*e)^(2n) ~ 2^(-w), i.e.,
k ~ w*log(2)/2/log(Pi*e) ~ 0.1616 * w.
However, since the series is slightly more expensive to compute,
the optimal value seems to be k ~ 0.25 * w experimentally (with
caching of Bernoulli numbers).
For only one computation of gamma with large precision, it is better
to set k to a larger value, say k ~ w. */
mpfr_set_prec (s, 53);
mpfr_gamma_alpha (s, w);
mpfr_set_ui_2exp (s, 4, -4, MPFR_RNDU);
mpfr_mul_ui (s, s, w, MPFR_RNDU);
if (mpfr_cmp (z0, s) < 0)
{
mpfr_sub (s, s, z0, MPFR_RNDU);
k = mpfr_get_ui (s, MPFR_RNDU);
if (k < 3)
k = 3;
}
else
k = 3;
mpfr_set_prec (s, w);
mpfr_set_prec (t, w);
mpfr_set_prec (u, w);
mpfr_set_prec (v, w);
mpfr_set_prec (z, w);
mpfr_add_ui (z, z0, k, MPFR_RNDN);
/* z = (z0+k)*(1+t1) with |t1| <= 2^(-w) */
/* z >= 4 ensures the relative error on log(z) is small,
and also (z-1/2)*log(z)-z >= 0 */
MPFR_ASSERTD (mpfr_cmp_ui (z, 4) >= 0);
mpfr_log (s, z, MPFR_RNDN); /* log(z) */
/* we have s = log((z0+k)*(1+t1))*(1+t2) with |t1|, |t2| <= 2^(-w).
Since w >= 2 and z0+k >= 4, we can write log((z0+k)*(1+t1))
= log(z0+k) * (1+t3) with |t3| <= 2^(-w), thus we have
s = log(z0+k) * (1+t4)^2 with |t4| <= 2^(-w) */
mpfr_mul_2ui (t, z, 1, MPFR_RNDN); /* t = 2z * (1+t5) */
mpfr_sub_ui (t, t, 1, MPFR_RNDN); /* t = 2z-1 * (1+t6)^3 */
/* since we can write 2z*(1+t5) = (2z-1)*(1+t5') with
t5' = 2z/(2z-1) * t5, thus |t5'| <= 8/7 * t5 */
mpfr_mul (s, s, t, MPFR_RNDN); /* (2z-1)*log(z) * (1+t7)^6 */
mpfr_div_2ui (s, s, 1, MPFR_RNDN); /* (z-1/2)*log(z) * (1+t7)^6 */
mpfr_sub (s, s, z, MPFR_RNDN); /* (z-1/2)*log(z)-z */
/* s = [(z-1/2)*log(z)-z]*(1+u)^14, s >= 1/2 */
mpfr_ui_div (u, 1, z, MPFR_RNDN); /* 1/z * (1+u), u <= 1/4 since z >= 4 */
/* the first term is B[2]/2/z = 1/12/z: t=1/12/z, C[2]=1 */
mpfr_div_ui (t, u, 12, MPFR_RNDN); /* 1/(12z) * (1+u)^2, t <= 3/128 */
mpfr_set (v, t, MPFR_RNDN); /* (1+u)^2, v < 2^(-5) */
mpfr_add (s, s, v, MPFR_RNDN); /* (1+u)^15 */
mpfr_mul (u, u, u, MPFR_RNDN); /* 1/z^2 * (1+u)^3 */
/* m <= maxm ensures that 2*m*(2*m+1) <= ULONG_MAX */
maxm = 1UL << (sizeof(unsigned long) * CHAR_BIT / 2 - 1);
/* s:(1+u)^15, t:(1+u)^2, t <= 3/128 */
for (m = 2; MPFR_GET_EXP(v) + (mpfr_exp_t) w >= MPFR_GET_EXP(s); m++)
{
mpfr_mul (t, t, u, MPFR_RNDN); /* (1+u)^(10m-14) */
if (m <= maxm)
{
mpfr_mul_ui (t, t, 2*(m-1)*(2*m-3), MPFR_RNDN);
mpfr_div_ui (t, t, 2*m*(2*m-1), MPFR_RNDN);
mpfr_div_ui (t, t, 2*m*(2*m+1), MPFR_RNDN);
}
else
{
mpfr_mul_ui (t, t, 2*(m-1), MPFR_RNDN);
mpfr_mul_ui (t, t, 2*m-3, MPFR_RNDN);
mpfr_div_ui (t, t, 2*m, MPFR_RNDN);
mpfr_div_ui (t, t, 2*m-1, MPFR_RNDN);
mpfr_div_ui (t, t, 2*m, MPFR_RNDN);
mpfr_div_ui (t, t, 2*m+1, MPFR_RNDN);
}
/* (1+u)^(10m-8) */
/* invariant: t=1/(2m)/(2m-1)/z^(2m-1)/(2m+1)! */
mpfr_mul_z (v, t, mpfr_bernoulli_cache(m), MPFR_RNDN); /* (1+u)^(10m-7) */
MPFR_ASSERTD(MPFR_GET_EXP(v) <= - (2 * m + 3));
mpfr_add (s, s, v, MPFR_RNDN);
}
/* m <= 1/2*Pi*e*z ensures that |v[m]| < 1/2^(2m+3) */
MPFR_ASSERTD ((double) m <= 4.26 * mpfr_get_d (z, MPFR_RNDZ));
/* We have sum([(1+u)^(10m-7)-1]*1/2^(2m+3), m=2..infinity)
<= 1.46*u for u <= 2^(-3).
We have 0 < lngamma(z) - [(z - 1/2) ln(z) - z + 1/2 ln(2 Pi)] < 0.021
for z >= 4, thus since the initial s >= 0.85, the different values of
s differ by at most one binade, and the total rounding error on s
in the for-loop is bounded by 2*(m-1)*ulp(final_s).
The error coming from the v's is bounded by
1.46*2^(-w) <= 2*ulp(final_s).
Thus the total error so far is bounded by [(1+u)^15-1]*s+2m*ulp(s)
<= (2m+47)*ulp(s).
Taking into account the truncation error (which is bounded by the last
term v[] according to 6.1.42 in A&S), the bound is (2m+48)*ulp(s).
*/
/* add 1/2*log(2*Pi) and subtract log(z0*(z0+1)*...*(z0+k-1)) */
mpfr_const_pi (v, MPFR_RNDN); /* v = Pi*(1+u) */
mpfr_mul_2ui (v, v, 1, MPFR_RNDN); /* v = 2*Pi * (1+u) */
/* k >= 3 */
mpfr_set (t, z0, MPFR_RNDN); /* t = z0*(1+u) */
l = 1;
/* replace #if 1 by #if 0 for the naive argument reconstruction */
#if 1
/* We multiply by (z0+1)*(z0+2)*...*(z0+k-1) by blocks of j consecutive
terms where j ~ sqrt(k).
If we multiply naively by z0+1, then by z0+2, ..., then by z0+j,
the multiplicative term for the rounding error is (1+u)^(2j).
The multiplicative term is not larger when we multiply by
Z[j] + c[j-1]*Z[j-1] + ... + c[2]*Z[2] + c[1]*z0 + c[0]
with c[p] integers, and Z[p] = z0^p * (1+u)^(p-1).
Note that all terms are positive.
Indeed, since c[1] is exact, c[1]*z0 corresponds to (1+u),
then c[1]*z0 + c[0] corresponds to (1+u)^2,
c[2]*Z[2] + c[1]*z0 + c[0] to (1+u)^3, ...,
c[j-1]*Z[j-1] + ... + c[0] to (1+u)^j,
and Z[j] + c[j-1]*Z[j-1] + ... + c[1]*z0 + c[0] to (1+u)^(j+1).
With the accumulation in t, we get (1+u)^(j+2) and j+2 <= 2j. */
{
unsigned long j, i, p;
mpfr_t *Z;
mpz_t *c;
for (j = 2; (j + 1) * (j + 1) < k; j++);
/* Z[i] stores z0^i for i <= j */
Z = (mpfr_t *) mpfr_allocate_func ((j + 1) * sizeof (mpfr_t));
for (i = 2; i <= j; i++)
mpfr_init2 (Z[i], w);
mpfr_sqr (Z[2], z0, MPFR_RNDN);
for (i = 3; i <= j; i++)
if ((i & 1) == 0)
mpfr_sqr (Z[i], Z[i >> 1], MPFR_RNDN);
else
mpfr_mul (Z[i], Z[i-1], z0, MPFR_RNDN);
c = (mpz_t *) mpfr_allocate_func ((j + 1) * sizeof (mpz_t));
for (i = 0; i <= j; i++)
mpz_init (c[i]);
for (; l + j <= k; l += j)
{
/* c[i] is the coefficient of x^i in (x+l)*...*(x+l+j-1) */
mpz_set_ui (c[0], 1);
for (i = 0; i < j; i++)
/* multiply (x+l)*(x+l+1)*...*(x+l+i-1) by x+l+i:
(b[i]*x^i + b[i-1]*x^(i-1) + ... + b[0])*(x+l+i) =
b[i]*x^(i+1) + (b[i-1]+(l+i)*b[i])*x^i + ...
+ (b[0]+(l+i)*b[1])*x + i*b[0] */
{
mpz_set (c[i+1], c[i]); /* b[i]*x^(i+1) */
for (p = i; p > 0; p--)
{
mpz_mul_ui (c[p], c[p], l + i);
mpz_add (c[p], c[p], c[p-1]); /* b[p-1]+(l+i)*b[p] */
}
mpz_mul_ui (c[0], c[0], l+i); /* i*b[0] */
}
/* now compute z0^j + c[j-1]*z0^(j-1) + ... + c[1]*z0 + c[0] */
mpfr_set_z (u, c[0], MPFR_RNDN);
for (i = 0; i < j; i++)
{
mpfr_mul_z (z, (i == 0) ? z0 : Z[i+1], c[i+1], MPFR_RNDN);
mpfr_add (u, u, z, MPFR_RNDN);
}
mpfr_mul (t, t, u, MPFR_RNDN);
}
for (i = 0; i <= j; i++)
mpz_clear (c[i]);
mpfr_free_func (c, (j + 1) * sizeof (mpz_t));
for (i = 2; i <= j; i++)
mpfr_clear (Z[i]);
mpfr_free_func (Z, (j + 1) * sizeof (mpfr_t));
}
#endif /* end of fast argument reconstruction */
for (; l < k; l++)
{
mpfr_add_ui (u, z0, l, MPFR_RNDN); /* u = (z0+l)*(1+u) */
mpfr_mul (t, t, u, MPFR_RNDN); /* (1+u)^(2l+1) */
}
/* now t: (1+u)^(2k-1) */
/* instead of computing log(sqrt(2*Pi)/t), we compute
1/2*log(2*Pi/t^2), which trades a square root for a square */
mpfr_mul (t, t, t, MPFR_RNDN); /* (z0*...*(z0+k-1))^2, (1+u)^(4k-1) */
mpfr_div (v, v, t, MPFR_RNDN);
/* 2*Pi/(z0*...*(z0+k-1))^2 (1+u)^(4k+1) */
#ifdef IS_GAMMA
err_s = MPFR_GET_EXP(s);
mpfr_exp (s, s, MPFR_RNDN);
/* If s is +Inf, we compute exp(lngamma(z0)). */
if (mpfr_inf_p (s))
{
inexact = mpfr_explgamma (y, z0, &expo, s, t, rnd);
if (inexact)
goto end0;
else
goto ziv_next;
}
/* before the exponential, we have s = s0 + h where
|h| <= (2m+48)*ulp(s), thus exp(s0) = exp(s) * exp(-h).
For |h| <= 1/4, we have |exp(h)-1| <= 1.2*|h| thus
|exp(s) - exp(s0)| <= 1.2 * exp(s) * (2m+48)* 2^(EXP(s)-w). */
/* d = 1.2 * (2.0 * (double) m + 48.0); */
/* the error on s is bounded by d*2^err_s * 2^(-w) */
mpfr_sqrt (t, v, MPFR_RNDN);
/* let v0 be the exact value of v. We have v = v0*(1+u)^(4k+1),
thus t = sqrt(v0)*(1+u)^(2k+3/2). */
mpfr_mul (s, s, t, MPFR_RNDN);
/* the error on input s is bounded by (1+u)^(d*2^err_s),
and that on t is (1+u)^(2k+3/2), thus the
total error is (1+u)^(d*2^err_s+2k+5/2) */
/* err_s += __gmpfr_ceil_log2 (d); */
/* since d = 1.2 * (2m+48), ceil(log2(d)) = 2 + ceil(log2(0.6*m+14.4))
<= 2 + ceil(log2(0.6*m+15)) */
{
unsigned long mm = (1 + m / 5) * 3; /* 0.6*m <= mm */
err_s += 2 + __gmpfr_int_ceil_log2 (mm + 15);
}
err_t = __gmpfr_ceil_log2 (2.0 * (double) k + 2.5);
err_s = (err_s >= err_t) ? err_s + 1 : err_t + 1;
#else
mpfr_log (t, v, MPFR_RNDN);
/* let v0 be the exact value of v. We have v = v0*(1+u)^(4k+1),
thus log(v) = log(v0) + (4k+1)*log(1+u). Since |log(1+u)/u| <= 1.07
for |u| <= 2^(-3), the absolute error on log(v) is bounded by
1.07*(4k+1)*u, and the rounding error by ulp(t). */
mpfr_div_2ui (t, t, 1, MPFR_RNDN);
/* the error on t is now bounded by ulp(t) + 0.54*(4k+1)*2^(-w).
We have sqrt(2*Pi)/(z0*(z0+1)*...*(z0+k-1)) <= sqrt(2*Pi)/k! <= 0.5
since k>=3, thus t <= -0.5 and ulp(t) >= 2^(-w).
Thus the error on t is bounded by (2.16*k+1.54)*ulp(t). */
err_t = MPFR_GET_EXP(t) + (mpfr_exp_t)
__gmpfr_ceil_log2 (2.2 * (double) k + 1.6);
err_s = MPFR_GET_EXP(s) + (mpfr_exp_t)
__gmpfr_ceil_log2 (2.0 * (double) m + 48.0);
mpfr_add (s, s, t, MPFR_RNDN); /* this is a subtraction in fact */
/* the final error in ulp(s) is
<= 1 + 2^(err_t-EXP(s)) + 2^(err_s-EXP(s))
<= 2^(1+max(err_t,err_s)-EXP(s)) if err_t <> err_s
<= 2^(2+max(err_t,err_s)-EXP(s)) if err_t = err_s */
err_s = (err_t == err_s) ? 1 + err_s : ((err_t > err_s) ? err_t : err_s);
err_s += 1 - MPFR_GET_EXP(s);
#endif
if (MPFR_LIKELY (MPFR_CAN_ROUND (s, w - err_s, precy, rnd)))
break;
#ifdef IS_GAMMA
ziv_next:
#endif
MPFR_ZIV_NEXT (loop, w);
}
#ifdef IS_GAMMA
end0:
#endif
end:
if (inexact == 0)
inexact = mpfr_set (y, s, rnd);
MPFR_ZIV_FREE (loop);
mpfr_clear (s);
mpfr_clear (t);
mpfr_clear (u);
mpfr_clear (v);
mpfr_clear (z);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd);
}
#ifndef IS_GAMMA
int
mpfr_lngamma (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd)
{
int inex;
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd),
("y[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec (y), mpfr_log_prec, y, inex));
/* special cases */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x) ||
(MPFR_IS_NEG (x) && mpfr_integer_p (x))))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else /* lngamma(+/-Inf) = lngamma(nonpositive integer) = +Inf */
{
if (!MPFR_IS_INF (x))
MPFR_SET_DIVBY0 ();
MPFR_SET_INF (y);
MPFR_SET_POS (y);
MPFR_RET (0); /* exact */
}
}
/* if -2k-1 < x < -2k <= 0, then lngamma(x) = NaN */
if (MPFR_IS_NEG (x) && unit_bit (x) == 0)
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
inex = mpfr_lngamma_aux (y, x, rnd);
return inex;
}
int
mpfr_lgamma (mpfr_ptr y, int *signp, mpfr_srcptr x, mpfr_rnd_t rnd)
{
int inex;
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd),
("y[%Pu]=%.*Rg signp=%d inexact=%d",
mpfr_get_prec (y), mpfr_log_prec, y, *signp, inex));
*signp = 1; /* most common case */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else
{
if (MPFR_IS_ZERO (x))
MPFR_SET_DIVBY0 ();
*signp = MPFR_INT_SIGN (x);
MPFR_SET_INF (y);
MPFR_SET_POS (y);
MPFR_RET (0);
}
}
if (MPFR_IS_NEG (x))
{
if (mpfr_integer_p (x))
{
MPFR_SET_INF (y);
MPFR_SET_POS (y);
MPFR_SET_DIVBY0 ();
MPFR_RET (0);
}
if (unit_bit (x) == 0)
*signp = -1;
/* For tiny negative x, we have gamma(x) = 1/x - euler + O(x),
thus |gamma(x)| = -1/x + euler + O(x), and
log |gamma(x)| = -log(-x) - euler*x + O(x^2).
More precisely we have for -0.4 <= x < 0:
-log(-x) <= log |gamma(x)| <= -log(-x) - x.
Since log(x) is not representable, we may have an instance of the
Table Maker Dilemma. The only way to ensure correct rounding is to
compute an interval [l,h] such that l <= -log(-x) and
-log(-x) - x <= h, and check whether l and h round to the same number
for the target precision and rounding modes. */
if (MPFR_EXP(x) + 1 <= - (mpfr_exp_t) MPFR_PREC(y))
/* since PREC(y) >= 1, this ensures EXP(x) <= -2,
thus |x| <= 0.25 < 0.4 */
{
mpfr_t l, h;
int ok, inex2;
mpfr_prec_t w = MPFR_PREC (y) + 14;
mpfr_exp_t expl;
while (1)
{
mpfr_init2 (l, w);
mpfr_init2 (h, w);
/* we want a lower bound on -log(-x), thus an upper bound
on log(-x), thus an upper bound on -x. */
mpfr_neg (l, x, MPFR_RNDU); /* upper bound on -x */
mpfr_log (l, l, MPFR_RNDU); /* upper bound for log(-x) */
mpfr_neg (l, l, MPFR_RNDD); /* lower bound for -log(-x) */
mpfr_neg (h, x, MPFR_RNDD); /* lower bound on -x */
mpfr_log (h, h, MPFR_RNDD); /* lower bound on log(-x) */
mpfr_neg (h, h, MPFR_RNDU); /* upper bound for -log(-x) */
mpfr_sub (h, h, x, MPFR_RNDU); /* upper bound for -log(-x) - x */
inex = mpfr_prec_round (l, MPFR_PREC (y), rnd);
inex2 = mpfr_prec_round (h, MPFR_PREC (y), rnd);
/* Caution: we not only need l = h, but both inexact flags
should agree. Indeed, one of the inexact flags might be
zero. In that case if we assume ln|gamma(x)| cannot be
exact, the other flag should be correct. We are conservative
here and request that both inexact flags agree. */
ok = SAME_SIGN (inex, inex2) && mpfr_equal_p (l, h);
if (ok)
mpfr_set (y, h, rnd); /* exact */
else
expl = MPFR_EXP (l);
mpfr_clear (l);
mpfr_clear (h);
if (ok)
return inex;
/* if ulp(log(-x)) <= |x| there is no reason to loop,
since the width of [l, h] will be at least |x| */
if (expl < MPFR_EXP(x) + (mpfr_exp_t) w)
break;
w += MPFR_INT_CEIL_LOG2(w) + 3;
}
}
}
inex = mpfr_lngamma_aux (y, x, rnd);
return inex;
}
#endif
|