1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
/* mpfr_exp2 -- power of 2 function 2^y
Copyright 2001-2019 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* The computation of y = 2^z is done by *
* y = exp(z*log(2)). The result is exact iff z is an integer. */
int
mpfr_exp2 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
int inexact, inex2;
long xint;
mpfr_t xfrac;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode),
("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec(y), mpfr_log_prec, y,
inexact));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (x))
{
if (MPFR_IS_POS (x))
MPFR_SET_INF (y);
else
MPFR_SET_ZERO (y);
MPFR_SET_POS (y);
MPFR_RET (0);
}
else /* 2^0 = 1 */
{
MPFR_ASSERTD (MPFR_IS_ZERO(x));
return mpfr_set_ui (y, 1, rnd_mode);
}
}
/* Since the smallest representable non-zero float is 1/2 * 2^emin,
if x <= emin - 2, the result is either 1/2 * 2^emin or 0.
Warning, for emin - 2 < x < emin - 1, we cannot conclude, since 2^x
might round to 2^(emin - 1) for rounding away or to nearest, and there
might be no underflow, since we consider underflow "after rounding". */
MPFR_STAT_STATIC_ASSERT (MPFR_EMIN_MIN >= LONG_MIN + 2);
if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emin - 2) <= 0))
return mpfr_underflow (y, rnd_mode == MPFR_RNDN ? MPFR_RNDZ : rnd_mode, 1);
MPFR_STAT_STATIC_ASSERT (MPFR_EMAX_MAX <= LONG_MAX);
if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emax) >= 0))
return mpfr_overflow (y, rnd_mode, 1);
/* We now know that emin - 2 < x < emax. Note that an underflow or
overflow is still possible (we have eliminated only easy cases). */
MPFR_SAVE_EXPO_MARK (expo);
/* 2^x = 1 + x*log(2) + O(x^2) for x near zero, and for |x| <= 1 we have
|2^x - 1| <= x < 2^EXP(x). If x > 0 we must round away from 0 (dir=1);
if x < 0 we must round toward 0 (dir=0). */
MPFR_SMALL_INPUT_AFTER_SAVE_EXPO (y, __gmpfr_one, - MPFR_GET_EXP (x), 0,
MPFR_IS_POS (x), rnd_mode, expo, {});
xint = mpfr_get_si (x, MPFR_RNDZ);
mpfr_init2 (xfrac, MPFR_PREC (x));
MPFR_DBGRES (inexact = mpfr_sub_si (xfrac, x, xint, MPFR_RNDN));
MPFR_ASSERTD (inexact == 0);
if (MPFR_IS_ZERO (xfrac))
{
/* Here, emin - 1 <= x <= emax - 1, so that an underflow or overflow
will not be possible. */
mpfr_set_ui (y, 1, MPFR_RNDN);
inexact = 0;
}
else
{
/* Declaration of the intermediary variable */
mpfr_t t;
/* Declaration of the size variable */
mpfr_prec_t Ny = MPFR_PREC(y); /* target precision */
mpfr_prec_t Nt; /* working precision */
mpfr_exp_t err; /* error */
MPFR_ZIV_DECL (loop);
/* compute the precision of intermediary variable */
/* the optimal number of bits : see algorithms.tex */
Nt = Ny + 5 + MPFR_INT_CEIL_LOG2 (Ny);
/* initialize of intermediary variable */
mpfr_init2 (t, Nt);
/* First computation */
MPFR_ZIV_INIT (loop, Nt);
for (;;)
{
/* compute exp(x*ln(2))*/
mpfr_const_log2 (t, MPFR_RNDU); /* ln(2) */
mpfr_mul (t, xfrac, t, MPFR_RNDU); /* xfrac * ln(2) */
err = Nt - (MPFR_GET_EXP (t) + 2); /* Estimate of the error */
mpfr_exp (t, t, MPFR_RNDN); /* exp(xfrac * ln(2)) */
if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
break;
/* Actualisation of the precision */
MPFR_ZIV_NEXT (loop, Nt);
mpfr_set_prec (t, Nt);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (y, t, rnd_mode);
mpfr_clear (t);
}
mpfr_clear (xfrac);
if (MPFR_UNLIKELY (rnd_mode == MPFR_RNDN && xint == __gmpfr_emin - 1 &&
MPFR_GET_EXP (y) == 0 && mpfr_powerof2_raw (y)))
{
/* y was rounded down to 1/2 and the rounded value with an unbounded
exponent range would be 2^(emin-2), i.e. the midpoint between 0
and the smallest positive FP number. This is a double rounding
problem: we should not round to 0, but to (1/2) * 2^emin. */
MPFR_SET_EXP (y, __gmpfr_emin);
inexact = 1;
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_UNDERFLOW);
}
else
{
MPFR_CLEAR_FLAGS ();
inex2 = mpfr_mul_2si (y, y, xint, rnd_mode);
if (inex2 != 0) /* underflow or overflow */
inexact = inex2;
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
}
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd_mode);
}
|