1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
/* mpfr_exp2 -- power of 2 function 2^y
Copyright 2001-2015 Free Software Foundation, Inc.
Contributed by the AriC and Caramel projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* The computation of y = 2^z is done by *
* y = exp(z*log(2)). The result is exact iff z is an integer. */
int
mpfr_exp2 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
int inexact;
long xint;
mpfr_t xfrac;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode),
("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec(y), mpfr_log_prec, y,
inexact));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (x))
{
if (MPFR_IS_POS (x))
MPFR_SET_INF (y);
else
MPFR_SET_ZERO (y);
MPFR_SET_POS (y);
MPFR_RET (0);
}
else /* 2^0 = 1 */
{
MPFR_ASSERTD (MPFR_IS_ZERO(x));
return mpfr_set_ui (y, 1, rnd_mode);
}
}
/* since the smallest representable non-zero float is 1/2*2^__gmpfr_emin,
if x < __gmpfr_emin - 1, the result is either 1/2*2^__gmpfr_emin or 0 */
MPFR_ASSERTN (MPFR_EMIN_MIN >= LONG_MIN + 2);
if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emin - 1) < 0))
{
mpfr_rnd_t rnd2 = rnd_mode;
/* in round to nearest mode, round to zero when x <= __gmpfr_emin-2 */
if (rnd_mode == MPFR_RNDN &&
mpfr_cmp_si_2exp (x, __gmpfr_emin - 2, 0) <= 0)
rnd2 = MPFR_RNDZ;
return mpfr_underflow (y, rnd2, 1);
}
MPFR_ASSERTN (MPFR_EMAX_MAX <= LONG_MAX);
if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emax) >= 0))
return mpfr_overflow (y, rnd_mode, 1);
/* We now know that emin - 1 <= x < emax. */
MPFR_SAVE_EXPO_MARK (expo);
/* 2^x = 1 + x*log(2) + O(x^2) for x near zero, and for |x| <= 1 we have
|2^x - 1| <= x < 2^EXP(x). If x > 0 we must round away from 0 (dir=1);
if x < 0 we must round toward 0 (dir=0). */
MPFR_SMALL_INPUT_AFTER_SAVE_EXPO (y, __gmpfr_one, - MPFR_GET_EXP (x), 0,
MPFR_SIGN(x) > 0, rnd_mode, expo, {});
xint = mpfr_get_si (x, MPFR_RNDZ);
mpfr_init2 (xfrac, MPFR_PREC (x));
mpfr_sub_si (xfrac, x, xint, MPFR_RNDN); /* exact */
if (MPFR_IS_ZERO (xfrac))
{
mpfr_set_ui (y, 1, MPFR_RNDN);
inexact = 0;
}
else
{
/* Declaration of the intermediary variable */
mpfr_t t;
/* Declaration of the size variable */
mpfr_prec_t Ny = MPFR_PREC(y); /* target precision */
mpfr_prec_t Nt; /* working precision */
mpfr_exp_t err; /* error */
MPFR_ZIV_DECL (loop);
/* compute the precision of intermediary variable */
/* the optimal number of bits : see algorithms.tex */
Nt = Ny + 5 + MPFR_INT_CEIL_LOG2 (Ny);
/* initialise of intermediary variable */
mpfr_init2 (t, Nt);
/* First computation */
MPFR_ZIV_INIT (loop, Nt);
for (;;)
{
/* compute exp(x*ln(2))*/
mpfr_const_log2 (t, MPFR_RNDU); /* ln(2) */
mpfr_mul (t, xfrac, t, MPFR_RNDU); /* xfrac * ln(2) */
err = Nt - (MPFR_GET_EXP (t) + 2); /* Estimate of the error */
mpfr_exp (t, t, MPFR_RNDN); /* exp(xfrac * ln(2)) */
if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
break;
/* Actualisation of the precision */
MPFR_ZIV_NEXT (loop, Nt);
mpfr_set_prec (t, Nt);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (y, t, rnd_mode);
mpfr_clear (t);
}
mpfr_clear (xfrac);
mpfr_clear_flags ();
mpfr_mul_2si (y, y, xint, MPFR_RNDN); /* exact or overflow */
/* Note: We can have an overflow only when t was rounded up to 2. */
MPFR_ASSERTD (MPFR_IS_PURE_FP (y) || inexact > 0);
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd_mode);
}
|