1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
/* mpfr_erfc -- The Complementary Error Function of a floating-point number
Copyright 2005-2015 Free Software Foundation, Inc.
Contributed by the AriC and Caramel projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* erfc(x) = 1 - erf(x) */
/* Put in y an approximation of erfc(x) for large x, using formulae 7.1.23 and
7.1.24 from Abramowitz and Stegun.
Returns e such that the error is bounded by 2^e ulp(y),
or returns 0 in case of underflow.
*/
static mpfr_exp_t
mpfr_erfc_asympt (mpfr_ptr y, mpfr_srcptr x)
{
mpfr_t t, xx, err;
unsigned long k;
mpfr_prec_t prec = MPFR_PREC(y);
mpfr_exp_t exp_err;
mpfr_init2 (t, prec);
mpfr_init2 (xx, prec);
mpfr_init2 (err, 31);
/* let u = 2^(1-p), and let us represent the error as (1+u)^err
with a bound for err */
mpfr_mul (xx, x, x, MPFR_RNDD); /* err <= 1 */
mpfr_ui_div (xx, 1, xx, MPFR_RNDU); /* upper bound for 1/(2x^2), err <= 2 */
mpfr_div_2ui (xx, xx, 1, MPFR_RNDU); /* exact */
mpfr_set_ui (t, 1, MPFR_RNDN); /* current term, exact */
mpfr_set (y, t, MPFR_RNDN); /* current sum */
mpfr_set_ui (err, 0, MPFR_RNDN);
for (k = 1; ; k++)
{
mpfr_mul_ui (t, t, 2 * k - 1, MPFR_RNDU); /* err <= 4k-3 */
mpfr_mul (t, t, xx, MPFR_RNDU); /* err <= 4k */
/* for -1 < x < 1, and |nx| < 1, we have |(1+x)^n| <= 1+7/4|nx|.
Indeed, for x>=0: log((1+x)^n) = n*log(1+x) <= n*x. Let y=n*x < 1,
then exp(y) <= 1+7/4*y.
For x<=0, let x=-x, we can prove by induction that (1-x)^n >= 1-n*x.*/
mpfr_mul_2si (err, err, MPFR_GET_EXP (y) - MPFR_GET_EXP (t), MPFR_RNDU);
mpfr_add_ui (err, err, 14 * k, MPFR_RNDU); /* 2^(1-p) * t <= 2 ulp(t) */
mpfr_div_2si (err, err, MPFR_GET_EXP (y) - MPFR_GET_EXP (t), MPFR_RNDU);
if (MPFR_GET_EXP (t) + (mpfr_exp_t) prec <= MPFR_GET_EXP (y))
{
/* the truncation error is bounded by |t| < ulp(y) */
mpfr_add_ui (err, err, 1, MPFR_RNDU);
break;
}
if (k & 1)
mpfr_sub (y, y, t, MPFR_RNDN);
else
mpfr_add (y, y, t, MPFR_RNDN);
}
/* the error on y is bounded by err*ulp(y) */
mpfr_mul (t, x, x, MPFR_RNDU); /* rel. err <= 2^(1-p) */
mpfr_div_2ui (err, err, 3, MPFR_RNDU); /* err/8 */
mpfr_add (err, err, t, MPFR_RNDU); /* err/8 + xx */
mpfr_mul_2ui (err, err, 3, MPFR_RNDU); /* err + 8*xx */
mpfr_exp (t, t, MPFR_RNDU); /* err <= 1/2*ulp(t) + err(x*x)*t
<= 1/2*ulp(t)+2*|x*x|*ulp(t)
<= (2*|x*x|+1/2)*ulp(t) */
mpfr_mul (t, t, x, MPFR_RNDN); /* err <= 1/2*ulp(t) + (4*|x*x|+1)*ulp(t)
<= (4*|x*x|+3/2)*ulp(t) */
mpfr_const_pi (xx, MPFR_RNDZ); /* err <= ulp(Pi) */
mpfr_sqrt (xx, xx, MPFR_RNDN); /* err <= 1/2*ulp(xx) + ulp(Pi)/2/sqrt(Pi)
<= 3/2*ulp(xx) */
mpfr_mul (t, t, xx, MPFR_RNDN); /* err <= (8 |xx| + 13/2) * ulp(t) */
mpfr_div (y, y, t, MPFR_RNDN); /* the relative error on input y is bounded
by (1+u)^err with u = 2^(1-p), that on
t is bounded by (1+u)^(8 |xx| + 13/2),
thus that on output y is bounded by
8 |xx| + 7 + err. */
if (MPFR_IS_ZERO(y))
{
/* If y is zero, most probably we have underflow. We check it directly
using the fact that erfc(x) <= exp(-x^2)/sqrt(Pi)/x for x >= 0.
We compute an upper approximation of exp(-x^2)/sqrt(Pi)/x.
*/
mpfr_mul (t, x, x, MPFR_RNDD); /* t <= x^2 */
mpfr_neg (t, t, MPFR_RNDU); /* -x^2 <= t */
mpfr_exp (t, t, MPFR_RNDU); /* exp(-x^2) <= t */
mpfr_const_pi (xx, MPFR_RNDD); /* xx <= sqrt(Pi), cached */
mpfr_mul (xx, xx, x, MPFR_RNDD); /* xx <= sqrt(Pi)*x */
mpfr_div (y, t, xx, MPFR_RNDN); /* if y is zero, this means that the upper
approximation of exp(-x^2)/sqrt(Pi)/x
is nearer from 0 than from 2^(-emin-1),
thus we have underflow. */
exp_err = 0;
}
else
{
mpfr_add_ui (err, err, 7, MPFR_RNDU);
exp_err = MPFR_GET_EXP (err);
}
mpfr_clear (t);
mpfr_clear (xx);
mpfr_clear (err);
return exp_err;
}
int
mpfr_erfc (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd)
{
int inex;
mpfr_t tmp;
mpfr_exp_t te, err;
mpfr_prec_t prec;
mpfr_exp_t emin = mpfr_get_emin ();
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ZIV_DECL (loop);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd),
("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inex));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
/* erfc(+inf) = 0+, erfc(-inf) = 2 erfc (0) = 1 */
else if (MPFR_IS_INF (x))
return mpfr_set_ui (y, MPFR_IS_POS (x) ? 0 : 2, rnd);
else
return mpfr_set_ui (y, 1, rnd);
}
if (MPFR_SIGN (x) > 0)
{
/* by default, emin = 1-2^30, thus the smallest representable
number is 1/2*2^emin = 2^(-2^30):
for x >= 27282, erfc(x) < 2^(-2^30-1), and
for x >= 1787897414, erfc(x) < 2^(-2^62-1).
*/
if ((emin >= -1073741823 && mpfr_cmp_ui (x, 27282) >= 0) ||
mpfr_cmp_ui (x, 1787897414) >= 0)
{
/* May be incorrect if MPFR_EMAX_MAX >= 2^62. */
MPFR_ASSERTN ((MPFR_EMAX_MAX >> 31) >> 31 == 0);
return mpfr_underflow (y, (rnd == MPFR_RNDN) ? MPFR_RNDZ : rnd, 1);
}
}
/* Init stuff */
MPFR_SAVE_EXPO_MARK (expo);
if (MPFR_SIGN (x) < 0)
{
mpfr_exp_t e = MPFR_EXP(x);
/* For x < 0 going to -infinity, erfc(x) tends to 2 by below.
More precisely, we have 2 + 1/sqrt(Pi)/x/exp(x^2) < erfc(x) < 2.
Thus log2 |2 - erfc(x)| <= -log2|x| - x^2 / log(2).
If |2 - erfc(x)| < 2^(-PREC(y)) then the result is either 2 or
nextbelow(2).
For x <= -27282, -log2|x| - x^2 / log(2) <= -2^30.
*/
if ((MPFR_PREC(y) <= 7 && e >= 2) || /* x <= -2 */
(MPFR_PREC(y) <= 25 && e >= 3) || /* x <= -4 */
(MPFR_PREC(y) <= 120 && mpfr_cmp_si (x, -9) <= 0) ||
mpfr_cmp_si (x, -27282) <= 0)
{
near_two:
mpfr_set_ui (y, 2, MPFR_RNDN);
mpfr_set_inexflag ();
if (rnd == MPFR_RNDZ || rnd == MPFR_RNDD)
{
mpfr_nextbelow (y);
inex = -1;
}
else
inex = 1;
goto end;
}
else if (e >= 3) /* more accurate test */
{
mpfr_t t, u;
int near_2;
mpfr_init2 (t, 32);
mpfr_init2 (u, 32);
/* the following is 1/log(2) rounded to zero on 32 bits */
mpfr_set_str_binary (t, "1.0111000101010100011101100101001");
mpfr_sqr (u, x, MPFR_RNDZ);
mpfr_mul (t, t, u, MPFR_RNDZ); /* t <= x^2/log(2) */
mpfr_neg (u, x, MPFR_RNDZ); /* 0 <= u <= |x| */
mpfr_log2 (u, u, MPFR_RNDZ); /* u <= log2(|x|) */
mpfr_add (t, t, u, MPFR_RNDZ); /* t <= log2|x| + x^2 / log(2) */
/* Taking into account that mpfr_exp_t >= mpfr_prec_t */
mpfr_set_exp_t (u, MPFR_PREC (y), MPFR_RNDU);
near_2 = mpfr_cmp (t, u) >= 0; /* 1 if PREC(y) <= u <= t <= ... */
mpfr_clear (t);
mpfr_clear (u);
if (near_2)
goto near_two;
}
}
/* erfc(x) ~ 1, with error < 2^(EXP(x)+1) */
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, __gmpfr_one, - MPFR_GET_EXP (x) - 1,
0, MPFR_SIGN(x) < 0,
rnd, inex = _inexact; goto end);
prec = MPFR_PREC (y) + MPFR_INT_CEIL_LOG2 (MPFR_PREC (y)) + 3;
if (MPFR_GET_EXP (x) > 0)
prec += 2 * MPFR_GET_EXP(x);
mpfr_init2 (tmp, prec);
MPFR_ZIV_INIT (loop, prec); /* Initialize the ZivLoop controler */
for (;;) /* Infinite loop */
{
/* use asymptotic formula only whenever x^2 >= p*log(2),
otherwise it will not converge */
if (MPFR_SIGN (x) > 0 &&
2 * MPFR_GET_EXP (x) - 2 >= MPFR_INT_CEIL_LOG2 (prec))
/* we have x^2 >= p in that case */
{
err = mpfr_erfc_asympt (tmp, x);
if (err == 0) /* underflow case */
{
mpfr_clear (tmp);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_underflow (y, (rnd == MPFR_RNDN) ? MPFR_RNDZ : rnd, 1);
}
}
else
{
mpfr_erf (tmp, x, MPFR_RNDN);
MPFR_ASSERTD (!MPFR_IS_SINGULAR (tmp)); /* FIXME: 0 only for x=0 ? */
te = MPFR_GET_EXP (tmp);
mpfr_ui_sub (tmp, 1, tmp, MPFR_RNDN);
/* See error analysis in algorithms.tex for details */
if (MPFR_IS_ZERO (tmp))
{
prec *= 2;
err = prec; /* ensures MPFR_CAN_ROUND fails */
}
else
err = MAX (te - MPFR_GET_EXP (tmp), 0) + 1;
}
if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - err, MPFR_PREC (y), rnd)))
break;
MPFR_ZIV_NEXT (loop, prec); /* Increase used precision */
mpfr_set_prec (tmp, prec);
}
MPFR_ZIV_FREE (loop); /* Free the ZivLoop Controller */
inex = mpfr_set (y, tmp, rnd); /* Set y to the computed value */
mpfr_clear (tmp);
end:
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inex, rnd);
}
|