1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
/* mpfr_digamma -- digamma function of a floating-point number
Copyright 2009-2016 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include "mpfr-impl.h"
/* Put in s an approximation of digamma(x).
Assumes x >= 2.
Assumes s does not overlap with x.
Returns an integer e such that the error is bounded by 2^e ulps
of the result s.
*/
static mpfr_exp_t
mpfr_digamma_approx (mpfr_ptr s, mpfr_srcptr x)
{
mpfr_prec_t p = MPFR_PREC (s);
mpfr_t t, u, invxx;
mpfr_exp_t e, exps, f, expu;
mpz_t *INITIALIZED(B); /* variable B declared as initialized */
unsigned long n0, n; /* number of allocated B[] */
MPFR_ASSERTN(MPFR_IS_POS(x) && (MPFR_EXP(x) >= 2));
mpfr_init2 (t, p);
mpfr_init2 (u, p);
mpfr_init2 (invxx, p);
mpfr_log (s, x, MPFR_RNDN); /* error <= 1/2 ulp */
mpfr_ui_div (t, 1, x, MPFR_RNDN); /* error <= 1/2 ulp */
mpfr_div_2exp (t, t, 1, MPFR_RNDN); /* exact */
mpfr_sub (s, s, t, MPFR_RNDN);
/* error <= 1/2 + 1/2*2^(EXP(olds)-EXP(s)) + 1/2*2^(EXP(t)-EXP(s)).
For x >= 2, log(x) >= 2*(1/(2x)), thus olds >= 2t, and olds - t >= olds/2,
thus 0 <= EXP(olds)-EXP(s) <= 1, and EXP(t)-EXP(s) <= 0, thus
error <= 1/2 + 1/2*2 + 1/2 <= 2 ulps. */
e = 2; /* initial error */
mpfr_mul (invxx, x, x, MPFR_RNDZ); /* invxx = x^2 * (1 + theta)
for |theta| <= 2^(-p) */
mpfr_ui_div (invxx, 1, invxx, MPFR_RNDU); /* invxx = 1/x^2 * (1 + theta)^2 */
/* in the following we note err=xxx when the ratio between the approximation
and the exact result can be written (1 + theta)^xxx for |theta| <= 2^(-p),
following Higham's method */
B = mpfr_bernoulli_internal ((mpz_t *) 0, 0);
mpfr_set_ui (t, 1, MPFR_RNDN); /* err = 0 */
for (n = 1;; n++)
{
/* compute next Bernoulli number */
B = mpfr_bernoulli_internal (B, n);
/* The main term is Bernoulli[2n]/(2n)/x^(2n) = B[n]/(2n+1)!(2n)/x^(2n)
= B[n]*t[n]/(2n) where t[n]/t[n-1] = 1/(2n)/(2n+1)/x^2. */
mpfr_mul (t, t, invxx, MPFR_RNDU); /* err = err + 3 */
mpfr_div_ui (t, t, 2 * n, MPFR_RNDU); /* err = err + 1 */
mpfr_div_ui (t, t, 2 * n + 1, MPFR_RNDU); /* err = err + 1 */
/* we thus have err = 5n here */
mpfr_div_ui (u, t, 2 * n, MPFR_RNDU); /* err = 5n+1 */
mpfr_mul_z (u, u, B[n], MPFR_RNDU); /* err = 5n+2, and the
absolute error is bounded
by 10n+4 ulp(u) [Rule 11] */
/* if the terms 'u' are decreasing by a factor two at least,
then the error coming from those is bounded by
sum((10n+4)/2^n, n=1..infinity) = 24 */
exps = mpfr_get_exp (s);
expu = mpfr_get_exp (u);
if (expu < exps - (mpfr_exp_t) p)
break;
mpfr_sub (s, s, u, MPFR_RNDN); /* error <= 24 + n/2 */
if (mpfr_get_exp (s) < exps)
e <<= exps - mpfr_get_exp (s);
e ++; /* error in mpfr_sub */
f = 10 * n + 4;
while (expu < exps)
{
f = (1 + f) / 2;
expu ++;
}
e += f; /* total rouding error coming from 'u' term */
}
n0 = ++n;
while (n--)
mpz_clear (B[n]);
(*__gmp_free_func) (B, n0 * sizeof (mpz_t));
mpfr_clear (t);
mpfr_clear (u);
mpfr_clear (invxx);
f = 0;
while (e > 1)
{
f++;
e = (e + 1) / 2;
/* Invariant: 2^f * e does not decrease */
}
return f;
}
/* Use the reflection formula Digamma(1-x) = Digamma(x) + Pi * cot(Pi*x),
i.e., Digamma(x) = Digamma(1-x) - Pi * cot(Pi*x).
Assume x < 1/2. */
static int
mpfr_digamma_reflection (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_prec_t p = MPFR_PREC(y) + 10, q;
mpfr_t t, u, v;
mpfr_exp_t e1, expv;
int inex;
MPFR_ZIV_DECL (loop);
/* we want that 1-x is exact with precision q: if 0 < x < 1/2, then
q = PREC(x)-EXP(x) is ok, otherwise if -1 <= x < 0, q = PREC(x)-EXP(x)
is ok, otherwise for x < -1, PREC(x) is ok if EXP(x) <= PREC(x),
otherwise we need EXP(x) */
if (MPFR_EXP(x) < 0)
q = MPFR_PREC(x) + 1 - MPFR_EXP(x);
else if (MPFR_EXP(x) <= MPFR_PREC(x))
q = MPFR_PREC(x) + 1;
else
q = MPFR_EXP(x);
mpfr_init2 (u, q);
MPFR_ASSERTN(mpfr_ui_sub (u, 1, x, MPFR_RNDN) == 0);
/* if x is half an integer, cot(Pi*x) = 0, thus Digamma(x) = Digamma(1-x) */
mpfr_mul_2exp (u, u, 1, MPFR_RNDN);
inex = mpfr_integer_p (u);
mpfr_div_2exp (u, u, 1, MPFR_RNDN);
if (inex)
{
inex = mpfr_digamma (y, u, rnd_mode);
goto end;
}
mpfr_init2 (t, p);
mpfr_init2 (v, p);
MPFR_ZIV_INIT (loop, p);
for (;;)
{
mpfr_const_pi (v, MPFR_RNDN); /* v = Pi*(1+theta) for |theta|<=2^(-p) */
mpfr_mul (t, v, x, MPFR_RNDN); /* (1+theta)^2 */
e1 = MPFR_EXP(t) - (mpfr_exp_t) p + 1; /* bound for t: err(t) <= 2^e1 */
mpfr_cot (t, t, MPFR_RNDN);
/* cot(t * (1+h)) = cot(t) - theta * (1 + cot(t)^2) with |theta|<=t*h */
if (MPFR_EXP(t) > 0)
e1 = e1 + 2 * MPFR_EXP(t) + 1;
else
e1 = e1 + 1;
/* now theta * (1 + cot(t)^2) <= 2^e1 */
e1 += (mpfr_exp_t) p - MPFR_EXP(t); /* error is now 2^e1 ulps */
mpfr_mul (t, t, v, MPFR_RNDN);
e1 ++;
mpfr_digamma (v, u, MPFR_RNDN); /* error <= 1/2 ulp */
expv = MPFR_EXP(v);
mpfr_sub (v, v, t, MPFR_RNDN);
if (MPFR_EXP(v) < MPFR_EXP(t))
e1 += MPFR_EXP(t) - MPFR_EXP(v); /* scale error for t wrt new v */
/* now take into account the 1/2 ulp error for v */
if (expv - MPFR_EXP(v) - 1 > e1)
e1 = expv - MPFR_EXP(v) - 1;
else
e1 ++;
e1 ++; /* rounding error for mpfr_sub */
if (MPFR_CAN_ROUND (v, p - e1, MPFR_PREC(y), rnd_mode))
break;
MPFR_ZIV_NEXT (loop, p);
mpfr_set_prec (t, p);
mpfr_set_prec (v, p);
}
MPFR_ZIV_FREE (loop);
inex = mpfr_set (y, v, rnd_mode);
mpfr_clear (t);
mpfr_clear (v);
end:
mpfr_clear (u);
return inex;
}
/* we have x >= 1/2 here */
static int
mpfr_digamma_positive (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_prec_t p = MPFR_PREC(y) + 10, q;
mpfr_t t, u, x_plus_j;
int inex;
mpfr_exp_t errt, erru, expt;
unsigned long j = 0, min;
MPFR_ZIV_DECL (loop);
/* compute a precision q such that x+1 is exact */
if (MPFR_PREC(x) < MPFR_EXP(x))
q = MPFR_EXP(x);
else
q = MPFR_PREC(x) + 1;
mpfr_init2 (x_plus_j, q);
mpfr_init2 (t, p);
mpfr_init2 (u, p);
MPFR_ZIV_INIT (loop, p);
for(;;)
{
/* Lower bound for x+j in mpfr_digamma_approx call: since the smallest
term of the divergent series for Digamma(x) is about exp(-2*Pi*x), and
we want it to be less than 2^(-p), this gives x > p*log(2)/(2*Pi)
i.e., x >= 0.1103 p.
To be safe, we ensure x >= 0.25 * p.
*/
min = (p + 3) / 4;
if (min < 2)
min = 2;
mpfr_set (x_plus_j, x, MPFR_RNDN);
mpfr_set_ui (u, 0, MPFR_RNDN);
j = 0;
while (mpfr_cmp_ui (x_plus_j, min) < 0)
{
j ++;
mpfr_ui_div (t, 1, x_plus_j, MPFR_RNDN); /* err <= 1/2 ulp */
mpfr_add (u, u, t, MPFR_RNDN);
inex = mpfr_add_ui (x_plus_j, x_plus_j, 1, MPFR_RNDZ);
if (inex != 0) /* we lost one bit */
{
q ++;
mpfr_prec_round (x_plus_j, q, MPFR_RNDZ);
mpfr_nextabove (x_plus_j);
}
/* since all terms are positive, the error is bounded by j ulps */
}
for (erru = 0; j > 1; erru++, j = (j + 1) / 2);
errt = mpfr_digamma_approx (t, x_plus_j);
expt = MPFR_EXP(t);
mpfr_sub (t, t, u, MPFR_RNDN);
if (MPFR_EXP(t) < expt)
errt += expt - MPFR_EXP(t);
if (MPFR_EXP(t) < MPFR_EXP(u))
erru += MPFR_EXP(u) - MPFR_EXP(t);
if (errt > erru)
errt = errt + 1;
else if (errt == erru)
errt = errt + 2;
else
errt = erru + 1;
if (MPFR_CAN_ROUND (t, p - errt, MPFR_PREC(y), rnd_mode))
break;
MPFR_ZIV_NEXT (loop, p);
mpfr_set_prec (t, p);
mpfr_set_prec (u, p);
}
MPFR_ZIV_FREE (loop);
inex = mpfr_set (y, t, rnd_mode);
mpfr_clear (t);
mpfr_clear (u);
mpfr_clear (x_plus_j);
return inex;
}
int
mpfr_digamma (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
int inex;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode),
("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec(y), mpfr_log_prec, y, inex));
if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(x)))
{
if (MPFR_IS_NAN(x))
{
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF(x))
{
if (MPFR_IS_POS(x)) /* Digamma(+Inf) = +Inf */
{
MPFR_SET_SAME_SIGN(y, x);
MPFR_SET_INF(y);
MPFR_RET(0);
}
else /* Digamma(-Inf) = NaN */
{
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
}
else /* Zero case */
{
/* the following works also in case of overlap */
MPFR_SET_INF(y);
MPFR_SET_OPPOSITE_SIGN(y, x);
mpfr_set_divby0 ();
MPFR_RET(0);
}
}
/* Digamma is undefined for negative integers */
if (MPFR_IS_NEG(x) && mpfr_integer_p (x))
{
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
/* now x is a normal number */
MPFR_SAVE_EXPO_MARK (expo);
/* for x very small, we have Digamma(x) = -1/x - gamma + O(x), more precisely
-1 < Digamma(x) + 1/x < 0 for -0.2 < x < 0.2, thus:
(i) either x is a power of two, then 1/x is exactly representable, and
as long as 1/2*ulp(1/x) > 1, we can conclude;
(ii) otherwise assume x has <= n bits, and y has <= n+1 bits, then
|y + 1/x| >= 2^(-2n) ufp(y), where ufp means unit in first place.
Since |Digamma(x) + 1/x| <= 1, if 2^(-2n) ufp(y) >= 2, then
|y - Digamma(x)| >= 2^(-2n-1)ufp(y), and rounding -1/x gives the correct result.
If x < 2^E, then y > 2^(-E), thus ufp(y) > 2^(-E-1).
A sufficient condition is thus EXP(x) <= -2 MAX(PREC(x),PREC(Y)). */
if (MPFR_EXP(x) < -2)
{
if (MPFR_EXP(x) <= -2 * (mpfr_exp_t) MAX(MPFR_PREC(x), MPFR_PREC(y)))
{
int signx = MPFR_SIGN(x);
inex = mpfr_si_div (y, -1, x, rnd_mode);
if (inex == 0) /* x is a power of two */
{ /* result always -1/x, except when rounding down */
if (rnd_mode == MPFR_RNDA)
rnd_mode = (signx > 0) ? MPFR_RNDD : MPFR_RNDU;
if (rnd_mode == MPFR_RNDZ)
rnd_mode = (signx > 0) ? MPFR_RNDU : MPFR_RNDD;
if (rnd_mode == MPFR_RNDU)
inex = 1;
else if (rnd_mode == MPFR_RNDD)
{
mpfr_nextbelow (y);
inex = -1;
}
else /* nearest */
inex = 1;
}
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
goto end;
}
}
if (MPFR_IS_NEG(x))
inex = mpfr_digamma_reflection (y, x, rnd_mode);
/* if x < 1/2 we use the reflection formula */
else if (MPFR_EXP(x) < 0)
inex = mpfr_digamma_reflection (y, x, rnd_mode);
else
inex = mpfr_digamma_positive (y, x, rnd_mode);
end:
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inex, rnd_mode);
}
|