1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
|
/* mpfr_mul -- multiply two floating-point numbers
Copyright 1999-2015 Free Software Foundation, Inc.
Contributed by the AriC and Caramel projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/********* BEGINNING CHECK *************/
/* Check if we have to check the result of mpfr_mul.
TODO: Find a better (and faster?) check than using old implementation */
#ifdef MPFR_WANT_ASSERT
# if MPFR_WANT_ASSERT >= 3
int mpfr_mul2 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode);
static int
mpfr_mul3 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
/* Old implementation */
int sign_product, cc, inexact;
mpfr_exp_t ax;
mp_limb_t *tmp;
mp_limb_t b1;
mpfr_prec_t bq, cq;
mp_size_t bn, cn, tn, k;
MPFR_TMP_DECL(marker);
/* deal with special cases */
if (MPFR_ARE_SINGULAR(b,c))
{
if (MPFR_IS_NAN(b) || MPFR_IS_NAN(c))
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) );
if (MPFR_IS_INF(b))
{
if (MPFR_IS_INF(c) || MPFR_NOTZERO(c))
{
MPFR_SET_SIGN(a,sign_product);
MPFR_SET_INF(a);
MPFR_RET(0); /* exact */
}
else
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
}
else if (MPFR_IS_INF(c))
{
if (MPFR_NOTZERO(b))
{
MPFR_SET_SIGN(a, sign_product);
MPFR_SET_INF(a);
MPFR_RET(0); /* exact */
}
else
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
}
else
{
MPFR_ASSERTD(MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c));
MPFR_SET_SIGN(a, sign_product);
MPFR_SET_ZERO(a);
MPFR_RET(0); /* 0 * 0 is exact */
}
}
sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) );
ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c);
bq = MPFR_PREC (b);
cq = MPFR_PREC (c);
MPFR_ASSERTN ((mpfr_uprec_t) bq + cq <= MPFR_PREC_MAX);
bn = MPFR_PREC2LIMBS (bq); /* number of limbs of b */
cn = MPFR_PREC2LIMBS (cq); /* number of limbs of c */
k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */
tn = MPFR_PREC2LIMBS (bq + cq);
/* <= k, thus no int overflow */
MPFR_ASSERTD(tn <= k);
/* Check for no size_t overflow*/
MPFR_ASSERTD((size_t) k <= ((size_t) -1) / MPFR_BYTES_PER_MP_LIMB);
MPFR_TMP_MARK(marker);
tmp = MPFR_TMP_LIMBS_ALLOC (k);
/* multiplies two mantissa in temporary allocated space */
b1 = (MPFR_LIKELY(bn >= cn)) ?
mpn_mul (tmp, MPFR_MANT(b), bn, MPFR_MANT(c), cn)
: mpn_mul (tmp, MPFR_MANT(c), cn, MPFR_MANT(b), bn);
/* now tmp[0]..tmp[k-1] contains the product of both mantissa,
with tmp[k-1]>=2^(GMP_NUMB_BITS-2) */
b1 >>= GMP_NUMB_BITS - 1; /* msb from the product */
/* if the mantissas of b and c are uniformly distributed in ]1/2, 1],
then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386
and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
tmp += k - tn;
if (MPFR_UNLIKELY(b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
cc = mpfr_round_raw (MPFR_MANT (a), tmp, bq + cq,
MPFR_IS_NEG_SIGN(sign_product),
MPFR_PREC (a), rnd_mode, &inexact);
/* cc = 1 ==> result is a power of two */
if (MPFR_UNLIKELY(cc))
MPFR_MANT(a)[MPFR_LIMB_SIZE(a)-1] = MPFR_LIMB_HIGHBIT;
MPFR_TMP_FREE(marker);
{
mpfr_exp_t ax2 = ax + (mpfr_exp_t) (b1 - 1 + cc);
if (MPFR_UNLIKELY( ax2 > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, sign_product);
if (MPFR_UNLIKELY( ax2 < __gmpfr_emin))
{
/* In the rounding to the nearest mode, if the exponent of the exact
result (i.e. before rounding, i.e. without taking cc into account)
is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
both arguments are powers of 2) in absolute value, then round to
zero. */
if (rnd_mode == MPFR_RNDN &&
(ax + (mpfr_exp_t) b1 < __gmpfr_emin ||
(mpfr_powerof2_raw (b) && mpfr_powerof2_raw (c))))
rnd_mode = MPFR_RNDZ;
return mpfr_underflow (a, rnd_mode, sign_product);
}
MPFR_SET_EXP (a, ax2);
MPFR_SET_SIGN(a, sign_product);
}
MPFR_RET (inexact);
}
int
mpfr_mul (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
mpfr_t ta, tb, tc;
int inexact1, inexact2;
mpfr_init2 (ta, MPFR_PREC (a));
mpfr_init2 (tb, MPFR_PREC (b));
mpfr_init2 (tc, MPFR_PREC (c));
MPFR_ASSERTN (mpfr_set (tb, b, MPFR_RNDN) == 0);
MPFR_ASSERTN (mpfr_set (tc, c, MPFR_RNDN) == 0);
inexact2 = mpfr_mul3 (ta, tb, tc, rnd_mode);
inexact1 = mpfr_mul2 (a, b, c, rnd_mode);
if (mpfr_cmp (ta, a) || inexact1*inexact2 < 0
|| (inexact1*inexact2 == 0 && (inexact1|inexact2) != 0))
{
fprintf (stderr, "mpfr_mul return different values for %s\n"
"Prec_a = %lu, Prec_b = %lu, Prec_c = %lu\nB = ",
mpfr_print_rnd_mode (rnd_mode),
MPFR_PREC (a), MPFR_PREC (b), MPFR_PREC (c));
mpfr_out_str (stderr, 16, 0, tb, MPFR_RNDN);
fprintf (stderr, "\nC = ");
mpfr_out_str (stderr, 16, 0, tc, MPFR_RNDN);
fprintf (stderr, "\nOldMul: ");
mpfr_out_str (stderr, 16, 0, ta, MPFR_RNDN);
fprintf (stderr, "\nNewMul: ");
mpfr_out_str (stderr, 16, 0, a, MPFR_RNDN);
fprintf (stderr, "\nNewInexact = %d | OldInexact = %d\n",
inexact1, inexact2);
MPFR_ASSERTN(0);
}
mpfr_clears (ta, tb, tc, (mpfr_ptr) 0);
return inexact1;
}
# define mpfr_mul mpfr_mul2
# endif
#endif
/****** END OF CHECK *******/
/* Multiply 2 mpfr_t */
/* Note: mpfr_sqr will call mpfr_mul if bn > MPFR_SQR_THRESHOLD,
in order to use Mulders' mulhigh, which is handled only here
to avoid partial code duplication. There is some overhead due
to the additional tests, but slowdown should not be noticeable
as this code is not executed in very small precisions. */
int
mpfr_mul (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
int sign, inexact;
mpfr_exp_t ax, ax2;
mp_limb_t *tmp;
mp_limb_t b1;
mpfr_prec_t bq, cq;
mp_size_t bn, cn, tn, k, threshold;
MPFR_TMP_DECL (marker);
MPFR_LOG_FUNC
(("b[%Pu]=%.*Rg c[%Pu]=%.*Rg rnd=%d",
mpfr_get_prec (b), mpfr_log_prec, b,
mpfr_get_prec (c), mpfr_log_prec, c, rnd_mode),
("a[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec (a), mpfr_log_prec, a, inexact));
/* deal with special cases */
if (MPFR_ARE_SINGULAR (b, c))
{
if (MPFR_IS_NAN (b) || MPFR_IS_NAN (c))
{
MPFR_SET_NAN (a);
MPFR_RET_NAN;
}
sign = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));
if (MPFR_IS_INF (b))
{
if (!MPFR_IS_ZERO (c))
{
MPFR_SET_SIGN (a, sign);
MPFR_SET_INF (a);
MPFR_RET (0);
}
else
{
MPFR_SET_NAN (a);
MPFR_RET_NAN;
}
}
else if (MPFR_IS_INF (c))
{
if (!MPFR_IS_ZERO (b))
{
MPFR_SET_SIGN (a, sign);
MPFR_SET_INF (a);
MPFR_RET(0);
}
else
{
MPFR_SET_NAN (a);
MPFR_RET_NAN;
}
}
else
{
MPFR_ASSERTD (MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c));
MPFR_SET_SIGN (a, sign);
MPFR_SET_ZERO (a);
MPFR_RET (0);
}
}
sign = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));
ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c);
/* Note: the exponent of the exact result will be e = bx + cx + ec with
ec in {-1,0,1} and the following assumes that e is representable. */
/* FIXME: Useful since we do an exponent check after ?
* It is useful iff the precision is big, there is an overflow
* and we are doing further mults...*/
#ifdef HUGE
if (MPFR_UNLIKELY (ax > __gmpfr_emax + 1))
return mpfr_overflow (a, rnd_mode, sign);
if (MPFR_UNLIKELY (ax < __gmpfr_emin - 2))
return mpfr_underflow (a, rnd_mode == MPFR_RNDN ? MPFR_RNDZ : rnd_mode,
sign);
#endif
bq = MPFR_PREC (b);
cq = MPFR_PREC (c);
MPFR_ASSERTN ((mpfr_uprec_t) bq + cq <= MPFR_PREC_MAX);
bn = MPFR_PREC2LIMBS (bq); /* number of limbs of b */
cn = MPFR_PREC2LIMBS (cq); /* number of limbs of c */
k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */
tn = MPFR_PREC2LIMBS (bq + cq);
MPFR_ASSERTD (tn <= k); /* tn <= k, thus no int overflow */
/* Check for no size_t overflow*/
MPFR_ASSERTD ((size_t) k <= ((size_t) -1) / MPFR_BYTES_PER_MP_LIMB);
MPFR_TMP_MARK (marker);
tmp = MPFR_TMP_LIMBS_ALLOC (k);
/* multiplies two mantissa in temporary allocated space */
if (MPFR_UNLIKELY (bn < cn))
{
mpfr_srcptr z = b;
mp_size_t zn = bn;
b = c;
bn = cn;
c = z;
cn = zn;
}
MPFR_ASSERTD (bn >= cn);
if (MPFR_LIKELY (bn <= 2))
{
if (bn == 1)
{
/* 1 limb * 1 limb */
umul_ppmm (tmp[1], tmp[0], MPFR_MANT (b)[0], MPFR_MANT (c)[0]);
b1 = tmp[1];
}
else if (MPFR_UNLIKELY (cn == 1))
{
/* 2 limbs * 1 limb */
mp_limb_t t;
umul_ppmm (tmp[1], tmp[0], MPFR_MANT (b)[0], MPFR_MANT (c)[0]);
umul_ppmm (tmp[2], t, MPFR_MANT (b)[1], MPFR_MANT (c)[0]);
add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], 0, t);
b1 = tmp[2];
}
else
{
/* 2 limbs * 2 limbs */
mp_limb_t t1, t2, t3;
/* First 2 limbs * 1 limb */
umul_ppmm (tmp[1], tmp[0], MPFR_MANT (b)[0], MPFR_MANT (c)[0]);
umul_ppmm (tmp[2], t1, MPFR_MANT (b)[1], MPFR_MANT (c)[0]);
add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], 0, t1);
/* Second, the other 2 limbs * 1 limb product */
umul_ppmm (t1, t2, MPFR_MANT (b)[0], MPFR_MANT (c)[1]);
umul_ppmm (tmp[3], t3, MPFR_MANT (b)[1], MPFR_MANT (c)[1]);
add_ssaaaa (tmp[3], t1, tmp[3], t1, 0, t3);
/* Sum those two partial products */
add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], t1, t2);
tmp[3] += (tmp[2] < t1);
b1 = tmp[3];
}
b1 >>= (GMP_NUMB_BITS - 1);
tmp += k - tn;
if (MPFR_UNLIKELY (b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
}
else
/* Mulders' mulhigh. This code can also be used via mpfr_sqr,
hence the tests b != c. */
if (MPFR_UNLIKELY (bn > (threshold = b != c ?
MPFR_MUL_THRESHOLD : MPFR_SQR_THRESHOLD)))
{
mp_limb_t *bp, *cp;
mp_size_t n;
mpfr_prec_t p;
/* First check if we can reduce the precision of b or c:
exact values are a nightmare for the short product trick */
bp = MPFR_MANT (b);
cp = MPFR_MANT (c);
MPFR_ASSERTN (threshold >= 1);
if (MPFR_UNLIKELY ((bp[0] == 0 && bp[1] == 0) ||
(cp[0] == 0 && cp[1] == 0)))
{
mpfr_t b_tmp, c_tmp;
MPFR_TMP_FREE (marker);
/* Check for b */
while (*bp == 0)
{
bp++;
bn--;
MPFR_ASSERTD (bn > 0);
} /* This must end since the most significant limb is != 0 */
/* Check for c too: if b ==c, will do nothing */
while (*cp == 0)
{
cp++;
cn--;
MPFR_ASSERTD (cn > 0);
} /* This must end since the most significant limb is != 0 */
/* It is not the faster way, but it is safer */
MPFR_SET_SAME_SIGN (b_tmp, b);
MPFR_SET_EXP (b_tmp, MPFR_GET_EXP (b));
MPFR_PREC (b_tmp) = bn * GMP_NUMB_BITS;
MPFR_MANT (b_tmp) = bp;
if (b != c)
{
MPFR_SET_SAME_SIGN (c_tmp, c);
MPFR_SET_EXP (c_tmp, MPFR_GET_EXP (c));
MPFR_PREC (c_tmp) = cn * GMP_NUMB_BITS;
MPFR_MANT (c_tmp) = cp;
/* Call again mpfr_mul with the fixed arguments */
return mpfr_mul (a, b_tmp, c_tmp, rnd_mode);
}
else
/* Call mpfr_mul instead of mpfr_sqr as the precision
is probably still high enough. */
return mpfr_mul (a, b_tmp, b_tmp, rnd_mode);
}
/* Compute estimated precision of mulhigh.
We could use `+ (n < cn) + (n < bn)' instead of `+ 2',
but does it worth it? */
n = MPFR_LIMB_SIZE (a) + 1;
n = MIN (n, cn);
MPFR_ASSERTD (n >= 1 && 2*n <= k && n <= cn && n <= bn);
p = n * GMP_NUMB_BITS - MPFR_INT_CEIL_LOG2 (n + 2);
bp += bn - n;
cp += cn - n;
/* Check if MulHigh can produce a roundable result.
We may lose 1 bit due to RNDN, 1 due to final shift. */
if (MPFR_UNLIKELY (MPFR_PREC (a) > p - 5))
{
if (MPFR_UNLIKELY (MPFR_PREC (a) > p - 5 + GMP_NUMB_BITS
|| bn <= threshold + 1))
{
/* MulHigh can't produce a roundable result. */
MPFR_LOG_MSG (("mpfr_mulhigh can't be used (%lu VS %lu)\n",
MPFR_PREC (a), p));
goto full_multiply;
}
/* Add one extra limb to mantissa of b and c. */
if (bn > n)
bp --;
else
{
bp = MPFR_TMP_LIMBS_ALLOC (n + 1);
bp[0] = 0;
MPN_COPY (bp + 1, MPFR_MANT (b) + bn - n, n);
}
if (b != c)
{
if (cn > n)
cp --; /* FIXME: Could this happen? */
else
{
cp = MPFR_TMP_LIMBS_ALLOC (n + 1);
cp[0] = 0;
MPN_COPY (cp + 1, MPFR_MANT (c) + cn - n, n);
}
}
/* We will compute with one extra limb */
n++;
/* ceil(log2(n+2)) takes into account the lost bits due to
Mulders' short product */
p = n * GMP_NUMB_BITS - MPFR_INT_CEIL_LOG2 (n + 2);
/* Due to some nasty reasons we can have only 4 bits */
MPFR_ASSERTD (MPFR_PREC (a) <= p - 4);
if (MPFR_LIKELY (k < 2*n))
{
tmp = MPFR_TMP_LIMBS_ALLOC (2 * n);
tmp += 2*n-k; /* `tmp' still points to an area of `k' limbs */
}
}
MPFR_LOG_MSG (("Use mpfr_mulhigh (%lu VS %lu)\n", MPFR_PREC (a), p));
/* Compute an approximation of the product of b and c */
if (b != c)
mpfr_mulhigh_n (tmp + k - 2 * n, bp, cp, n);
else
mpfr_sqrhigh_n (tmp + k - 2 * n, bp, n);
/* now tmp[0]..tmp[k-1] contains the product of both mantissa,
with tmp[k-1]>=2^(GMP_NUMB_BITS-2) */
/* [VL] FIXME: This cannot be true: mpfr_mulhigh_n only
depends on pointers and n. As k can be arbitrarily larger,
the result cannot depend on k. And indeed, with GMP compiled
with --enable-alloca=debug, valgrind was complaining, at
least because MPFR_RNDRAW at the end tried to compute the
sticky bit even when not necessary; this problem is fixed,
but there's at least something wrong with the comment above. */
b1 = tmp[k-1] >> (GMP_NUMB_BITS - 1); /* msb from the product */
/* If the mantissas of b and c are uniformly distributed in (1/2, 1],
then their product is in (1/4, 1/2] with probability 2*ln(2)-1
~ 0.386 and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
if (MPFR_UNLIKELY (b1 == 0))
/* Warning: the mpfr_mulhigh_n call above only surely affects
tmp[k-n-1..k-1], thus we shift only those limbs */
mpn_lshift (tmp + k - n - 1, tmp + k - n - 1, n + 1, 1);
tmp += k - tn;
MPFR_ASSERTD (MPFR_LIMB_MSB (tmp[tn-1]) != 0);
/* if the most significant bit b1 is zero, we have only p-1 correct
bits */
if (MPFR_UNLIKELY (!mpfr_round_p (tmp, tn, p + b1 - 1, MPFR_PREC(a)
+ (rnd_mode == MPFR_RNDN))))
{
tmp -= k - tn; /* tmp may have changed, FIX IT!!!!! */
goto full_multiply;
}
}
else
{
full_multiply:
MPFR_LOG_MSG (("Use mpn_mul\n", 0));
b1 = mpn_mul (tmp, MPFR_MANT (b), bn, MPFR_MANT (c), cn);
/* now tmp[0]..tmp[k-1] contains the product of both mantissa,
with tmp[k-1]>=2^(GMP_NUMB_BITS-2) */
b1 >>= GMP_NUMB_BITS - 1; /* msb from the product */
/* if the mantissas of b and c are uniformly distributed in (1/2, 1],
then their product is in (1/4, 1/2] with probability 2*ln(2)-1
~ 0.386 and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
tmp += k - tn;
if (MPFR_UNLIKELY (b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
}
ax2 = ax + (mpfr_exp_t) (b1 - 1);
MPFR_RNDRAW (inexact, a, tmp, bq+cq, rnd_mode, sign, ax2++);
MPFR_TMP_FREE (marker);
MPFR_EXP (a) = ax2; /* Can't use MPFR_SET_EXP: Expo may be out of range */
MPFR_SET_SIGN (a, sign);
if (MPFR_UNLIKELY (ax2 > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, sign);
if (MPFR_UNLIKELY (ax2 < __gmpfr_emin))
{
/* In the rounding to the nearest mode, if the exponent of the exact
result (i.e. before rounding, i.e. without taking cc into account)
is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
both arguments are powers of 2), then round to zero. */
if (rnd_mode == MPFR_RNDN
&& (ax + (mpfr_exp_t) b1 < __gmpfr_emin
|| (mpfr_powerof2_raw (b) && mpfr_powerof2_raw (c))))
rnd_mode = MPFR_RNDZ;
return mpfr_underflow (a, rnd_mode, sign);
}
MPFR_RET (inexact);
}
|